溅射喷淋头的制作方法

文档序号:17119891发布日期:2019-03-15 23:42阅读:413来源:国知局
溅射喷淋头的制作方法

本文描述的实施方案大体涉及关于用于沉积材料的设备及方法,并且更更具体地涉及具有能够进行物理气相沉积与化学气相沉积的溅射喷淋头的气相沉积腔室。



背景技术:

在集成电路的制造中,沉积处理(例如化学气相沉积(cvd)或物理气相沉积(pvd))用于在半导体基板上沉积各种材料的膜。这些沉积处理通常发生在分离的封闭处理腔室中。

处理气体用于在cvd腔室中在基板上沉积膜。可以将处理气体供应到位于基板支撑件上的基板。可以提供净化气体,以移除处理气体。可以使用设置于远离处理区域(例如环绕处理腔室的外周边)的公共排气从处理腔室移除处理气体与净化气体,以防止净化气体与处理气体在处理区域中混合。

pvd处理包括利用在等离子体区域中产生的离子溅射包含源材料的靶,而造成喷射的源材料行进到基板上。喷射的源材料可以经由形成在基板上的负电压或偏压而朝向基板加速。一些pvd处理腔室将rf能量提供至靶上,以增加均匀性。

两个处理腔室采用非常不同的处理条件进行沉积。cvd处理在比pvd处理高得多的温度下操作,并涉及专门的前驱物的使用。为了将多层氧化物与金属沉积到基板上,将基板从一个腔室转移到另一腔室,然后再次返回。使用上述布置,污染物与其他杂质可能在从一个系统到下一个系统的过渡期间(特别是在试图沉积交替的氧化物与金属层时)沉积在基板上,而造成半导体膜中的不均匀性。

因此,需要一种用于在基板上沉积氧化物与金属的改善的系统与方法。



技术实现要素:

本文描述的实施方案大体涉及用于沉积材料的设备及方法,并且更具体地涉及具有能够进行物理气相沉积与化学气相沉积的溅射喷淋头的气相沉积腔室。在一个实施方案中,提供一种溅射喷淋头组件。溅射喷淋头组件包含面板,面板包含溅射表面以及与溅射表面相对的第二表面,溅射表面包含靶材料,其中多个气体通道从溅射表面延伸到第二表面。溅射喷淋头组件进一步包含定位成与面板的第二表面相邻的背板。背板包含第一表面以及与第一表面相对的第二表面。溅射喷淋头组件具有由背板的第一表面与面板的第二表面限定的气室。溅射喷淋头组件进一步包含沿着背板的第二表面定位的一个或更多个磁电管。

在另一个实施方案中,提供一种沉积腔室。沉积腔室包含溅射喷淋头组件以及设置在溅射喷淋头组件下方的基板支撑件。溅射喷淋头组件包含面板,面板包含溅射表面以及与溅射表面相对的第二表面,溅射表面包含靶材料,其中多个气体通道从溅射表面延伸到第二表面。溅射喷淋头组件进一步包含定位成与面板的第二表面相邻的背板。背板包含第一表面以及与第一表面相对的第二表面。溅射喷淋头组件具有由背板的第一表面与面板的第二表面限定的气室。溅射喷淋头组件进一步包含沿着背板的第二表面定位的一个或更多个磁电管。

在另一个实施方案中,提供了一种沉积方法。该方法包含以下步骤:将基板定位于基板支撑件上,以及将前驱物流体通过溅射喷淋头组件的面板流动到内部容积中,以在基板上沉积第一层。内部容积设置于溅射喷淋头组件与基板支撑件之间。该方法进一步包含以下步骤:从溅射喷淋头组件的面板溅射一种或更多种金属,以在第一层上沉积第二层。

附图说明

为使本公开的上述特征可详细地被理解,可参照实施方案获得本实施方案(简短概要如上)的更具体描述,这些实施方案的一些绘示于随附附图中。然而,应注意随附附图仅图示本公开的典型实施方案,并且因此不视为限定本公开的保护范围,本公开可允许其他等效实施方案。

图1描绘了根据本文所述的实施方案的包括溅射喷淋头组件的等离子体腔室的局部截面示意侧视图;

图2描绘了根据本文所述的实施方案的溅射喷淋头组件的背板的示意侧视图;

图3a描绘了根据本文所述的实施方案的溅射喷淋头组件的面板的示意侧视图;

图3b描绘了图3a的面板的俯视图;以及

图4描绘了根据本文所述的实施方案的用于沉积材料的方法的一个实施方案的处理流程图。

为促进理解,相同的附图标记尽可能指定各个附图中相同的组件。构想到一个实施方案的组件与特征可以有利地并入其他实施方案,而不另外详述。

具体实施方式

下文的公开描述执行物理气相沉积(pvd)与化学气相沉积(cvd)处理的溅射喷淋头,以及包括溅射喷淋头的处理腔室。在以下描述与图1至图4中阐述某些细节,以提供对本公开的各种实施方案的透彻理解。描述通常与pvd及cvd相关联的众所周知的结构与系统的其他细节在以下公开中没有阐述,以避免不必要地模糊各种实施方案的描述。

附图所示的许多细节、尺寸、角度、及其他特征仅为具体实施方案的说明。因此,在不背离本公开的精神或范围的情况下,其他实施方案可以具有其他细节、部件、尺寸、角度、及特征。此外,可以实现本公开的进一步实施方案,而不需要下面描述的几个细节。

图1是根据本文所述的实施方案的包括能够处理基板105的溅射喷淋头组件150的一个实施方案的示例性等离子体处理腔室100的局部截面示意侧视图。图2是根据本文所述的实施方案的溅射喷淋头组件150的背板160的示意侧视图。图3a是根据本文所述的实施方案的溅射喷淋头组件150的面板152的示意侧视图。图3b是图3a的面板152的俯视图。

溅射喷淋头组件150包括面板,面板包括多个气体递送通道,并作为溅射靶。等离子体处理腔室100作为能够在基板上沉积金属或金属氧化物的物理气相沉积(pvd)腔室以及能够在基板上沉积介电材料的化学气相沉积(cvd)腔室两者。等离子体处理腔室100也可用于其他目的,例如,沉积氧化物、氮化物、铝、铜、钽、氮化钽、碳化钽、钨、氮化钨、及钛。

等离子体处理腔室100包括腔室主体102,腔室主体102具有侧壁104、底壁106、及溅射喷淋头组件150,以包围内部容积110或等离子体区域。腔室主体102通常由不锈钢焊接板或整体铝块制成。在一个实施方案中,侧壁104包含铝,而底壁106包含不锈钢。侧壁104通常包含狭缝阀(在此视图中未示出),以提供基板105进入处理腔室100和从等离子体处理腔室100的移出。等离子体处理腔室100的溅射喷淋头组件150与可移动屏蔽件结合,以将形成于内部容积110中的等离子体局限于基板105上方的区域。

基座组件120由等离子体处理腔室100的底壁106支撑。基座组件120在处理期间支撑基板105。基座组件120通过升降机构122耦接到等离子体处理腔室100的底壁106,而升降机构122经配置以在较高位置和较低位置之间移动基座组件120。此外,在较低位置中,升降销移动通过基座组件120,以使基板105与基座组件120间隔开,以便于将基板与设置于等离子体处理腔室100外部的晶片传送机构(例如单刀片机器人(未图示))交换。可选择地,波纹管(未图示)通常设置于基座组件120与底壁106之间,以将腔室主体102的内部容积110从基座组件120的内部及腔室的外部隔离开。

基座组件120通常包括基板支撑件126。基板支撑件126可以由铝或陶瓷构成。基板支撑件126具有在处理期间接收及支撑基板105的基板接收表面127;基板接收表面127限定与面板152的溅射表面154平行或基本平行的平面。基板支撑件126可以是静电卡盘、陶瓷主体、加热器、或其组合。在一个实施方案中,基板支撑件126是静电卡盘,包括其中嵌入导电层的介电主体。介电主体通常由高导热介电材料(例如热解氮化硼、氮化铝、氮化硅、氧化铝、或等效材料)制成。在一个实施方案中,基板支撑件126作为由rf功率源121(通常经由匹配网络)偏压的底部电极。在一个实施方案中,基板支撑件是可旋转的。

溅射喷淋头组件150通常包括面板152、与面板152相对的背板160、及一个或更多个磁电管170a-170f(统称为170)。一个或更多个磁电管170a-170f可以增强均匀性与侵蚀控制。面板152与背板160限定气室180。

面板152包含第一表面或溅射表面154以及第二表面156或上表面,第一表面或溅射表面154与内部容积110相邻,而第二表面156或上表面与气室180相邻并与溅射表面相对。面板152具有从第二表面156延伸到溅射表面154的多个气体通道158。多个气体通道158将内部容积110与气室180耦接,并提供用于将处理气体从气室180递送到内部容积110的导管。多个气体通道158也可用于递送其他气体至内部容积110,例如载体气体、净化气体、和/或清洁气体。在一个实施方案中,多个气体通道158均匀地分布在与基板支撑件126的表面区域对应的面板152的表面区域上。引入到气室180中的气体可以均匀地分散在面板152后方,以通过多个气体通道158引入到内部容积110中。

在一个实施方案中,可以通过气体输入130将气体引入到气室180中。可以由气体源132提供气体。在一个实施方案中,气体源132可以包含处理气体源。在另一实施方案中,气体源132可以包含清洁气体源。气体从气体源132行进通过远程等离子体源134。rf功率源138也可以通过rf馈送136而与气体输入130耦接。在一些实施方案中,dc功率源通过dc馈送而与气体输入130耦接。

在一个实施方案中,面板152由靶材料形成。面板152提供在沉积处理期间沉积在基板105上的材料。可用于形成面板152的示例性靶材料包括但不限于铝、钢、不锈钢(例如,可选择地含有镍的铁铬合金)、铁、镍、铬、铝、铜、钽、氮化钽、碳化钽、钨、氮化钨、钛、其合金、及其组合。在一个实施方案中,面板152是平坦的盘。

背板160包含与气室180相邻的第一表面162或下表面以及与第一表面162相对的第二表面164或上表面。

在一个实施方案中,背板160可以由导电材料(例如金属或金属合金)形成。在一个实施方案中,背板160由金属形成。示例性金属可以选自包含铝、钢、不锈钢(例如,可选择地含有镍的铁铬合金)、铁、镍、铬、其合金、及其组合的群组,或选自由其组成的群组。在一个实施方案中,背板160是平坦的盘。

在一个实施方案中,绝缘体(未图示)定位于面板152与背板160之间。绝缘体在面板152与背板160之间提供电绝缘。在一个实施方案中,绝缘体由陶瓷材料(例如氮化铝(alxny)或氧化铝(al2o3))形成。

在一个实施方案中,面板152具有凹部159。如图1所示,气室180由凹部159与背板160的第一表面162限定。气室180经由多个气体通道158定位于内部容积110上方,并与其流体耦接,以用于将处理气体供应到内部容积110。

一个或更多个磁电管170a-170f(统称为170)在等离子体处理腔室100的外部耦接到背板160的第二表面164。一个或更多个磁电管170经定位以控制面板152的溅射表面154的侵蚀。在一个实施方案中,一个或更多个磁电管170被定位在面板152上方。一个或更多个磁电管170可以包括由连接至轴件的底板支撑的一个或更多个磁体,而轴件可以轴向对准面板152的中心轴。磁体在面板152的前表面附近的等离子体处理腔室100内产生磁场,以产生等离子体,而使得显著的离子流量撞击面板152,以造成靶材料的溅射发射。磁体可以环绕面板152旋转,以增加通过面板152的溅射表面154的磁场的均匀性。一个或更多个磁电管170通常在pvd处理期间开启,但通常在cvd处理期间关闭。发明人已发现,如果在cvd处理期间使用一个或更多个磁电管170,会显著干扰等离子体。

面板152的溅射表面154暴露于等离子体处理腔室100的内部容积110。面板152提供在pvd处理期间沉积在基板上的材料。隔离环184设置于面板152与腔室主体102之间,以电隔离面板152与腔室主体102。

相对于接地(例如腔室主体102),由rf电源140(通常经由匹配网络)将面板152偏压。在另一个实施方案中,经由气室180与多个气体通道158将气体(例如氩)从气体源142供应到内部容积110。气体源142可以包含能够从面板152以能量撞击并溅射靶材料的非活性气体(例如氩或氙)。气体源142也可以包括能够与溅射的靶材料反应而在基板上形成一层的活性气体,例如含氧气体、含氮气体、含甲烷气体中的一个或更多个。气体源142也可以包括用于经由cvd处理在基板105上沉积膜的处理气体。废弃的处理气体与副产物通过排放端口146从等离子体处理腔室100排出,排放端口146接收废弃的处理气体,并将废弃的处理气体引导到具有节流阀的排放导管148,以控制等离子体处理腔室100中的气体的压力。排放导管148连接到一个或更多个排放泵149。通常,将等离子体处理腔室100中的溅射气体的压力设定为低于大气压的等级,例如真空环境,例如0.6mtorr至400mtorr的气体压力。在基板105与面板152之间从气体形成等离子体。等离子体内的离子朝向面板152加速,并造成材料从面板152移出。移出的靶材料沉积在基板105上。

在一个实施方案中,等离子体处理腔室100包括在腔室主体102内接地的可移动衬垫174。可移动衬垫174将内部容积110从侧壁104及隔离环184屏蔽开。侧壁104可以是铝或不锈钢。侧壁104可以与前驱物反应,并在内部容积110中造成污染。可移动衬垫174可以在高压cvd处理期间向下移动,并在低压pvd处理期间朝向面板152向上移动,以形成暗空间(darkspace)。在pvd处理期间,将可移动衬垫174朝向面板152向上移动减少隔离环184上的金属沉积。若未检查,则隔离环184上的金属沉积会导致金属侧壁104与溅射喷淋头组件150之间的短路。在一个实施方式中,可移动衬垫174与基座组件120耦接,并与基座组件120一起上下移动。在另一个实施方案中,单独的升降机构用于移动可移动衬垫174。可移动衬垫174可以由石英或其他耐处理材料制成。

等离子体处理腔室100由控制器190控制,控制器190包含具有用于操作等离子体处理腔室100的部件以处理等离子体处理腔室100中的基板的指令集的程序代码。举例而言,控制器190可包括程序代码,程序代码包括:基板定位指令集,用于操作基座组件120;气体流动控制指令集,用于操作气体流量控制阀,以设定到等离子体处理腔室100的溅射气体的流量;气压控制指令集,用于操作节流阀,以维持等离子体处理腔室100中的压力;温度控制指令集,用于控制面板座组件120或侧壁104中的温度控制系统(未示出),以分别设定基板或侧壁104的温度;以及处理监测指令集,用于监测等离子体处理腔室100中的处理。

图4描绘了根据本文所述的实现方案的用于沉积材料的方法400的一个实施方案的处理流程图。方法400由在操作410将基板(例如,基板105)定位于处理腔室(例如图1所示的等离子体处理腔室100)中开始。基板105位于基板支撑件126上。基板105可以通过电卡盘(未图示)电耦接到基板支撑件126。如本文所述,基板支撑件126被定位为与溅射喷淋头组件150相对。溅射喷淋头组件150被设置于等离子体处理腔室100的内部容积110中。

基板105可以具有基本平坦的表面、不平坦的表面、或具有结构形成其上。在一些实施方案中,在基板105上存在一个或更多个材料层。在一个实施方案中,一个或更多个材料层可以是用于形成逻辑或存储器装置(例如nand结构)的前端或后端处理中的栅极结构、接触结构、互连结构或浅沟道隔离(sti)结构的膜堆叠的一部分。在不存在材料层的实施方案中,方法400直接在基板的表面上进行。

在一个实施方案中,材料层可以是包括用于形成nand结构的栅极结构的氧化硅和/或氮化硅层的重复层的膜堆栈。可替代地,材料层可以是用于形成栅电极的硅材料。在另一个实施方案中,材料层可以包括氧化硅层与沉积在硅层上的氧化硅层。在另一个实施方案中,材料层可以包括用于制造半导体器件的一层或更多层的其他介电材料。介电层的合适的示例包括氧化硅、氮化硅、氮氧化硅、碳化硅、或根据需要的任何合适的低k或多孔介电材料。在另一个实施方案中,材料层不包括任何金属层。

在操作420处,在等离子体处理腔室100中经由cvd处理在基板上沉积第一层。cvd处理可以是等离子体增强cvd处理。cvd处理可以在较高的压力(例如约10torr至约20torr)下进行。在存在可移动衬垫174的实施方案中,可移动衬垫174通常在cvd处理期间被移动远离面板152。在操作420的cvd处理期间,一个或更多个磁电管170通常关闭。发明人已发现,若启动,则一个或更多个磁电管170可能在操作420期间干扰在内部容积110中形成的等离子体。内部容积110设置于溅射喷淋头组件150与基板支撑件126之间。

在一个实施方案中,第一层是介电层。在一个实施方案中,第一层是高k介电层。在一个实施方案中,第一层是含氧化物层。在一个实施方案中,第一膜层是含氧化硅的层、含氮化硅的层、或含硅层。在一个实施方案中,第一层是氧化硅层。

前驱物流体流动通过溅射喷淋头组件150的面板152而进入内部容积110。前驱物流体可以是在基板105上沉积第一层的一种或更多种处理气体。在一个实施方案中,前驱物流体包括含硅气体并且可选地包括反应气体。含硅气体的合适示例包括但不限于硅烷(sih4)、乙硅烷(si2h6)、四氟化硅(sif4)、四氯化硅(sicl4)、二氯硅烷(sih2cl2)、四乙氧基硅烷(teos)、等等。反应气体可以是用于形成含氧化硅的层的含氧气体、用于形成含氮化硅的层的含氮气体、或用于形成含碳化硅的层的含碳气体。含氧气体的合适示例包括o2、n2o、no2、o3、h2o、等等。含氮气体的合适示例包括n2、n2o、no2、nh3、n2h2、nf3、等等。含碳气体的合适示例包括co2、co、ch4、cf4、其他合适的碳基聚合物气体、等等。替代地,可以在提供至等离子体处理腔室100的前驱物流体中包括一种或更多种惰性气体。惰性气体可以包括但不限于钝气(例如ar、he、及xe)或n2等等。在一个实施方案中,前驱物流体包括含有卤素的气体,例如nf3。在一个实施方案中,前驱物流体流进内部容积110中5-25秒。

在本文所述的一个实施方案中,含硅气体是teos,活性气体是含氧气体(例如n2o),而惰性气体是氩气,以形成第一膜层(例如氧化硅层)。

在操作420期间,在将前驱物流体供应到处理腔室时,调节几个处理参数。在一个实施方案中,将处理腔室中的前驱物流体的压力调节在约10mtorr至约15torr之间,而基板温度被维持在约200摄氏度至约700摄氏度之间。

在操作420期间,在一个实施方案中,在将前驱物流体供应到处理腔室时,可以产生rf源功率,并将其耦接到气体混合物,以辅助将前驱物流体解离成等离子体(例如等离子体151)中的活性物质。在一些实施方案中,可以在将沉积气体供应到处理腔室之前,产生rf源功率。

在达到所期望厚度的第一膜层之后,可以终止沉积处理。一旦沉积完成,与内部容积110相邻的区域以及基板支撑件126下方的区域可以抽真空。在一个实施方案中,净化气体可以供应到内部容积110。净化气体可以是氧气或惰性气体,例如氮气或氩气。在操作420期间使用惰性气体的一些实施方案中,不论有没有施加rf功率,惰性气体都可以作为净化气体。

可选择地,在操作430之前,可移动衬垫174可以向上移动,以与溅射喷淋头组件150对接,以限定内部容积110中的等离子体形成区域。在操作430的pvd处理期间,可移动衬垫174可以朝向面板152向上移动,以形成暗空间。在pvd处理期间,将可移动衬垫174朝向面板152向上移动减少隔离环184上的金属沉积。若未检查,则隔离环184上的金属沉积会导致金属侧壁104与溅射喷淋头组件150之间的短路。在一个实施方式中,可移动衬垫174与基座组件120耦接,并与基座组件120一起上下移动。在另一个实施方案中,单独的升降机构用于移动可移动衬垫174。

在操作430处,在等离子体处理腔室100中经由pvd处理在基板上沉积第二层。若第二层存在,则第二层可以沉积在第一层上。第二层可以是含金属层。第二层可以是金属、金属氧化物、或金属合金层。在操作430期间,从溅射喷淋头组件的面板溅射一种或更多种金属,以在第一层上沉积第二层。第二层可以是金属、金属氧化物、或金属合金。

通常,将等离子体处理腔室100中的溅射气体的压力设定为低于大气压的等级,例如真空环境,例如0.6mtorr至400mtorr的气体压力。在基板105与面板152之间由气体形成等离子体。等离子体内的离子朝向面板152加速,并造成靶材料从面板152移出。移出的靶材料沉积在基板105上,以形成第二层。可以使用任何合适的靶材料。在一个实施方案中,靶材料选自包含镍、铬、铝、铜、钽、氮化钽、碳化钽、钨、氮化钨、钛,其合金、及其组合的群组,或选自由其组成的群组。

一旦溅射完成,可以重复cvd处理与pvd处理。氧化物层与金属层沉积可以重复约80至100次,而使得在基板105上沉积80至100层交替的氧化物与金属。

本文所公开的实施方案涉及能够执行cvd与pvd以降低均匀半导体处理的成本的单一溅射喷淋头组件。此外,单一氧化物金属沉积系统降低在半导体基板上的沉积所需的时间。此外,相较于传统的pvd处理,实施方案提供使用rf能量溅射以减少基板损伤的能力。实施方案也提供使用高电子抑制的优点的能力,以控制使用磁电管与dc功率的磁体的目标侵蚀,以及控制使用rf能量所建立的更多扩散等离子体(全面侵蚀)。应理解,本文描述的实现方案可以在各种整合方案中找到合适的应用性,例如栅极优先(gatefirst)与栅极最后(gatelast)的整合方案。

当引入本公开的组件或示例性方面或实施方案时,冠词“一”、“一个”、“该”、及“所述”旨在表示存在一个或更多个组件。

术语“包含”、“包括”、及“具有”旨在为包含性,而意味着在所列出的组件之外可以存在额外组件。

尽管前述关于本公开的实施方案,可以在不悖离本公开的基本范围的情况下设计本公开的其他及进一步实施方案,而本公开的范围由随附权利要求所决定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1