热阻挡涂层体系和材料的制作方法

文档序号:3398311阅读:252来源:国知局
专利名称:热阻挡涂层体系和材料的制作方法
本申请是1998.5.22提交的题为“热阻挡涂层体系和材料”且系列号为08/764419的共同待批申请的部分继续申请,它是1996.12.12提交的(现已放弃)系列号为08/76419的后续实施申请。
本发明涉及用于热阻挡涂层的陶瓷材料,这种材料制造的热阻挡涂层,并涉及具有这种热阻挡涂层的金属部件。热阻挡涂层在气体涡轮引擎中特别有用。优选的陶瓷材料优选包括氧化钆和氧化锆并有立方晶体结构。
气体涡轮引擎是开发良好的机械,可将燃油形式的化学势能转成热能再转成机械能而用于推进飞机,产生电能,泵送流体等等。与此同时,改良气体涡轮引擎效能的主要有效途径是使用更高的作业温度。然而在气体涡轮引擎中使用的金属材料目前已是接近其热稳定性的上限。在现代气体涡轮引擎的最热部分,使用金属材料所处的气体温度已在其熔点以上。之所以能幸存是因为空气冷却。但提供空气冷却要降低引擎效率。
因此,已广泛开发热阻挡涂层以用于带冷却的气体涡轮飞机零件。使用热阻挡涂层可基本减少所需冷却空气的量,从而使效率相应增大。
这种涂层一定是以陶瓷为基。可提及的有莫来石,氧化铝等,而目前流行选择的材料是氧化锆。必须用稳定剂改良氧化锆以防止形成其单斜晶相,一般的稳定剂包括氧化钇,氧化钙,氧化铈和氧化镁。
一般而言,金属材料的热膨胀系数都超过陶瓷材料的。因此在开发成功的热阻挡涂层的过程中,必须关注的一个问题就是陶瓷材料和金属基体的热膨胀系数要匹配,使得在加热时基本膨胀而陶瓷涂层材料不开裂。氧化锆的热膨胀系数高,这是氧化锆顺利地用作金属基体上热阻挡涂层的主要原因。
可用几种技术沉积热阻挡涂层,包括热喷涂(等离子体,火焰和HVOF)、溅涂和电子束物理气相沉积(EBPVD)。这些技术中,由于电子束物理气相沉积产生独特的涂层结构,目前是优选应用的技术。电子束物理气相沉积的陶瓷材料,按照一定参数涂覆时就具有柱状晶粒微观结构,该微观结构由伸入涂层中的间隙所分开的小柱状晶粒构成。这些间隙可使基体基本上膨胀而不使涂层开裂和/或层剥落。例如参见一般受让的US 4321311。根据US 5073433和一般受让的5705231,通过等离子体喷涂技术,尽管范围较大仍能得到类似结构(包括分段开裂)。
尽管目前能顺利应用电子束物理气相沉积氧化锆基涂层,仍继续需要改良涂层,使之具有优异的热绝缘能力,特别是当对涂层密度标准化时要改良热绝缘能力。设计气体涡轮引擎,特别是旋转部件时,重量总是一个关键因素。陶瓷热阻挡涂层是不加载载体材料,因此添加重量而并不增加强度。人们迫切要求一种陶瓷热阻挡材料能在添加重量最小的同时提供最大的热绝缘能力。另外,显然还有的一般要求是长寿命,稳定性和经济性等等。
尽管已开发这种涂层用于气体涡轮引擎,本发明在遭遇高温如加热炉和内燃烧引擎的其他应用中显然具有实用性。


图1A描绘诸如锆酸镧或氧化钆锆酸盐的烧绿石的晶体结构。
图1B描绘例如完全稳定型氧化锆的萤石结构的晶体结构。
图2说明产生烧绿石结构所必要的A和B成分的离子大小之间的关系。
图3A描绘直接在金属基体上的陶瓷涂层。
图3B描绘在带中间粘合层的金属基体上的陶瓷涂层。
图3C描绘图3B中粘合层和陶瓷层之间界面的放大图。
图4说明ZrO2-La2O3的相图。
图5说明几种陶瓷材料的热导性。
图6说明几种陶瓷材料的热膨胀系数。
图7说明ZrO2-La2O3涂层的X-射线衍射扫描。
图8说明通过EB-PVD涂覆的氧化钆-氧化锆氧化物的微观结构。
图9说明热处理后的氧化钆-氧化锆氧化物的微观结构。
图10说明立方结构独石氧化钆-氧化锆氧化物试样的热导性,以及和独石氧化钇稳定的氧化锆(YSZ)试样的对比。
图11说明氧化钆-氧化锆氧化物薄层的热导性,以及和常规氧化钇稳定的氧化锆(YSZ)层的对比。
图12说明氧化钆和氧化锆的部分相图。
图13说明本发明包括陶瓷粘合层的另一个实施方案。
本发明的本质是发现一类具有作为金属基体上热阻挡涂层的广泛实用性的陶瓷材料。某些这种材料可包括烧绿石晶体结构,最近的试验说明其他的这种材料如包括立方晶、非烧绿石晶体结构的氧化钆-氧化锆氧化物(一般记作(Gd,Zr)O2)也可用作热阻挡涂层。
本文所用术语烧绿石表示在加拿大发现的一种钽矿石。该术语通常叙述一种A2B2O7组成的陶瓷结构,其中A有3+或2+价,B有4+或5+价且A与B价数之和为7。氧可用硫或氟部分取代。我们认为具有用作热阻挡涂层潜能的烧绿石一般是,其中A选自镧、钆、钇及其混合物且B选自锆、铪、钛及其混合物的烧1绿石。还存在许多具有用作热阻挡涂层潜能的其他烧绿石。有关烧绿石的全面叙述见M.A.Subramanian等人所著的“氧化物烧绿石的评论”在“固体化学的进展”,vol.15,PP.55-13,1983中(本文结合以参照)。
我们发现,根据调节密度,我们研究的烧绿石所具有的隔热性能超过常用的氧化锆基热阻挡涂层的性能。另外,许多烧绿石材料有这样一种相关系,亦即烧绿石结构直至熔点时都是相稳定的。我们研究的大多数烧绿石其熔点都超过3000°F(1650℃)时,且一般超过4000°F(2200℃)。一些有立方结构和至少一般的非烧绿石晶体结构如氧化钆氧化锆氧化物的材料,至少高达约3000°F(1650℃)仍是相稳定的,并且在氧化钆氧化锆氧化物情况下(图12),烧绿石类锆酸钆结构的任何转换都趋向于常规立方结构,它也是十分相稳定的。另外,所有这些材料都能粘附氧化铝。这些特性全部有用于热阻挡涂层。
本发明的涂层材料和涂层一般用于防止高温合金基体的过热。高温合金是一种金属,一般基于铁、镍或钴并含有铬和铝且通常包括钛和难熔金属,并具有在1200°F(650℃)以上使用性质。还可保护其他基体,包括钢,铜合金和钛合金等。表I描述了基体材料的实例。
表I(wt%-高温合金实例组成)
正如其他陶瓷热阻挡涂层中那样,该陶瓷对合金基体的粘合性很关键,不管陶瓷是否具有非烧绿石(例如萤石)和/或含有烧绿石晶体结构。
从现有氧化锆热阻挡涂层中知道,诸如MCrAlY的金属粘合层(有时叫作覆盖涂层)是一种陶瓷涂层用的高级粘合层。还熟知铝化物(aluminidc)涂层尽管一般不如MCrAlY粘合层耐久仍是有用的粘合层。覆盖涂层和铝化物涂层的共同特征是它们两者皆形成粘附的氧化铝表面薄膜或皮层。
MCrAlY材料较宽的组成范围是10-25% Cr,5~15AI,0.1-1.0Y,其余选自Fe,Ni及Co和Ni与Co的混合物。还可各加入最多5%的Hf,Ta或Re,最多1%的Si和最多3%的Os,Pt,Pd或Rh。表II描述通过热喷涂,EBPVD法和电镀工艺所涂覆的MCrAlY实例。
表II(wt%-MCrAlY组成实例)<
另一种粘合层是通过扩散铝进入基体表面而形成的扩散铝化物。扩散铝化物是熟知的,并可用一种混合物(称为包装物(pack))来涂覆,该混合物含有一种铝源如铝合金或化合物,一种活化剂(通常是卤化物化合物如NaF)和一种诸如氧化铝的惰性材料。待涂覆部件被埋藏在包装物中并加热到1500-2000°F,同时使诸如氢气的载体气体流经该包装物。不用包装工艺,这时该部件不埋藏在包装物内的方法也是熟知的。还公知向铝化物涂层中引入贵金属,例如Pt,Rh,Pd和Os。关于铝化物涂层的工艺例如可参见US 5514842。
还可将覆盖层和铝化物涂层组合。一般受让的US 4897315叙述一种具有MCrAlY内覆盖涂层和铝化物外涂层的体系。一般受让的US 4005989叙述一种相反的组合,一种铝化物内涂层和外覆盖涂层。
这些粘合层和粘合层组合体的共同特征是在它们外表面上形成一种氧化铝的粘附层。本发明热阻挡涂层在氧化铝中的溶解度有限,但对氧化铝牢固粘合。
在某些情况下,高温合金可形成十分完美和粘附的氧化铝层,陶瓷能粘附其上而无需一种单独的粘合层。见一般受让的US 4209348,4719080,4895201,5034284,52642245和5346563以及5538796。
迄今为止所有陶瓷涂层在高温合金上的成功涂覆包括在粘合层(或基体)和陶瓷涂层之间的一种氧化物层(通常是氧化铝,很少是氧化硅)。
烧绿石结构是一种可用各种方式叙述的配合结构,如萤石结构衍生的,或者象一种角对角连接且有阳离子填充其间隙的八面体网络结构。
下面参照图8进一步讨论本发明氧化钆氧化锆氧化物,它包括立方晶(如萤石)并且通常是非烧绿石结构。
图1A表示立方烧绿石晶体结构。不管其结构解释,烧绿石结构的化学组成是A2B2O7,偶尔是A2B2O6或者AB2O6,后两种叫作缺陷烧绿石。图1A说明有A2B2O7化学组成和烧绿石晶体结构的锆酸镧。图1B说明立方萤石结构(亦即非烧绿石),完全稳定型氧化锆结构,以及如下所述,说明有萤石结构的氧化钆氧化锆氧化物结构。对比图1A和图1B说明两种结构之间的相似和不同之处。图1A和图1B两者向下看都是(100)晶轴。可见烧绿石结构比萤石结构更不规则。
对烧绿石,A和B离子的价数可以不同,在A2B2O7情况下只要A和B价数之和最多为7,或在A2B2O7情况下最多为6。虽然本文所述所有烧绿石化合物或者有A2B2O7或者有A2B2O6结构,而有A2B2O7或A2B2O6结构(包括下文叙述的氧化钆氧化锆氧化物)的所有化合物不一定都是烧绿石。仅对A和B离子半径的一定关系才会形成烧绿石结构。图2说明这种关系,表明A和B离子半径的普通组合以产生立方烧绿石。我们发现这个图的边界多少有些不确定,根据我们的研究认为钛酸镧[La2Ti2O7]有稳定的立方烧绿石结构。非立方烧绿石是公知的,但对于本发明第一方面的目的(烧绿石),我们优选使用有立方烧绿石结构的陶瓷。
如图2所示,通过A和B成分的相对离子半径来控制所要求的立方烧绿石晶体结构的形成。可使用A和/或B成分元素的混合物,以便得到一种可形成立方烧绿石结构的平均离子半径。举例来说从图2可见,Gd2Ti2O7和Y2Zr2O7两者都有立方烧绿石结构。按照一般规则,通式(GdxYy)(TiaZrb)O7的化合物,其中x+y=2且a+b=2,也有立方烧绿石结构。另外,象Ln2Zr2O7非立方的化合物,通过部分取代使A和B平均离子半径进入图2所示立方烧绿石结构区域的方式也能似乎得到立方结构,例如用Nd取代Ln和/或Ti取代Zr。
氧化钆氧化锆氧化物是一种弱烧绿石形成物(在图12中以波折线界定的区域P),可通过以下事实表明,亦即氧化钆和氧化锆的离子半径相对较大,接近图2烧绿石形成区域的边缘。最近研究表明,以预期形成烧绿石结构的组成和温度所制备的氧化钆和氧化锆,实际上具有萤石结构或者萤石结构和烧绿石结构的联合体。
我们已研究了通式A2B2O7类型的烧绿石,并且其中我们优选使用钆、镧或钇作A离子和铪、钛或锆作B离子。锆酸镧具有低热导性,但难以通过EB-PVD制造,因为镧和锆有根本不同的蒸汽压,使气相沉积更困难。我们仅仅使用A2B2O7结构的材料,并未试图使用其中氟或硫取代部分氧的公知烧绿石,但我们并不认为可以任何理由将硫和氟取代的组合物排除在本发明之外。我们也没有用试验评估A2B2O6和AB2O6结构,但相信它们在热阻挡涂层中也有实用性。就非烧绿石结构而言,氧化钆和氧化锆有相似的蒸汽压,因而更使气相沉积成为可能。
Ti,Zr和Hf彼此之间具有完全的固溶性,我们认为可使用Gd+La+Y的任何组合作B离子。同样,Gd,La和Y有基本的固溶性(Gd-La有完全的固溶性)。可使用不形成第二相的Gd+La+Y的任何组合作A离子。A和B物质的这些合金必须满足图2的标准并具有烧绿石结构。
氧化物烧绿石化合物的低热导性可通过考虑结晶和化学对热导性的作用而合理化。介电固体在升高温度时的热导性可通过声子散射测定,通过晶体缺陷和其他声子测定。氧化物烧绿石化合物具有许多与低热导性材料有关的特征。烧绿石晶体结构其原有缺陷的浓度高。已用试验证实,在化合物内成分之间原子质量的差别增大时,该化合物的热导性趋于降低。尽管烧绿石和萤石结构十分相似,高浓度的相对高原子质量的原子(镧,钆和钇)取代进入萤石结构就提供一种降低热导的方式,这一点在现有稳定型氧化锆化合物中并未知晓。应当注意,对热阻挡应用而言,因使用高原子质量元素而降低热导性所获取的效益必须高于因高密度所招致的投入。
热导性的降低还与结晶结构复杂性的加大有关。如图1A所示,烧绿石结构比图1B所示萤石结构具有更大程度的复杂性。立方烧绿石与立方萤石结构类似,但带有大量替换的氧原子(八个缺位中有一个)。
通常用热喷涂工艺涂覆热阻挡涂层,如等离子体喷涂,在空气(APS)或低压(LPPS)中通过高速氧燃料工艺(HVOF)或者通过爆炸喷枪(D枪)。其他技术是电子束物理气相沉积(EBPVD)和溅涂。电子束物理气相沉积是一种有利的技术。每种技术都有其特殊优点,取决于用途和环境。所有这些技术都能方便地用来涂覆氧化物烧绿石热阻挡涂层,以及诸如氧化钆氧化锆氧化物的非烧绿石。如上述所讨论的,EBPVD工艺由于其形成适合极高温度应用的结构而提供了优越性,因此最适合涂覆高热部分的涡轮部件。热喷涂工艺在涂覆形状复杂的大部件中有优越性,最适合涂覆诸如燃烧器的部件。
图3A,3B和3C说明按照本发明一个方面的热阻挡涂层的变体。图3A图示一种涂覆制品,包括高温合金基体10,其外表面21上有烧绿石顶涂层20。在气体涡轮应用中,高温合金基体10的底侧11被冷空气(未画出)冷却,而烧绿石的外部正表面21裸露在高温下。在外表面和底侧之间还有小孔使冷空气从底侧流到外表面。有角度和形状的冷却小孔结合外表面上流经的热气体就能产生薄膜冷却,其中冷空气层使外表面与热气体隔开,进一步降低热流。热将从正表面21流到冷却面11,通过层20基本减低热流量。如上所述,可通过各种技术涂覆烧绿石,烧绿石层的宏观结构在沉积工艺中将大起作用。本发明最基本的实施方案是烧绿石层粘附到基体,在热梯度存在下减少热流。
图3B说明一种优选构造,其中在基体10和烧绿石20之间采用粘合层15。粘合层15改善了粘附性并对基体提供氧化保护。图3C是粘合层15和烧绿石层20之间的界面层16的一种展开图。在界面层处存在一种主要是氧化铝的氧化物层22,可认为它主要负责粘附烧绿石。
在粘合层上通过溅涂氧化铝使粘合层上的自然产生的氧化铝层增长,这是公知的,在氧化锆热阻挡涂层的情况下,使用一种单独涂覆的氧化铝层(而不是热生长氧化物层)也是本发明的一种实施方案。
在另一个实施方案中,在热阻挡涂层的自由表面涂覆另一种陶瓷层。可选择这种添加层以减少氧扩散以提供耐腐蚀性和耐磨性,或提供所要求的热辐射性能,或这些性能的某种组合。
实施例I将说明使用La2Zr2O7(锆酸镧)烧绿石氧化物化合物作EBPVD涂覆的热阻挡涂层。La2Zr2O7烧绿石氧化物相对于稳定型氧化锆在热阻挡涂层方面的优越性能包括热导性,热膨胀,密度,相稳定性以及相对于YSZ的低成本。图4说明带有用P标示烧绿石相区域的La2O3-ZrO2相图。可看出烧绿石结构(大约35摩尔%的La2O3)直至熔点约2300℃(4172°F)时是稳定的。
图5说明作为温度函数的La2Zr2O7与立方氧化锆相对照的热导性。在热阻挡涂层的一般使用温度下,烧绿石化合物具有的热导性是稳定型氧化锆的大约50%。La2Zr2O7烧绿石化合物的密度与稳定型氧化锆的大致相同(大约6gr/cm3),重量校正基础也同样,热导性的效益也是大约50%。如果构成成分的蒸汽压中有差异,则La2Zr2O7优选使用等离子体喷涂。
为了说明效果,可使涂层厚度减少50%来减少50%热导性而得到同样程度的热保护。常规运行条件下,在一般涡轮叶片上减少50%涂层质量将在叶片根部降低叶片拉力大约1500磅(680Kg),这将明显增加叶片寿命并允许减少与叶片相连的圆片的质量。如果热阻挡涂层保持同样厚度,冷空气流保持不变,基体温度将降低大约100°F(55℃),于是增加了基体蠕变寿命。保持涂层厚度和降低空气流动就会增大引擎效率。综合这些效果,例如(稍微)减少涂层质量和(稍微)降低冷却空气也是可能的。
图6表示作为温度函数的La2Zr2O7与立方稳定型氧化锆相对比的平均热膨胀系数。可看出La2Zr2O7热阻挡涂层与立方稳定型氧化锆热阻挡涂层的热膨胀相似。这意味在热循环期间La2Zr2O7与氧化锆的行为雷同。
实施例II在控制气氛的舱室中用电子束物理气相沉积(EBPVD)而将锆酸镧涂覆基体。涂料涂覆到单晶基体(命名PWA 1480组成制造的基体,(见表II))。在3.2×104乇真空和50sccm氧流速条件下进行涂覆工艺。加入氧气以确保烧绿石的氧的化学计量,见一般受让的US 5087477。沉积期间基体温度是1840°F且基体与原料源的距离是5.25英寸。用电子束在0.8A和10000V时将烧绿石陶瓷源汽化。氧化物源是La2Zr2O7粉末。涂层具有有利的柱状晶粒结构,一般是电子束物理气相沉积立方氧化锆热阻挡涂层的结构,与等离子体喷涂的涂层相比,使应力缓解并改良了耐久性。
图7说明涂层表面得到的X-射线衍射扫描图。衍射峰表明是烧绿石晶体结构,说明在沉积的热阻挡涂层中形成烧绿石结构。
最近试验表明,具有立方萤石晶体结构(Gd,Zr)O2、可包括一些有烧绿石结构的材料(直至大约8-10vol%),的氧化钆-锆酸盐也具有低热导性。根据本发明另一个方面,氧化钆锆酸盐优选含有至多100vol.%有立方晶体结构的材料,并且还包括一些烧绿石结构。这种结构本文叫作“萤石”,同上述叫作烧绿石的立方烧绿石结构相反。萤石结构基本如图1B所示。我并不排除有其他结构的材料。
图8表示通过EB-PVD对氧化铝基体22上涂覆(Gd,Zr)O2的试样。陶瓷涂层24具有柱状晶粒结构。该材料包括大约2w/o(wt%)的氧化钇,象是与氧化钆结合的7YSZ(而不是纯氧化锆),因此在图10中指名(Gd,Y,Zr)O2的使用。
图9说明类似于图8试样的另一种材料试样,它经过2500°F的约125小时的热处理。该试样包括氧化铝基体和厚度为“L”的涂层(图9中左面白线26表示,大约49微米)。较亮的带28位于柱状晶粒和基体的界面处,似乎是一种在热处理期间基体和涂层相互扩散的区域。侵蚀试验表明萤石氧化钆氧化锆氧化物构成的涂层具有可以接受的耐蚀性。而且进一步试验表明氧化钆氧化锆氧化物充分耐烧结。
试验还表明试样在整个涂层的各种位置都有一致的组成,证实氧化钆和氧化锆有类似蒸汽压。因此,氧化钆锆酸盐易于用常规方法涂覆,例如常规的EDPVD,其中将诸如合金锭的单一靶源材料进行蒸发,或者用上述其他任一方法沉积TBCs。
现参看图10,有萤石结构的独石的氧化钆氧化锆氧化物的几种试样进行试验,象独石的氧化钇稳定型氧化锆(YSZ)那样,在室温和2500°F之间进行试验。正如所示,独石的氧化钆氧化锆的热导性约为1.1-1.4W/mK,大约是所测量YSZ热导性的一半。所试材料包括大约2w/o(wt%)氧化钇,象是结合氧化钆的7YSZ(而不是纯氧化锆)。可以预料,仅由氧化钆和氧化锆构成的氧化钆氧化锆氧化物材料其热导性类似于图10所使用的试样的热导性。
如图11所示,氧化钆氧化锆氧化物薄层构成的涂层表明,具有与相当于YSZ整块材料相同的趋向,亦即这种涂层具有的热导性低于1.5W/(M℃)。具体言之,氧化钆氧化锆氧化物的热导性在室温到至少约2300°F之间的温度范围内是约1.0W/(M℃)。如图11所试试样所示,通过EDPVD的涂覆包括氧化钆氧化锆氧化物的涂层,其热导性是EBPVD法涂覆7YSZ热导性的约一半。重要的是,相对于7YSZ的氧化钆氧化锆氧化物其热导性的降低随温度升高而增大。
氧化钆氧化锆氧化物的质量比7YSZ的质量大约多10%。因此,根据调节的密度,氧化钆氧化锆氧化物的热导性比7YSZ的热导性仍低约50%。
图12是氧化钆和氧化锆的部分相图。萤石氧化钆氧化锆氧化物在至少约3000°F是相稳定的。如非实线所示(环绕“P”表示的区域),氧化钆和氧化锆可形成烧绿石结构,但并不认为是一种坚固的烧绿石形成物。因此,应当认为,即便在预料氧化钆锆酸盐是Gd2Zr2O7形式烧绿石形成物的相图(P)区域,这种材料可能包括至少一些具有更普通的萤石结构的材料。如图12所示,尽管烧绿石氧化钆氧化锆氧化物可在宽组成范围内形成并且直至约1800°F是稳定的,任何转换都应是转成萤石结构,该结构如上所述,直至高得多的温度都是稳定的。试样的试验表明,对于预料是烧绿石氧化钆和氧化锆试样,这些材料的晶体结构主要是萤石。这种发现与图12的波折线的烧绿石区域相符。
我们认为本发明优选组成包括氧化锆和大约5-60摩尔%之间的氧化钆,我并不排除使用其他组成。因此,氧化锆或氧化钆可用氧化钇部分取代,至多约25摩尔%,优选至多大约20摩尔%。
如上所述,已用试验确立并认可,在化合物组分之间的原子质量差异增大时,该化合物的热导性趋于降低。因此可以预料,氧化钆氧化锆氧化物与TSZ相比其热导要低一些,条件是Gd(大约157)和Zr(大约91)之间比Y(大约89)和Zr之间在原子质量方面有较大差异。但是在热导性中所出现的降低程度大约50%,非常出人意料。
仍如上所述,一般认为诸如图1A烧绿石结构的材料,其晶体结构复杂性的增加与热导性的降低有关。因此非常出人意外的是,萤石氧化钆氧化锆氧化物和烧绿石Gd2Zr2O7相比,具有相对简单的晶体结构,但却具有较低热导性。氧化钆氧化锆氧化物的传导率可与烧绿石La2Zr2O7的相比,两者都具有约一半的常规YSZ的热导性。应当认为,热导性的降低是由于加入了氧化钆,它在原子质量方面提供较大差异并且还提供大量的空位。
本发明上述实施方案包括使用涂层作为单一的、一般是均匀的薄层。而且本发明的涂层可用于包括多重、独立的薄层的系统,如一般受让的US5687679所述,其内容本文结合以参照。
我们发现,涂覆TBC之前在氧化铝层上涂覆如YSZ的陶瓷涂层,可提供一种合适的粘附层或陶瓷粘合层,以便随后涂覆TBC层。
在图13中,制品包括基体10,金属粘合层(或至少一种氧化铝层)15和一种(陶瓷)热阻挡涂层20。陶瓷粘合层17位于金属粘合层和热阻涂层之间。陶瓷粘合层应足够厚,以确保覆盖氧化铝层;而且当陶瓷粘合层用在诸如涡轮叶片的旋转部件之上时,其薄层不应当厚到超过实施该目的所需的厚度,这是因为附加层会使该部件增加重量并且明显有助于叶片拉力。
在一个试验中,陶瓷粘合层由通过EB-PVD涂覆的7YSZ构成,大约5密耳厚,该层可有例如至多几个密尔的不同厚度。应当认为,溅涂也能提供令人满意的YSZ陶瓷粘合层。包括YSZ层试样的显微镜检验表明,在YSZ和随后涂覆的TBC层之间的晶粒边界上都发生外延生长。而且在没有外部TBC的情况下,YSZ层也提供一些耐热性。
虽然开发本发明主要用作热阻挡涂层,但是也可用于沉积带有所要求孔隙度的材料以用于密封,例如见一般受让的US 4936745,其内容本文结合以参照。一个实例是将聚合物材料引入氧化钆氧化锆氧化物,随后通过使用热喷涂涂覆和热处理,从而在陶瓷中产生孔隙。在这种情况下,涂层具有的孔隙度优选在大约30-60vol.%之间。
尽管通过实施方案详述已表明和叙述了本发明,本领域技术人员应当了解,在不背离所要求保护的本发明的精神和范围下,在其形式和细节方面能进行各种变更、省略和添加。
权利要求
1.一种金属制品,包括在其表面有陶瓷涂层(20)的金属基体(10),其中陶瓷涂层由氧化钆和氧化锆构成且有立方晶体结构。
2.根据权利要求1的制品,其中陶瓷涂层(20)具有主要由萤石构成的晶体结构。
3.根据权利要求2的制品,其中陶瓷涂层(20)含有不超过10vol.%的具有烧绿石晶体结构的材料。
4.根据权利要求1,2或3的制品,其中陶瓷涂层(20)由具有大约5-60摩尔%之间的氧化钆其余是氧化锆的氧化钆氧化锆氧化物构成。
5.根据前述任一权利要求的制品,其中陶瓷涂层(20)具有的热导性低于大约1W/(M℃)。
6.根据前述任一权利要求的制品,其中陶瓷涂层(20)具有柱状微观结构。
7.根据前述任一权利要求的制品,其中金属基体(10)在其外表面上有一种氧化物皮层,该氧化物皮层主要由氧化铝构成,并且其中陶瓷涂层(20)粘合到氧化物皮层上。
8.一种金属制品,包括金属基体(10),该基体在其表面上有氧化铝形成的涂层(15),和粘合到氧化铝形成的涂层上的陶瓷涂层(20)其中陶瓷涂层由氧化钆和氧化锆构成并有立方晶体结构。
9.根据权利要求8的制品,其中氧化铝形成的涂层(15)包括一种覆盖涂层。
10.根据权利要求8的制品,其中氧化铝形成的涂层(15)包括一种扩散铝化物涂层。
11.根据权利要求1-6的任一制品,进一步包括位于陶瓷涂层(20)和金属基体(10)之间的陶瓷粘合层(17)。
12.根据权利要求11的制品,其中陶瓷粘合层(17)由氧化钇稳定型氧化锆构成。
13.根据前述任一权利要求的制品,其中金属基体(10)选自钢,高温合金,钛合金和铜合金。
14.根据前述任一权利要求的制品,其中涂层制品适合使用的环境是陶瓷涂层(20)的自由表面(21)将被加热且金属基体(10)的自由表面(11)将被冷却,而陶瓷涂层会减少热流。
15.根据前述任一权利要求的制品,其中陶瓷涂层具有的孔隙度在约30-60vol.%之间。
16.一种金属基体(10)的隔热方法,包括将氧化钆和氧化锆组成的陶瓷涂层(20)涂覆到基体的至少一部分上,并使涂层包括立方结构。
17.根据权利要求16的方法,进一步包括在涂覆陶瓷涂层(20)之前涂覆陶瓷粘合层(15)的步骤,陶瓷粘合层位于金属基体(10)和陶瓷涂层之间,陶瓷粘合层由氧化钇稳定型氧化锆构成。
18.根据权利要求16或17的方法,其中涂覆陶瓷涂层(20)的工艺选自热喷涂,溅涂和气相沉积。
全文摘要
一种陶瓷材料,作为在金属基体上的隔热或热阻挡涂层具有特殊实用性。陶瓷材料包括氧化钆和氧化锆,优选形成氧化钆氧化锆氧化物。该材料可包括萤石和烧绿石结构。这种材料的化学稳定性、热稳定性和隔热性优于目前使用的热阻挡陶瓷,还提供可与目前使用陶瓷相比的耐烧结性和耐磨性。优选的材料含有大约5—60%摩尔%的氧化钆。
文档编号C23C14/08GK1253878SQ9912241
公开日2000年5月24日 申请日期1999年10月1日 优先权日1998年10月1日
发明者迈克尔·J·马洛尼 申请人:联合工艺公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1