飞行时间二次离子质谱分析装置用试样固定部件的制作方法

文档序号:3452387阅读:377来源:国知局
飞行时间二次离子质谱分析装置用试样固定部件的制作方法
【专利摘要】本发明提供一种飞行时间二次离子质谱分析装置用的试样固定部件,其能够防止固体试样的污染,能够稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的准确检测。本发明的飞行时间二次离子质谱分析装置用试样固定部件包含具备多个长度200μm以上的纤维状柱状物的纤维状柱状结构体。
【专利说明】飞行时间二次离子质谱分析装置用试样固定部件

【技术领域】
[0001]本发明涉及飞行时间二次离子质谱分析装置用试样固定部件。详细而言,涉及用于在飞行时间二次离子质谱分析装置(T0F — SIMS:Time — of — Flight Secondary 1nMass Spectrometry)中固定测定对象试样的部件。

【背景技术】
[0002]飞行时间二次离子质谱分析装置(T0F - SIMS)是用于调查在固体试样的表面存在何种成分(原子、分子)的装置,能够检测PPm级的极微量成分,能够适用于有机物、无机物。另外,根据飞行时间二次离子质谱分析装置(T0F — SMS),还能够调查存在于固体试样的最表面的成分的分布(例如,参照专利文献I)。
[0003]飞行时间二次离子质谱分析装置中,通过在高真空中使高速的离子束(一次离子)轰击固体试样的表面,通过溅射现象将表面的构成成分弹飞。此时产生的带有正或负电荷的离子(二次离子)通过电场在一个方向上飞散,在离开一定距离的位置检测。在溅射时,根据固体试样表面的组成,产生具有各种质量的二次离子,越轻的离子越以快的速度飞散,越重的离子越以慢的速度飞散,因此,如果测定二次离子从产生到被检测到的时间(飞行时间),就能够计算产生的二次离子的质量。这是飞行时间二次离子质谱分析装置的原理。
[0004]在飞行时间二次离子质谱分析装置中,使成为测定对象的固体试样固定于粘合剂或粘接剂等固定部件而进行测定。但是,在使用现有的粘合剂或粘接剂等固定部件的情况下,来自固定部件的有机成分附着于固体试样,而产生固体试样的污染。这种污染在固体试样为粉体等情况下特别显著。飞行时间二次离子质谱分析装置中,由于检测固体试样表面的ppm级的极微量成分,因此,存在该固体试样表面的极少的污染会妨碍二次离子的产生而不能进行准确检测的问题。
[0005]现有技术文献
[0006]专利文献
[0007]专利文献1:日本特开2008 - 175654号公报


【发明内容】

[0008]发明所要解决的课题
[0009]本发明的课题在于提供一种飞行时间二次离子质谱分析装置用的试样固定部件,其能够防止固体试样的污染,能够稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的准确检测。
[0010]用于解决课题的方法
[0011]本发明的飞行时间二次离子质谱分析装置用试样固定部件包含:具备多个长度200 μ m以上的纤维状柱状物的纤维状柱状结构体。
[0012]在优选的实施方式中,本发明的飞行时间二次离子质谱分析装置用试样固定部件在室温的相对于玻璃面的剪切粘接力为lON/cm2以上。
[0013]在优选的实施方式中,上述纤维状柱状结构体为具备多个碳纳米管的碳纳米管集合体。
[0014]在优选的实施方式中,上述碳纳米管具有多个层,该碳纳米管的层数分布的分布宽度为10层以上,该层数分布的最频值的相对频度为25%以下。
[0015]在优选的实施方式中,上述碳纳米管具有多个层,该碳纳米管的层数分布的最频值存在于层数10层以下,该最频值的相对频度为30%以上。
[0016]在优选的实施方式中,本发明的飞行时间二次离子质谱分析装置用试样固定部件包含基材。
[0017]发明的效果
[0018]根据本发明,能够提供能够防止固体试样的污染、能够稳定地固定固体试样并且在飞行时间二次离子质谱分析装置中能够实现二次离子的准确检测的飞行时间二次离子质谱分析装置用的试样固定部件。

【专利附图】

【附图说明】
[0019]图1是本发明优选的实施方式中的飞行时间二次离子质谱分析装置用试样固定部件的一例的概略剖面图;
[0020]图2是本发明优选的实施方式中的飞行时间二次离子质谱分析装置用试样固定部件包含碳纳米管集合体时的该碳纳米管集合体的制造装置的概略剖面图。

【具体实施方式】
[0021]《飞行时间二次离子质谱分析装置用试样固定部件》
[0022]本发明的飞行时间二次离子质谱分析装置用试样固定部件包含具备多个长度200 μ m以上的纤维状柱状物的纤维状柱状结构体。本发明的飞行时间二次离子质谱分析装置用试样固定部件通过包含具备多个长度200 μ m以上的纤维状柱状物的纤维状柱状结构体,能够防止固体试样的污染,能够稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的准确检测。本发明的飞行时间二次离子质谱分析装置用试样固定部件可以是仅由上述纤维状柱状结构体构成的部件,也可以是由上述纤维状柱状结构体和可以适用于固定飞行时间二次离子质谱分析装置用试样的任意恰当的材料构成的部件。
[0023]本发明的飞行时间二次离子质谱分析装置用试样固定部件是用于在飞行时间二次离子质谱分析装置中粘接固定测定试样的部件,其大小、形状可以根据使用的飞行时间二次离子质谱分析装置的种类适当选择。
[0024]上述纤维状柱状结构体是具备多个纤维状柱状物的集合体。上述纤维状柱状结构体优选是具备长度L的多个纤维状柱状物的集合体。图1中表示本发明优选的实施方式中的飞行时间二次离子质谱分析装置用试样固定部件的一例的概略剖面图。
[0025]图1中,纤维状柱状结构体10具备基材I和多个纤维状柱状物2。纤维状柱状物2的一端2a固定于基材I。纤维状柱状物2按照长度L的方向取向。纤维状柱状物2优选按照与基材I大致垂直的方向取向。在此,“大致垂直的方向”是指,相对于基材I的面的角度优选为90° ±20°,更优选为90° ±15°,进一步优选为90° ±10°,特别优选为90° ±5°。此外,纤维状柱状结构体10也可以是与本图示例不同的仅由多个纤维状柱状物2构成的集合体。即,纤维状柱状结构体10也可以不具备基材I。在该情况下,多个纤维状柱状物2可以相互通过例如范德华力而作为集合体存在。
[0026]上述长度L为200 μπι以上,优选为200 μπι?2000 μ m,更优选为300 μ m?1500 μ m,进一步优选为400μπι?1000 μ m,特别优选为500 μ m?1000 μ m,最优选为600 μ m?1000 μ m。通过上述长度L落在上述范围内,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够防止固体试样的污染,能够稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的准确检测。此外,上述长度L可以通过后述的方法测定。
[0027]本发明的飞行时间二次离子质谱分析装置用试样固定部件中,室温的相对于玻璃面的剪切粘接力优选为lON/cm2以上,更优选为lON/cm2?200N/cm2,进一步优选为15N/cm2?200N/cm2,特别优选为20N/cm2?200N/cm2,最优选为25N/cm2?200N/cm2。通过上述剪切粘接力落在上述范围内,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够更稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的更准确的检测。此外,上述剪切粘接力可通过后述的方法测定。
[0028]作为上述纤维状柱状物的材料,可以采用任意恰当的材料。例如,可以列举:铝、铁等金属;娃等无机材料;碳纳米纤维、碳纳米管等碳材料;工程塑料、超级工程塑料等高模量的树脂等。作为树脂的具体例,可以列举:聚苯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、乙酰基纤维素、聚碳酸酯、聚酰亚胺、聚酰胺等。就树脂的分子量等各项物性而言,可以在能够实现本发明目的的范围内采用任意恰当的物性。
[0029]作为上述基材,可以根据目的采用任意恰当的基材。例如可以列举:石英玻璃、硅(硅晶片等)、工程塑料、超级工程塑料等。作为工程塑料和超级工程塑料的具体例,可以列举:聚酰亚胺、聚乙烯、聚对苯二甲酸乙二醇酯、乙酰基纤维素、聚碳酸酯、聚丙烯、聚酰胺等。就这些基材的分子量等各项物性而言,可以在能够实现本发明目的的范围内采用任意恰当的物性。
[0030]上述纤维状柱状物的直径优选为0.3nm?2000nm,更优选为Inm?100nm,进一步优选为2nm?500nm。通过上述纤维状柱状物的直径落在上述范围内,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够进一步防止固体试样的污染,且能够更稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的更准确的检测。
[0031]上述基材的厚度可以根据目的设定成任意恰当的值。
[0032]上述基材的表面,为了提高与相邻的层的密合性、保持性等,也可以实施常用的表面处理;例如铬酸处理、臭氧暴露、火焰暴露、高压电击暴露、离子化放射线处理等化学的或物理的处理;利用底涂剂(例如,上述粘合性物质)的涂敷处理。
[0033]上述基材可以是单层,也可以是多层体。
[0034]本发明中,上述纤维状柱状结构体优选为具备多个碳纳米管的碳纳米管集合体。在该情况下,上述纤维状柱状物优选为碳纳米管。
[0035]本发明的飞行时间二次离子质谱分析装置用试样固定部件也可以仅由上述碳纳米管集合体构成,也可以由上述碳纳米管集合体和任意恰当的部件构成。
[0036]在本发明的飞行时间二次离子质谱分析装置用试样固定部件包含具备多个碳纳米管的碳纳米管集合体,且还包含上述基材的情况下,也可以将该碳纳米管的一端固定于该基材。
[0037]在本发明的飞行时间二次离子质谱分析装置用试样固定部件包含具备多个碳纳米管的碳纳米管集合体且包含基材的情况下,作为将该碳纳米管固定于基材的方法,可以采用任意恰当的方法。例如,可以将碳纳米管集合体的制造中使用的基板直接作为基材使用。另外,也可以在基材上设置粘接层并固定于碳纳米管。另外,在基材为热固性树脂的情况下,以反应前的状态制作薄膜,并使碳纳米管的一端压接于薄膜层,然后进行固化处理而固定即可。另外,在基材为热塑性树脂或金属等的情况下,在熔融的状态下压接纤维状柱状结构体的一端,然后冷却到室温固定即可。
[0038]《碳纳米管集合体》
[0039]在本发明的飞行时间二次离子质谱分析装置用试样固定部件包含纤维状柱状结构体的情况下,该纤维状柱状结构体优选为碳纳米管集合体。在本发明的飞行时间二次离子质谱分析装置用试样固定部件包含碳纳米管集合体的情况下,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够有效地防止固体试样的污染,能够进一步更稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的进一步更准确的检测。
[0040]<第一优选实施方式>
[0041]本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的优选的实施方式之一(以下,有时称为第一优选实施方式),具备多个碳纳米管,该碳纳米管具有多个层,该碳纳米管的层数分布的分布宽度为10层以上,该层数分布的最频值的相对频度为25%以下。
[0042]上述碳纳米管的层数分布的分布宽度为10层以上,优选为10层?30层,更优选为10层?25层,进一步优选为10层?20层。
[0043]上述碳纳米管的层数分布的“分布宽度”是指碳纳米管的层数的最大层数与最小层数之差。通过碳纳米管的层数分布的分布宽度处于上述范围内,该碳纳米管能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0044]上述碳纳米管的层数、层数分布利用任意恰当的装置测定即可。优选利用扫描型电子显微镜(SEM)或透射电子显微镜(TEM)进行测定。例如,从碳纳米管集合体中取出至少10个、优选为20个以上的碳纳米管并利用SEM或TEM测定来评价层数和层数分布即可。
[0045]上述碳纳米管的层数的最大层数优选为5层?30层,更优选为10层?30层,进一步优选为15层?30层,特别优选为15层?25层。
[0046]上述碳纳米管的层数的最小层数优选为I层?10层,更优选为I层?5层。
[0047]通过上述碳纳米管的层数的最大层数和最小层数处于上述范围内,该碳纳米管能够兼备更优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现更优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0048]上述层数分布的最频值的相对频度为25%以下,优选为I %?25%,更优选为5%?25%,进一步优选为10%?25%,特别优选为15%?25%。通过上述层数分布的最频值的相对频度处于上述范围内,该碳纳米管能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0049]上述层数分布的最频值优选存在于层数2层?层数10层,进一步优选为层数3层?层数10层。通过上述层数分布的最频值处于上述范围内,该碳纳米管能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0050]作为上述碳纳米管的形状,只要其横截面具有任意恰当的形状即可。例如,可以列举其横截面为大致圆形、椭圆形、η边形(η为3以上的整数)等。
[0051]上述碳纳米管的长度优选为200 μ m以上,更优选为200 μ m?2000 μ m,进一步优选为300 μ m?1500 μ m,进一步优选为400 μ m?1000 μ m,特别优选为500 μ m?1000 μ m,最优选为600 μ m?1000 μ m。通过上述碳纳米管的长度落在上述范围内,能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0052]上述碳纳米管的直径优选为0.3nm?2000nm,更优选为Inm?100nm,进一步优选为2nm?500nm。通过上述碳纳米管的直径落在上述范围内,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0053]上述碳纳米管的比表面积、密度可以设定成任意恰当的值。
[0054]<第二优选实施方式>
[0055]本发明的飞行时间二次离子质谱分析装置用固定部件可以包含的碳纳米管集合体的优选的实施方式的另一方式(以下,有时称为第二优选实施方式),具备多个碳纳米管,该碳纳米管具有多个层,该碳纳米管的层数分布的最频值存在于层数10层以下,该最频值的相对频度为30%以上。
[0056]上述碳纳米管的层数分布的分布宽度优选为9层以下,更优选为I层?9层,进一步优选为2层?8层,特别优选为3层?8层。
[0057]上述碳纳米管的层数分布的“分布宽度”是指碳纳米管的层数的最大层数与最小层数之差。通过碳纳米管的层数分布的分布宽度处于上述范围内,该碳纳米管能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0058]上述碳纳米管的层数、层数分布利用任意恰当的装置测定即可。优选利用扫描型电子显微镜(SEM)或透射电子显微镜(TEM)测定。例如,从碳纳米管集合体中取出至少10个、优选为20个以上的碳纳米管并利用SEM或TEM测定来评价层数和层数分布即可。
[0059]上述碳纳米管的层数的最大层数优选为I层?20层,更优选为2层?15层,进一步优选为3层?10层。
[0060]上述碳纳米管的层数的最小层数优选为I层?10层,更优选为I层?5层。
[0061]通过上述碳纳米管的层数的最大层数和最小层数处于上述范围内,该碳纳米管能够兼备更优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现更优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0062]上述层数分布的最频值的相对频度为30%以上,优选为30%?100%,更优选为30 %?90 %,进一步优选为30 %?80 %,特别优选为30 %?70 %。通过上述层数分布的最频值的相对频度处于上述范围内,该碳纳米管能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0063]上述层数分布的最频值存在于层数10层以下,优选存在于层数I层?层数10层,更优选存在于层数2层?层数8层,进一步优选存在于层数2层?层数6层。本发明中,通过上述层数分布的最频值处于上述范围内,该碳纳米管能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管能够成为呈现优异的粘合特性的碳纳米管集合体。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0064]作为上述碳纳米管的形状,只要其横截面具有任意恰当的形状即可。例如,可以列举其横截面为大致圆形、椭圆形、η边形(η为3以上的整数)等。
[0065]上述碳纳米管的长度优选为200 μ m以上,更优选为200 μ m?2000 μ m,进一步优选为300 μ m?1500 μ m,进一步优选为400 μ m?1000 μ m,特别优选为500 μ m?1000 μ m,最优选为600 μ m?1000 μ m。通过上述碳纳米管的长度处于上述范围内,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0066]上述碳纳米管的直径优选为0.3nm?2000nm,更优选为Inm?100nm,进一步优选为2nm?500nm。通过上述碳纳米管的直径处于上述范围内,本发明的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0067]上述碳纳米管的比表面积、密度可以设定成任意恰当的值。
[0068]《碳纳米管集合体的制造方法》
[0069]作为本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的制造方法,可以采用任意恰当的方法。
[0070]作为本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的制造方法,例如,可以列举如下方法,在平滑的基板上构成催化剂层,通过在利用热、等离子体等使催化剂活化的状态下充填碳源而使碳纳米管生长的化学气相沉积法(Chemical Vapor Deposit1n:CVD法),制造与基板大致垂直地取向的碳纳米管集合体。在该情况下,例如,如果去除基板,则可得到按照长度方向取向的碳纳米管集合体。
[0071]作为上述基板,可以采用任意恰当的基板。例如,可以列举具有平滑性且具有能够承受碳纳米管的制造的高温耐热性的材料。作为这种材料,例如可以列举:石英玻璃、硅(硅晶片等)、铝等金属板等。上述基板可以直接作为本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体可具备的基材使用。
[0072]作为用于制造本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的装置,可以采用任意恰当的装置。例如,作为热CVD装置,可以列举图2所示那样的利用电阻加热式管式电炉包围筒型的反应容器而构成的热壁型等。在该情况下,作为反应容器,可以优选使用例如耐热性的石英管等。
[0073]作为可以用于本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的制造的催化剂(催化剂层的材料),可以采用任意恰当的催化剂。例如可以列举:铁、钴、镍、金、钼、银、铜等金属催化剂。
[0074]在制造本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体时,也可以根据需要在基板和催化剂层的中间设置氧化铝/亲水性膜。
[0075]作为氧化铝/亲水性膜的制作方法,可以采用任意恰当的方法。例如,通过在基板之上制作S12膜,在蒸镀Al后,升温到450°C使之氧化而得到。根据这种制作方法,Al2O3与亲水性的S12膜相互作用,相比直接蒸镀Al2O3的方法,形成粒径不同的Al2O3面。不在基板之上制作亲水性膜,即使在蒸镀Al后升温到450°C使之氧化,也可能难以形成粒径不同的Al2O3面。另外,即使在基板之上制作亲水性膜而直接蒸镀Al2O3,也可能难以形成粒径不同的Al2O3面。
[0076]为了形成微粒,可以用于制造本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的催化剂层的厚度优选为0.0lnm?20nm,更优选为
0.1nm?10nm。通过可以用于制造本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的催化剂层的厚度处于上述范围内,该碳纳米管集合体能够兼备优异的机械特性和高的比表面积,进而,该碳纳米管集合体能够呈现优异的粘合特性。因此,使用了这种碳纳米管集合体的飞行时间二次离子质谱分析装置用试样固定部件能够更有效地防止固体试样的污染,且能够非常稳定地固定固体试样,并且在飞行时间二次离子质谱分析装置中能够实现二次离子的非常准确的检测。
[0077]催化剂层的形成方法可以采用任意恰当的方法。例如,可以列举通过EB(电子束)、溅射等蒸镀金属催化剂的方法、将金属催化剂微粒的悬浮液涂布于基板上的方法等。
[0078]作为可以用于本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的制造的碳源,可以使用任意恰当的碳源。例如可以列举:甲烧、乙烯、乙炔、苯等烃;甲醇、乙醇等醇等。
[0079]作为制造本发明的飞行时间二次离子质谱分析装置用试样固定部件可以包含的碳纳米管集合体的制造温度,可以采用任意恰当的温度。例如为了形成可以充分体现本发明效果的催化剂颗粒,优选为400°C?1000°C,更优选为500°C?900°C,进一步优选为600。。?800。。。
[0080]实施例
[0081]以下,基于实施例说明本发明,但本发明不限定于此。此外,各种评价和测定通过以下方法进行。
[0082]<纤维状柱状物的长度L的测定>
[0083]纤维状柱状物的长度L利用扫描型电子显微镜(SEM)测定。
[0084]<飞行时间二次离子质谱分析装置用试样固定部件的剪切粘接力的测定>
[0085]使切成Icm2单位面积的飞行时间二次离子质谱分析装置用试样固定部件的前端(在飞行时间二次离子质谱分析装置用试样固定部件包含碳纳米管集合体的情况下,碳纳米管的前端)以接触的方式载置于玻璃(MATSUNAMI载玻片27_X56mm),使5kg的辊往返一次,将飞行时间二次离子质谱分析装置用试样固定部件的前端压接于玻璃。然后,放置30分钟。利用拉伸试验机(Instro Tensil Tester)以拉伸速度50mm/min在室温(25°C )进行剪切试验,将得到的峰值作为剪切粘接力。
[0086]<碳纳米管集合体中的碳纳米管的层数、层数分布的评价>
[0087]碳纳米管集合体中的碳纳米管的层数和层数分布利用扫描型电子显微镜(SEM)和/或透射电子显微镜(TEM)测定。利用SEM和/或TEM观察得到的碳纳米管集合体中至少10个以上、优选为20个以上的碳纳米管,调查各碳纳米管的层数,制作层数分布。
[0088]<利用飞行时间二次离子质谱分析装置进行的测定和评价>
[0089]利用飞行时间二次离子质谱分析装置进行的测定如下进行。
[0090]在飞行时间二次离子质谱分析装置用试样固定部件之上载置颗粒状FeOx (直径:10 μ m?140 μ m),利用鼓风机除去过量的颗粒后,固定于专用的试样台,并利用飞行时间二次离子质谱分析装置(1N - TOF制,“TOF - SIMS5")进行测定。
[0091]测定条件如下。
[0092]照射的一次离子:Bi3+
[0093]一次离子加速电压:25kV
[0094]测定面积:150 μ m见方
[0095]利用飞行时间二次离子质谱分析装置进行的测定中的试样的污染程度的评价依照下述基准进行。
[0096]O:正离子/HFeO+不足50,且负离子/FeO2 一不足30。
[0097]X:正离子/HFeO+为50以上,或负离子/FeO2 —为30以上。
[0098]此外,在进行利用飞行时间二次离子质谱分析装置的测定时,将由于粘接力不足而不能进行试样固定的情况评价为“剥落”。
[0099][实施例1]
[0100]在硅基板(KST制,带有热氧化膜的晶片,厚度ΙΟΟΟμπι)上利用真空蒸镀装置(JE0L 制,JEE — 4Χ Vacuum Evaporator)形成 Al 薄膜(厚度 1nm),然后以 450°C 实施 I 小时氧化处理。这样,在硅基板上形成Al2O3膜。在该Al2O3膜上,进一步利用溅射装置(ULVAC制,RFS - 200)蒸镀Fe薄膜(厚度2nm)而形成催化剂层。
[0101]接着,切割所得到的带有催化剂层的硅基板,载置于30πιπιΦ的石英管内,将水分保持在350ppm的氦/氢(120/80sCCm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉在管内以35分钟阶段性地升温至765V,并稳定在765V。在温度保持在765°C的状态下,将氦/氢/乙烯(105/80/15sccm,水分率350ppm)混合气体充填于管内,放置10分钟,使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体⑴。
[0102]碳纳米管集合体(I)具备的碳纳米管的长度为200 μ m。
[0103]碳纳米管集合体(I)具备的碳纳米管的层数分布中,层数分布的分布宽度为17层(4层?20层),最频值存在于4层和8层,相对频度分别为20%和20%。
[0104]以得到的碳纳米管集合体(I)为飞行时间二次离子质谱分析装置用试样固定部件(I)进行各种评价,并将结果在表I中汇总。
[0105][实施例2]
[0106]在作为基板的娃晶片(Silicon Technology制)上利用派射装置(ULVAC制,RFS - 200)形成Al薄膜(厚度1nm)。在该Al薄膜上进一步利用溅射装置(ULVAC制,RFS — 200)蒸镀Fe薄膜(厚度Inm)。
[0107]然后,将该基板载置于30πιπιΦ的石英管内,将水分保持在600ppm的氦/氢(90/50sccm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉将管内升温至765 °C,并稳定在765 °C。在温度保持在765°C的状态下,将氦/氢/乙烯(85/50/5sccm,水分率600ppm)混合气体充填于管内,放置10分钟使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体(2)。
[0108]碳纳米管集合体(2)具备的碳纳米管的长度为200 μ m。
[0109]在碳纳米管集合体(2)具备的碳纳米管的层数分布中,最频值存在于2层,且相对频度为75%。
[0110]将得到的碳纳米管集合体(2)作为飞行时间二次离子质谱分析装置用试样固定部件(2)进行各种评价,并将结果在表I汇总。
[0111][实施例3]
[0112]在硅基板(KST制,带有热氧化膜的晶片,厚度ΙΟΟΟμπι)上利用真空蒸镀装置(JE0L 制,JEE — 4Χ Vacuum Evaporator)形成 Al 薄膜(厚度 1nm),然后以 450°C 实施 I 小时氧化处理。这样,在硅基板上形成Al2O3膜。在该Al2O3膜上进一步利用溅射装置(ULVAC制,RFS - 200)蒸镀Fe薄膜(厚度2nm)而形成催化剂层。
[0113]接着,切割所得到的带有催化剂层的硅基板,载置于30πιπιΦ的石英管内,将水分保持在350ppm的氦/氢(120/80sCCm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉在管内以35分钟阶段性地升温至765°C,并稳定在765°C。在温度保持在765°C的状态下,将氦/氢/乙烯(105/80/15sccm,水分率350ppm)混合气体充填于管内,放置15分钟使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体⑶。
[0114]碳纳米管集合体(3)具备的碳纳米管的长度为300 μ m。
[0115]在碳纳米管集合体(3)具备的碳纳米管的层数分布中,层数分布的分布宽度为17层(4层?20层),最频值存在于4层和8层,相对频度分别为20%和20%。
[0116]将得到的碳纳米管集合体(3)作为飞行时间二次离子质谱分析装置用试样固定部件(3)进行各种评价,并将结果在表I中汇总。
[0117][实施例4]
[0118]在作为基板的娃晶片(Silicon Technology制)上利用派射装置(ULVAC制,RFS - 200)形成Al薄膜(厚度1nm)。在该Al薄膜上进一步利用溅射装置(ULVAC制,RFS — 200)蒸镀Fe薄膜(厚度Inm)。
[0119]然后,将该基板载置于30πιπιΦ的石英管内,将水分保持在600ppm的氦/氢(90/50sccm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉将管内升温至765°C,并稳定在765 °C。在温度保持在765 °C的状态下,将氦/氢/乙烯(85/50/5sccm,水分率600ppm)混合气体充填于管内,放置30分钟使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体(4)。
[0120]碳纳米管集合体(4)具备的碳纳米管的长度为600 μ m。
[0121]在碳纳米管集合体(4)具备的碳纳米管的层数分布中,最频值存在于2层,且相对频度为75%。
[0122]将得到的碳纳米管集合体(4)作为飞行时间二次离子质谱分析装置用试样固定部件(4)进行各种评价,并将结果在表I中汇总。
[0123][实施例5]
[0124]在硅基板(KST制,带有热氧化膜的晶片,厚度ΙΟΟΟμπι)上利用真空蒸镀装置(JE0L 制,JEE — 4Χ Vacuum Evaporator)形成 Al 薄膜(厚度 1nm),然后以 450°C 实施 I 小时氧化处理。这样,在硅基板上形成Al2O3膜。在该Al2O3膜上进一步利用溅射装置(ULVAC制,RFS - 200)蒸镀Fe薄膜(厚度2nm),而形成催化剂层。
[0125]接着,切割所得到的带有催化剂层的硅基板,载置于30πιπιΦ的石英管内,将水分保持在350ppm的氦/氢(120/80sCCm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉在管内以35分钟阶段性地升温至765°C,并稳定在765°C。在温度保持在765°C的状态下,将氦/氢/乙烯(105/80/15sccm,水分率350ppm)混合气体充填于管内,放置30分钟使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体(5)。
[0126]碳纳米管集合体(5)具备的碳纳米管的长度为600 μ m。
[0127]在碳纳米管集合体(5)具备的碳纳米管的层数分布中,层数分布的分布宽度为17层(4层?20层),最频值存在于4层和8层,相对频度分别为20%和20%。
[0128]将得到的碳纳米管集合体(5)作为飞行时间二次离子质谱分析装置用试样固定部件(5)进行各种评价,并将结果在表I中汇总。
[0129][比较例I]
[0130]在硅基板(KST制,带有热氧化膜的晶片,厚度ΙΟΟΟμπι)上利用真空蒸镀装置(JEOL 制,JEE — 4X Vacuum Evaporator)形成 Al 薄膜(厚度 1nm),然后以 450°C 实施 I 小时氧化处理。这样,在硅基板上形成Al2O3膜。在该Al2O3膜上进一步利用溅射装置(ULVAC制,RFS - 200)蒸镀Fe薄膜(厚度2nm),而形成催化剂层。
[0131]接着,切割所得到的带有催化剂层的硅基板,并载置于30πιπιΦ的石英管内,将水分保持在350ppm的氦/氢(120/80sCCm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉在管内以35分钟阶段性地升温至765°C,并稳定在765°C。在温度保持在765°C的状态下,将氦/氢/乙烯(105/80/15sccm,水分率350ppm)混合气体充填于管内,放置5分钟使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体(Cl)。
[0132]碳纳米管集合体(Cl)具备的碳纳米管的长度为90 μ m。
[0133]在碳纳米管集合体(Cl)具备的碳纳米管的层数分布中,层数分布的分布宽度为17层(4层?20层),最频值存在于4层和8层,相对频度分别为20%和20%。
[0134]将得到的碳纳米管集合体(Cl)作为飞行时间二次离子质谱分析装置用试样固定部件(Cl)进行各种评价,并将结果在表I中汇总。
[0135][比较例2]
[0136]在作为基板的娃晶片(Silicon Technology制)上利用派射装置(ULVAC制,RFS - 200)形成Al薄膜(厚度1nm)。在该Al薄膜上进一步利用溅射装置(ULVAC制,RFS — 200)蒸镀Fe薄膜(厚度Inm)。
[0137]然后,将该基板载置于30πιπιΦ的石英管内,将水分保持在600ppm的氦/氢(90/50sccm)混合气体在石英管内流动30分钟,将管内进行置换。然后,使用管式电炉将管内升温至765°C,并稳定在765 °C。在温度保持在765 °C的状态下,将氦/氢/乙烯(85/50/5sccm,水分率600ppm)混合气体充填于管内,放置6分钟使碳纳米管在基板上生长,得到碳纳米管按照长度方向取向的碳纳米管集合体(C2)。
[0138]碳纳米管集合体(C2)具备的碳纳米管的长度为120 μ m。
[0139]在碳纳米管集合体(C2)具备的碳纳米管的层数分布中,最频值存在于2层,且相对频度为75%。
[0140]将得到的碳纳米管集合体(C2)作为飞行时间二次离子质谱分析装置用试样固定部件(C2)进行各种评价,并将结果在表I中汇总。
[0141][比较例3]
[0142]使用导电性碳双面胶带(731:日新EM株式会社制)作为飞行时间二次离子质谱分析装置用试样固定部件进行各种评价,并将结果在表I中汇总。
[0143][比较例4]
[0144]使用聚酯粘合胶带(N0.31:日东电工株式会社制)作为飞行时间二次离子质谱分析装置用试样固定部件进行各种评价,并将结果在表I中汇总。
[0145][表 I]
[0146]

【权利要求】
1.一种飞行时间二次离子质谱分析装置用试样固定部件,其特征在于,包含: 具备多个长度200 μ m以上的纤维状柱状物的纤维状柱状结构体。
2.如权利要求1所述的飞行时间二次离子质谱分析装置用试样固定部件,其特征在于: 室温的相对于玻璃面的剪切粘接力为lON/cm2以上。
3.如权利要求1或2所述的飞行时间二次离子质谱分析装置用试样固定部件,其特征在于: 所述纤维状柱状结构体为具备多个碳纳米管的碳纳米管集合体。
4.如权利要求3所述的飞行时间二次离子质谱分析装置用试样固定部件,其特征在于: 所述碳纳米管具有多个层,该碳纳米管的层数分布的分布宽度为10层以上,该层数分布的最频值的相对频度为25%以下。
5.如权利要求3所述的飞行时间二次离子质谱分析装置用试样固定部件,其特征在于: 所述碳纳米管具有多个层,该碳纳米管的层数分布的最频值存在于层数10层以下,该最频值的相对频度为30%以上。
6.如权利要求1?5中任一项所述的飞行时间二次离子质谱分析装置用试样固定部件,其特征在于: 包含基材。
【文档编号】C01B31/02GK104081195SQ201380007772
【公开日】2014年10月1日 申请日期:2013年1月29日 优先权日:2012年2月3日
【发明者】前野洋平 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1