制造超硬物品的方法与流程

文档序号:12184881阅读:438来源:国知局
制造超硬物品的方法与流程

本公开总体上涉及制造包含超硬结构的物品的方法,所述物品特别地但不专门用于制造工具。

背景

美国专利号7,235,211公开了一种制造功能设计的复合材料磨损表面的方法,所述磨损表面提供在与旋转锥形凿岩钻头一起使用的切削元件上。该方法包括向切削元件的界面表面施加适型材料混合物以提供湿态材料层。可将材料混合物预成型为具有适当形状的部件以适合于界面表面。以避免在施加的材料混合物和基底之间的不期望材料迁移的方式,在升温条件下对施加的材料混合物进行压制以固结和烧结所述材料混合物,从而形成耐磨表面。

需要包含超硬材料的复合材料物品,特别地但不专门用作制造机械工具、耐磨部件以及路面刨铣或采矿的截齿工具的预成形体;以及需要制造它们的相对有效的方法。

概述

根据第一方面,提供了制造包含结合至基底的超硬结构的超硬物品的方法,所述超硬结构包含烧结的多个超硬晶粒。该方法包括提供适合于烧结该超硬结构的原材料粉末。在液体介质中将所述原材料粉末与有机粘结剂材料合并以形成糊料。原材料粉末的含量是糊料的大于60质量%且小于85质量%并且糊料的组成使得其具有至多25倒秒(s-1)的剪切速率。提供包含基底的基底组装件,该基底具有为形成超硬结构的边界而配置的构造(formation)表面区域,该基底包含与构造表面区域毗连的凹部。挤出糊料使其与构造表面区域接触以提供糊料组装件。对糊料组装件进行热处理以去除粘结剂材料并且提供预烧结组装件。使预烧结组装件经受压力和温度,该压力和温度足以烧结原材料粉末并且将其转化为在与构造表面区域毗连的边界处与基底结合的超硬结构。

本公开设想了所述方法的变体用于制造各种应用的超硬物品的各种实例配置,其中以下是非限制性的、非穷举性的实例。

在一些实例中,压力可以是至少约3、至少约5或至少约6吉帕斯卡(GPa)。温度可以是至少约1200、至少约1300或至少约1400摄氏度。预烧结组装件将经受所述压力和温度持续一段时间,该时间足以将基本上所有的原材料粉末转变为超硬结构。

在一些实例中,糊料中的原材料粉末含量可以是糊料的至少70质量%或至多80质量%。在一些实例中,糊料可以包含约70至85质量%的原材料粉末。在一些实例中,糊料中的原材料粉末含量可以是糊料的大于36体积%、至少约40体积%或至少约42体积%;和或糊料的小于59体积%、至多约55体积%或至多53体积%。

通常,可以用多种方式控制糊料的剪切速率。例如,可以选择性地控制以下方面中的一个或多个来实现期望的剪切速率:粘结剂材料的类型、粘结剂材料存在于其中的液体的相对量、晶粒尺寸和或形状分布、和或原材料粉末晶粒的比表面积。在不同实例中,糊料的组成可以使得其具有至少1、至少约3或至少约8倒秒(s-1)的剪切速率;和或小于21、至多16、小于16、至多15或小于15倒秒(s-1)。在一些实例中,糊料的组成可以使得其具有8至16倒秒(s-1)的剪切速率。

可以着眼于如下来选择有机粘结剂材料的类型:在通过热处理从糊料中去除有机粘结剂材料之后减少在原材料粉末晶粒间剩余的其残留物量。在一些实例中,可以选择粘结剂使得其不能溶于水。粘结剂可以能够溶于醇。

可以通过糊料组装件的热处理去除基本上所有或大部分的粘结剂材料,和或粘结剂材料的一些残留物可以保持与原材料粉末接触。例如,含碳残留物可能留下,和或残留物可以作为至少一些原材料粉末晶粒的表面上的涂层或膜存在。在热处理后,包含在预烧结组装件中的原材料粉末的排列将与糊料组装件中的原材料粉末排列基本上相同,并且将包含原材料粉末晶粒之间的空孔隙的连续网络。

在一些实例中,糊料可以接触基本上所有的构造表面区域。在一些实例中,构造表面区域可以包括平面区域。在压力和温度下可发生基底以及因此构造表面区域的一些程度的变形,因此可能需要对基底组装件进行配置以将此考虑在内。

在一些实例中,该方法可以包括向糊料施加5至9兆帕斯卡(MPa)的压力;例如,该方法可以包括施加5至9兆帕斯卡(MPa)的压力以挤压糊料和或将挤压的糊料压实。

在一些实例中,超硬晶粒可以包含天然或合成金刚石晶体或者由其组成,以及超硬结构可以包含聚晶金刚石(PCD)材料或者由其组成;或者超硬晶粒可以包含立方氮化硼晶体或者由其组成,以及超硬结构可以包含聚晶立方氮化硼(PCBN)材料或者由其组成。

在一些实例中,基底可以包含硬质合金(cemented carbide)材料或者由其组成;和或基底可以包含与构造区域毗连的超硬材料或者由其组成;和或基底可以包含能够被烧结从而形成聚晶超硬材料(如PCD或PCBN材料)的前体材料或者由其组成,该前体材料与构造表面区域毗连。在一些实例中,基底组装件可以包含能够被烧结从而形成聚晶超硬材料(如PCD或PCBN材料)的前体材料层,该层与硬质合金材料接触并且与构造表面区域毗连。

在一些实例中,超硬物品可以包含彼此结合并且至少一种特性(如宏观或微观结构、组成或其它特性)不同的第一聚晶超硬材料和第二聚晶超硬材料或者由它们组成;该方法包括沉积用于形成第一聚晶超硬材料的前体材料糊料使其与基底接触以提供基底组装件,该第一聚晶材料的前体材料糊料包含处在液体介质中的有机粘结剂材料和大于60质量%且小于85质量%的前体粉末并且具有至多25倒秒(s-1)的剪切速率;并且前体材料糊料的表面与构造表面区域毗连;其中超硬结构包含第二聚晶超硬材料或者由其组成。在一些实例中,前体材料可以包含晶粒的聚集体,该聚集体可以包含多个超硬晶粒。

一些实例方法可以包括提供至少两种均为糊料形式的粉末聚集体,在共同边界处互相接触,在至少一个特性方面(例如,原材料粉末组成,晶粒如超硬晶粒的尺寸分布,或者一些其它物理特性、宏观结构或微观结构特性)彼此不同。糊料组装件的热处理可以导致粘结剂材料从两种糊料的去除。

例如,第一聚晶超硬材料和第二聚晶超硬材料可以各自包含PCD和或PCBN材料或者由其组成。在一些实例中,第一聚晶超硬材料和第二聚晶超硬材料可以包含不同等级的PCD材料或不同等级的PCBN材料或者由其组成;或者所述聚晶超硬材料之一可以包含PCD材料或者由其组成并且另一者可以包含PCBN材料或者由其组成。

在一些实例中,基底组装件可以包含与基底接触的部件,配置该部件以便形成在构造表面区域和该部件的边界之间形成的腔,配置所述腔以形成超硬结构;该方法包括将糊料挤出到所述腔中。例如,基底组装件可以包含套筒,该套筒含有基底;该套筒可以包含难熔金属(如铌、钼或钽),或者该套筒可以包含陶瓷材料。

在一些实例中,基底可以包含硬质合金材料或者由其组成并且具有一对通过侧面连接的相反端(opposite ends),所述侧面包括与构造表面区域毗连的伸长凹部并且在相反端之间延伸。

在一些实例中,该方法可以包括:将基底组装件包封在适合于超高压力压机装置的包套内并且使包套经受压力和温度;将所述包套从所述超高压机装置中取出并且从超硬物品去除包套材料。

在一些实例中,超硬物品可以具有基本上圆柱形状,包含连接相反端的圆柱侧面,基底的表面和与侧面毗连的超硬结构的表面。在一些实例中,超硬物品可以包含沿螺旋路径排列的多个伸长的超硬结构。

在一些实例中,该方法可以包括加工超硬物品并且形成用于机械工具的切削元件,例如旋转机械工具(例如,端铣刀或麻花钻)。该方法可以包括在超硬结构上形成切削刃;和或从基底去除材料以提供出屑槽(flute)。

附图简述

将参照附图描述用于制造超硬物品的实例配置的非限制性实例方法,其中

图1A示出能被加工从而形成超硬端铣刀工具的预成形(或“坯”)体的实例配置的示意性透视图;

图1B示出能够被用于制造图1A中所示的实例预成形体的实例基底配置的示意性透视图;

图1C示出图1A中所示的实例预成形体的超硬结构之一的实例配置的示意性透视图;以及

图1D示出图1B中所示的实例基底的横向截面视图(长度尺寸以毫米计,mm)。

详细描述

将描述制造超硬物品的实例配置的非限制性的实例方法,其中该超硬物品是端铣刀工具的切削元件。其它实例可以包括耐磨部件例如齿轮的局部和截齿(pick)的尖端,例如用于路面刨铣或采矿的截齿。

制备了用作制造铣刀的预成形体的三个实例和三个比较的超硬物品,其中使用不同含量的有机粘结剂溶液以制造糊料。

参照图1A至图1D,预成形体10具有伸长的圆柱形状,包括通过圆柱侧面12连接的一对平面相反端11A、11B,从一端11A延伸至另一端11B并且与侧面12毗连的四个轴向排列并且方位等距的聚晶立方氮化硼(PCBN)复合材料脉状结构14。该PCBN脉状结构14嵌入由碳化钨硬质合金材料组成的基底18内的凹部16之内。基底本体具有21mm的直径。PCBN材料是DBW85(TM)等级,其为可购自Element SixTM的可商购PCBN材料。

通过将cBN晶粒与平均晶粒尺寸为约6微米的的铝(Al)粉末掺混制备PCBN材料的原材料粉末,cBN的质量含量是掺混粉末的约90%并且余量由Al粉末组成。cBN晶粒具有3至8微米范围内的平均尺寸,按照如通过激光衍射方式所测量的等效圆直径(ECD)。包含聚(乙烯缩丁醛-共-乙烯醇-共乙酸乙烯酯)和聚乙二醇(PEG)的有机粘结剂材料的溶液与相同质量的乙醇混合。制备三种实例糊料和三种比较糊料,它们包含与掺混原材料粉末混合的粘结剂溶液。

在实例试样和比较试样中使用具有相同配置的基底。参照图1D,每个基底18具有18毫米(mm)的直径并且包含从基底18的一端延伸至相反端的四个方位等距的凹部16。凹部16的表面提供基底18的构造表面区域。每个凹部16具有‘U’形沟道的一般形状,其中凹部16的最内表面面积之间的径向距离是距基底18的圆周(距离外接基底的横向截面的圆)3.5毫米(mm)并且凹部16的最内区域(换言之,‘底部’)的曲率半径是1.5毫米(mm)。凹部16的边缘(凹部在此处接触基底18的圆周侧面)具有0.5毫米(mm)的倒棱(hone)(圆边)。配置凹部16使得每个烧结的超硬脉状结构14的构造和尺寸将是所期望的。使基底18的直径和凹部16的深度稍大于所需要的,使得能从预成形物品的侧面去除一些材料以便将其加工成期望的最终尺寸以及去除所述侧面从期望情形的轻微变化或偏离。

将基底18的侧面封闭在由铌(Nb)组成的各个套筒内(未示出),从而提供由凹部16和套筒的内表面区域限定的四个伸长的、末端开放的腔。提供具有喷嘴的挤出装置,所述喷嘴经配置用于将条状的糊料段直接注入所述腔,使得糊料段具有约3毫米(mm)的横截面直径。在所有情形中,使用压实工具向注入的糊料上纵向施加压力以便增加其密度,压实压力估计为约5兆帕斯卡(MPa),具有约5MPa的不确定度。实例1至3的糊料包含三种不同量的粘结剂溶液,范围从20至30质量%,据估计是糊料的约47至58体积%。在每个实例中,将糊料挤出注入四个腔的每一个内以提供糊料组装件。在实例和比较例中,将糊料挤出为具有不同粘度和刚度的条状结构。在实例1、2和3中,糊料是足够粘的以允许在腔中对其进行加压以便实现更高的材料密度并且完全地填充沟道。

使糊料组装件在流动氮气内经受1000摄氏度的热处理持续30分钟以除去基本上所有的有机粘结剂从而提供预烧结组装件。可能地,据估计为原材料粉末配置的至多约1质量%的一些碳质残留物可能存留在粉末中。在去除粘结剂之后原材料粉末的密度据估计是最大理论密度的约50%,体积余量是孔隙。尽管不希望受特定理论约束,残留物可起到保护原材料粉末免受粉末晶粒表面的氧玷污的影响。

将预烧结组装件包封到适合于带型超高压力压机的包套内并使其经受约5.5吉帕斯卡(GPa)的单轴施加压力和约1300摄氏度的温度持续约5分钟以烧结原材料粉末并且形成包含PCBN脉状物的烧结物品,所述PCBN脉状物结合至所述四个凹部每一个内的基底。在其它实例中,可以使用带型压机以外的超高压力压机并且其可以提供某些优势。例如,使用立方或四方压机可以产生更均匀烧结的物体,因为将从多于两个相反方向更均衡地施加压力。

烧结盘中的cBN含量是约85质量%,预烧结聚集体中的质量含量和烧结过的脉状物中的质量含量之间的差异主要是由晶粒在铝中的溶解以及随后形成占粘结剂基质(cBN晶粒分散在其内)大部分的氮化铝而引起的。

在烧结过程之后,通过研磨从套筒上去除残留材料并且研磨物体的侧面至期望的直径。由于烧结的PCBN脉状物是轻微凹陷的(烧结的结果),仅有少量PCBN材料被研磨掉,由此提高过程的效率,因为PCBN是超硬的并且可能需要通过金刚石晶粒以相对缓慢的过程研磨。在超高压力处理和初始加工之后,烧结物品的直径是17毫米(mm)并且其长度是16.5毫米(mm)。通过研磨进一步加工烧结物品以提供具有切削刃的超硬结构以及在超硬结构之间方位地在基底内形成出屑槽,从而提供用于端铣刀工具的切削元件。

表1总结了实例1、2和3以及比较例1、2和3的某些参数值和结果,以及糊料的剪切速率和在去除粘结剂材料之后原材料的密度和在烘箱中干燥的多孔原材料粉末配置,如果能够测量这些的话。

表1

如表1中所注释的,具有过低剪切速率(小于约1倒秒(s-1))的糊料倾向于过粘以致不能挤出或往往碎裂。具有过高剪切速率(大于约27倒秒(s-1))的糊料倾向于不够粘并且在实例公开的方法中使用时显著地变形。具有介于这些极限范围之间的剪切速率的糊料倾向于适合用于实例公开的方法中。

制造超硬铣刀工具的某些实例公开方法可以具有相对有效和方便的特征,这可能起因于将糊料的挤出步骤和将其直接注入与基底的构造表面区域接触的步骤结合。实际上,基底将提供用于形成超硬结构的模具的至少一部分并且将成为超硬物品的局部,在烧结过程期间超硬结构与其结合。

某些实例方法可具有如下特征:导致具有改善的尺寸精度以及需要较少的加工以形成成品工具或部件的预成形物品。

通常,所公开的实例方法可具有减少或基本上消除在去除粘结剂材料之后原材料粉末晶粒相对彼此的移动或重排的效果(换言之,糊料形式的原材料粉末的排列可以在粘结剂去除之后基本上得以保持)。这可以使得更容易将超硬物品烧结成显著更紧密的形状和尺寸容差,和或以便实现烧结超硬结构的更均匀密度。特别地,在至少约3吉帕斯卡(GPa)的超高压力下的烧结相比在至多几百兆帕斯卡(MPa)的低得多的压力下的烧结有可能对原材料粉末的排列变化或变形显著更敏感,并且甚至原材料粉末排列中的相对小的变化也可以导致烧结的超硬物品的排列和或密度的较显著变化。因此,公开的实例方法将有可能提高烧结超硬物品的可靠性和精确度(特别地但不专门是其中超硬结构的配置相对复杂的物品),使得它们的形状和尺寸尽可能接近制成物品所期望的形状和尺寸。由此可减少用以形成制成工具或部件的超硬物品的加工。由于超硬材料例如PCD和PCBN的加工是相对耗时和昂贵的,并且将有可能需要专门的设备,所公开的实例方法将有可能通过在超高压力和高温下烧结原材料粉末而导致制造某些超硬物品的效率的显著改善。

公开的实例方法可以具有如下特征:使得在烧结步骤之前预烧结组装件对于操纵而言更坚固。

其中基底组装件包含前体粉末材料(其也可以是糊料的形式)或由组成的实例公开的方法可以具有减少或基本上消除来自挤出糊料的晶粒变得散布有基底组装件晶粒的风险的特征。当在热处理期间从糊料中去除粘结剂时可能发生颗粒散布的风险,这时可能存在原材料粉末发生一些程度的重排的风险。因此,某些实例方法可具有如下特征:能够提供包含在边界处互相结合的至少两个超硬区域(每个包含不同的超硬材料或不同等级的超硬材料)的超硬物品,其中在区域之间跨边界的过渡是相对急剧的或突然的。换言之,可以减少在制造过程期间发生中间过渡层的风险,和或可减少这样的中间层的厚度。

在有机粘结剂为非水的且基本上不能溶于水的实例中,可以减少原材料粉末晶粒的表面上氧化物杂质沉积的风险,这可以增强超硬结构的烧结。

下面将简要说明本文中使用的某些术语和概念。

如本文中所使用的,粘度是材料的流动性质,表示对材料剪切的抵抗性。粘度是剪切应力(其为每单位面积的力)与剪切速率的比,是以流动速度从零变为流动速度的间隙分隔的流动速度。剪切应力的单位因此是压力的单位,即帕斯卡(Pa)而剪切速率的单位是倒时间(s-1),并且因此粘度的单位是牛顿秒(Pa.s)。

如本文中所使用的,诸如从挤出装置挤出的糊料的材料可被称为‘挤出物’。挤出物可以具有很多不同的形式,例如条状或带状的段(length),或者具有更复杂形状的段,其可具有与挤出物将被注入的腔基本上相同的横截面形状。

如本文中所使用的,机械工具是可通过从工件选择性地去除材料(即可被称为机械加工的过程)来制造部件的动力机械装置。在物品制造中要被机械加工的物体可被称为工件材料并且通常其可以包含金属、合金、复合材料、木材、聚合物(包括碳纤维增强的聚合物)。切削工具可以具有前刀面(rake face),即来自工件的切屑越过的表面,前刀面引导新形成的切屑的流动。‘切屑’是通过使用中的机械工具从物体的加工表面去除的物体碎片。刀具嵌块的后刀面(flank)是越过由刀具嵌块在物体上产生的机械加工表面的表面。后刀面可提供与物体的间隙并且可以包含多于一个后刀面。切削刃是意图执行物体切削的前刀面的边缘。

如本文中所使用的,超硬材料具有至少约25吉帕斯卡(GPa)的维氏硬度。合成金刚石晶体和天然金刚石晶体、立方氮化硼(cBN)晶体、聚晶金刚石(PCD)材料和聚晶cBN是超硬材料的实例。

如本文中所使用的,PCD材料包含多个金刚石晶粒(大量所述晶粒与彼此直接相互结合)以及金刚石晶粒之间的填充或空的孔隙。通过如下方式制造PCD材料:在适合于促进金刚石晶粒的直接相互结合的催化剂材料的存在下,使多个金刚石晶粒的聚集体(它们将可能具有细粉末的外观)经受至少约5.5吉帕斯卡(GPa)的超高压力和高温。金刚石的实例催化剂材料包括钴(Co)、铁(Fe)、镍(Ni)和锰(Mn),以及包括这些金属中的多于一种的合金,并且所述高温将足够高以使催化剂材料处于熔融状态。

如本文中所使用的,PCBN材料包含一系列不同等级(或类型)的复合材料,所述复合材料包括分散在粘结剂基质内并且与粘结剂基质结合的cBN晶粒。在PCBN材料的一些实例中,cBN晶粒的含量是至少约60体积%、至少约70体积%或至少约80体积%。粘结剂基质可以包括化学化合物形式或处在固溶体中的金属,例如铝(Al)、钴(Co)、钨(W)或钛(Ti),所述化合物例如氮化物、硼化物(包括二硼化物)、碳氮化合物。粘结剂基质可包括镍基超合金材料、陶瓷材料、金属间相材料。PCBN可分成两大类,即“低cBN”和“高cBN”,其中cBN含量分别为约30至70体积%和约70至95体积%。高cBN材料可能用于涉及较高程度的断续切削的操作,该操作可能因工件的形状特征或其内包含的材料而发生。较高的cBN含量倾向于导致较强的PCBN,这对于断续操作是尤其重要的。

如本文中所使用的,PCD和PCN材料的“等级”是指材料的组成分和或微观结构特性。例如,不同等级的PCD可在金刚石晶粒的尺寸分布和或金刚石晶粒的总含量和或包含于PCD材料等级中的金刚石晶粒的连续性方面彼此不同。不同等级的PCBN材料可在cBN晶粒的尺寸分布和或cBN晶粒的总含量和或包含在PCBN材料等级中的粘结剂基质方面彼此不同。

如本文中所使用的,“要烧结”或“烧结”多个晶粒意指通过包括施加热量和压力以便使晶粒合并成为固体多晶粒结构(也可将其称为聚晶结构)的过程处理晶粒。晶粒将是相对小的(例如,在尺寸上小于约100或约50微米)并且呈现为粉末,可以将其称为用于烧结聚晶结构的“原材料粉末”或“前体材料”。在烧结过程期间,包含在原材料粉末中的晶粒可在一定程度上变形或者甚至破坏,例如因熔化、溶解、化学反应或相变。多晶粒结构可以包含如下晶粒或由如下晶粒组成:与原材料粉末中包含的晶粒基本上相同的晶粒和/或在烧结过程中形成的晶粒,例如通过晶体析出。作为烧结过程的结果,多晶粒结构中的晶粒可以彼此结合或者彼此交互生长。在各实例中,烧结可以涉及固态或液态扩散、至少一些晶粒的液化、晶粒的部分或全部溶解、催化效应、晶粒的析出和生长、邻近晶粒的直接交互生长、邻近晶粒中包含的材料之间的化学反应(反应结合),或者可以促进晶粒合并的其它物理或化学过程。

虽然超硬材料是极其坚硬的,但它们的强度和韧性通常不如硬质合金材料,因此它们更易于断裂和碎裂(chipping)。硬质合金切削工具可以产生比PCD和PCBN工具更好的工具寿命,这归因于它们更高的韧性和抗碎裂性,尽管PCD和PCBN更加耐受磨损。例如,标准文本指出当可能时应将具有负前角的硬质合金工具用于钛合金的粗机械加工,或粗加工。使用PCBN工具而不是硬质合金工具的优势产生于PCBN材料的优异的难熔“热硬度”,这在较高速度的切削操作中将可能特别有利,在所述操作中速度可为至少150米每分钟(m/min)并且在切削工具和工件之间的界面处将产生相对较高的温度。

虽然cBN与黑色金属(ferrous metal)相对不反应,但在连续机械加工中达到的高温下PCBN材料中包含的cBN晶粒的化学磨损可能是明显的。因此,包含相对较高含量的cBN晶粒的PCBN可能用于例如断续机械加工的操作中,其中工具嵌块材料需要相对较强并且在相对高的温度下维持其硬度。包含相对较低含量的cBN晶粒的PCBN材料可能用于例如连续机械加工的操作中,其中工具嵌块材料需要相对耐受化学磨损。包含相对较大的cBN晶粒的PCBN材料的强度通常可能低于包含相对较小(细)cBN晶粒的PCBN材料的强度,所有其它是相同的(这在cBN含量相对较高的情形可特别明显)。因此,细晶粒PCBN可能比较粗晶粒PCBN材料更强以及产生更好的工件表面光洁度。

一般而言,当切削速度是约300至约1200米每分钟(m/min)时,包含PCBN切削元件的端铣刀工具倾向于表现出较长的工具寿命。可以通过使用PCBN铣削工具获得基本上没有“白层”的高品质表面光洁度,这将有可能减少在工件被铣削后将工件加工至最终光洁度和尺寸的量和成本。模具、压模和接头的制造可以包括以约100至约300m/min的切削速度机械加工硬质合金材料或涂覆碳化物的材料并且PCBN铣削工具可以产生比包含硬质合金切削元件的铣削工具更优异的工具性能、工具寿命和机械加工工件品质。

在其中物品具有大致圆柱形状的实例配置中,其具有通过侧面连接的一对相反端,将利用参照圆柱坐标来描述物品配置的某些特征。特别地,“圆柱”或“纵向”轴将穿过每个末端的中心并且物品将具有绕该轴的旋转对称度。垂直于纵轴并且穿过基底或预成形体的平面可被称为“横向”或“径向”平面并且该横向平面上的点离纵向轴的距离可被称为“径向距离”或者“径向位置”等等。横向平面上朝向或者离开纵轴的方向可被称为“径向方向”。术语“方位”将指横向平面上的方向或位置,在周向围绕纵向轴。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1