一种钛基钽涂层生物植入物材料的制备方法与流程

文档序号:16895157发布日期:2019-02-15 23:32阅读:625来源:国知局
一种钛基钽涂层生物植入物材料的制备方法与流程

本发明涉及一种医用内植入物器械,特别涉及一种利用化学气相沉积技术在传统钛及钛合金内植入物上进行钽金属涂层的制备方法。



背景技术:

对于骨科疾病,尤其是创伤疾患,需要手术干预治疗,目前骨科植入物所采用的金属材料主要包括医用不锈钢和钛合金系列。钛合金具有比重小、强度高、弹性模量低、易加工成形等特点,现已发展成为骨科植入物较为理想的功能结构材料。但是,复杂的人体内环境会引起金属材料腐蚀而导致有毒元素的释放,生物相容性因此降低;如何对传统材料进行表面改性,提高钛基植入物的生物相容性,成为医疗和材料界学者不断关注的焦点。

金属钽具有优异的延展性和韧性,特别是它超强的耐腐蚀性、良好的生物相容性,受到医疗工作者的广泛关注。但是钽金属成本高,限制了其广泛的临床应用。近年来,钽作为植入体的表面涂层材料逐渐受到广泛的应用,钽涂层的表面形貌和性能,直接影响植入体的临床成功率。目前,钽涂层的制备常用的为等离子喷涂技术以及化学气相沉积方法。然而,等离子喷涂技术仅能喷涂平面结构的简单支架材料,对于复杂的多空隙支架材料存在喷涂不均匀,造成基底暴露等缺点。化学气相沉积技术制备的涂层结合力较强,涂层形貌致密,是目前应用较为理想的镀膜方法。但在沉积过程中,影响涂层形貌的因素较多,如沉积温度高,涂层残余热应力大,表面易出现裂纹。此外,沉积速率不能稳定控制,涂层不均匀,涂层与基体的结合力不够,容易脱落等问题。如何让钽金属涂层均匀、无脱落,并让钽金属与基体具备较强的结合力,是目前存在的主要问题。



技术实现要素:

本发明针对上述现有技术中的制备钽金属涂层医用植入物中存在的问题,提供一种利用化学气相沉积技术在传统钛及钛合金内植入物等钛基基体上进行钽金属涂层的制备方法。本发明的方法制备得到的钽涂层与钛基基体的结合力好,不易脱落,涂层致密且厚度均匀。

本发明的技术方案如下:

一种钛基钽涂层生物植入物材料的制备方法,其利用化学气相沉积方法在钛基基体表面沉积钽金属,该制备方法包括如下步骤:

(1)对钛基基体进行喷砂处理,形成一粗糙面,用无水酒精清洗后用氮气吹干,置入气相沉积反应室内,将钽金属置于反应室前端;

(2)反应室内首先通入惰性气体,吹扫反应腔10~20min,然后抽真空至200~250pa条件下,将反应室加热至900~1000℃,通入氯气和氢气,进行气相沉积反应,气相沉积时间为7~10h,气相沉积反应温度为900~1000℃;

(3)反应结束后,关闭氢气及氯气,连接冷却装置,在惰性气体保护下降温,降温至200℃以下,打开反应室取出钽金属涂层的钛基生物植入物材料。

在上述技术方案中,在步骤(1)中,所述的喷砂处理的步骤为:利用直径在100~150μm的白刚玉粉体进行喷砂,喷砂压力为0.3~0.5mpa,喷砂时间为3~5min。

在上述技术方案中,在步骤(2)中所述的氯气的流量为80~120ml/min。

在上述技术方案中,在步骤(2)中所述的氢气的流量为150~200ml/min。

在上述技术方案中,在步骤(2)和(3)中所述的惰性气体为氩气或氮气中的一种或两种的混合。

在上述技术方案中,在步骤(1)中所述的钽金属的纯度为99.99%~99.999%。

在上述技术方案中,在步骤(1)中所述的钛基基体为钛金属基体或钛合金基体。

本发明的另一方面,提供一种上述的方法制备得到的钽涂层钛基生物植入物材料,其中,所述钽涂层的厚度为10~20μm,钽涂层与钛基基体的结合力为40~70mpa。

在本发明中,将经过喷砂、清洗处理的钛基基体和作为原料的金属钽置于气相沉积反应室内,然后通入氯气和氢气进行沉积反应,其中,钛基基体放置于反应腔内设置的反应托盘内,金属钽放置于反应室前端,这样,当通入氯气和氢气时,首先氯气和钽金属发生化学反应,生成五氯化钽,接着五氯化钽与氢气发生还原反应,生成钽,渗透并沉积至钛基基体表面,形成钽涂层。

本发明相对于现有技术的有益效果:

(1)本发明的制备方法中,首先对钛基基体进行喷砂处理,将其表面进行修正,提高表面粗糙度,该步骤可提高形成的钽涂层与基体的结合力;

(2)在化学气相沉积反应中,在传统cvd技术的基础上,增加氯气与纯钽金属的气化反应,生成气化的五氯化钽,然后在于氢气发生化学反应,生成气化钽金属,进行沉积。相对于采用高价的五氯化钽粉末的传统气相沉积方法,本申请可直接采用钽金属,极大地降低了成本。

(3)本发明经过上述制备步骤的改进以及化学沉积反应参数的进一步优化,使参与反应的温度及气体流量等参数达到最优。本发明的方法沉积得到的钽涂层形貌良好,钽涂层的厚度可高达20微米,远远高于传统方法制备的几个微米,钽涂层均匀、致密,涂层与基体的结合力大于40mpa,能满足临床应用过程中的抗剥脱需要。本发明有效解决了现有的方法制备的涂层不均匀,涂层与基体的结合力不够,容易脱落等问题。另一方面,钽涂层有效地提高了传统钛基植入物的生物学特性,使钛基金属植入物的良好力学性能与钽金属优异的生物活性相结合,两者优势互补,达到最优的临床应用效果。

附图说明

图1是传统钛合金接骨板涂层前的照片;

图2是传统钛合金接骨板进行钽金属涂层后的照片;

图3是传统钛合金接骨板进行钽金属涂层后扫描电镜观察的照片;

图4是实施例1制备得到的钽涂层钛合金接骨板的edx分析结果;

图5表示采用划痕法测试钽金属涂层的结合力的结果。

具体实施例方式

下面结合附图和具体实施方式对本发明作进一步的详细说明,但本发明并不局限于这些实施方式。下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用材料、试剂等均可从生物或化学公司购买。

下述实施例中:

喷砂机:吉川机械(jck_ren1000)。

钛合金接骨板基体:以ti6al4v为原料制备得到的市售产品。

实施例1

一种钛基钽涂层生物植入物,其通过采用化学气相沉积技术将钽金属沉积在钛合金接骨板基体的表面制备得到,制备方法为:

(1)预处理:

将钛合金接骨板基体用去离子水超声波处理30min后吹干,再用无水乙醇清洗2次后吹干,最后在150℃烘干;

烘干后的钛合金接骨板基体,利用喷砂机进行喷砂处理,形成一粗糙面。

喷砂处理步骤如下:利用直径介于100~150μm的白玉刚进行喷砂,喷砂压力为0.3mpa,喷砂时间为5min。喷砂结束后用无水酒精清洗,氮气吹干,备用;

(2)将预处理的钛合金接骨板基体置入气相沉积反应腔内,且将块状钽金属置于反应腔前端,即,置于氯气和氢气的通入口;

(3)连接好进/排气管道装置,检查反应腔内密封情况,确认完毕后,向反应腔内通入氩气,吹扫反应腔10min,然后抽真空至100pa条件下,将反应腔加热至900℃,通入氯气和氢气,进行化学气相沉积反应,气相沉积反应时间为7h,气相沉积反应温度为900℃;

上述化学气相沉积反应过程为:通入氯气和氢气,首先氯气和气态的钽金属发生化学反应,生成五氯化钽,接着气态五氯化钽与氢气发生还原反应,生成气态钽金属,渗透并沉积至钛基基体表面,形成钽涂层。

在上述化学气相沉积反应中,所述氯气的流量为80ml/min;所述氢气的流量为150ml/min。

(4)反应结束后,关闭氢气和氯气,连接冷却装置,反应腔室在氩气保护下降温,降温至200℃以下,打开反应器取出具有钽涂层的钛合金接骨板基体。

图1和图2是涂层前后的接骨板照片,从图中可以看出,涂层前后接骨板的颜色发生明显变化,涂层前,接骨板展现ti6al4v合金原有的金属色泽,比较明亮;而钽涂层后,展现的是钽金属原有的色泽,色泽比较暗淡呈灰色。可以判断得到钽金属已经沉积到钛合金接骨板基体。

图3是用扫描电镜观测到的钛合金接骨板上钽金属涂层的形貌,放大倍数为300倍,从图中可以看到钽金属涂层覆盖钛合金接骨板的所有表面,没有看到钽涂层残缺或破裂的现象。通过sem观察钛合金接骨板表面的钽涂层厚度约为12μm。

图4是实施例1制备得到的钽金属涂层钛合金接骨板的钽涂层能谱分析结果。图4中可见,涂层主要为钽相组成,其质量分数高达83.59,钽涂层纯度较高。

实施例2~实施例5

根据实施例1所述的方法制备钛基钽涂层生物植入物,制备方法中与实施例1不同的点如表1所示。

表1制备钽金属涂层钛合金接骨板的工艺条件

对于如表1所述的不同工艺条件下制备得到的钽涂层钛合金接骨板,测定力学性能以及钽涂层与基体的结合力,结果如表2。

表2表1所述工艺条件下制备得到的钽涂层钛合金接骨板的性能

力学性能的测定:采用mts公司的mts-810型力学性能测试系统测试多孔钽金属支架的抗压强度与弹性模量,加载位移速率为0.5mm/min。在室温下测试钽涂层钛合金接骨板的抗弯强度,共3组试件。

如表2可知,实施例1~5中制备得到的钽金属涂层钛合金接骨板测得其平均抗压强度为611±20.4mpa,屈服强度为508±15.8mpa,弹性模量为102±4.1gpa,具有良好的抗弯强度和屈服强度。

钽涂层与基体的结合力的测定:钽涂层与钛合金基体结合力的测试在室温下进行,采用划痕法,测试钽涂层与钛合金接骨板基体的结合强度为42.5~47.3mpa。而等离子喷涂法制备的羟基磷灰石(ha)涂层与钛基体的结合强度低于20mpa远远低于钽涂层与碳化硅基体的结合强度,充分证明了采用本发明的cvd方法制备的钽涂层与钛合金基体之间具有良好的结合强度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1