一种基于3DP增材制造技术的碳化硅基陶瓷零件制造方法与流程

文档序号:11427953阅读:524来源:国知局

本发明属于碳化硅基陶瓷零件的快速制造领域,具体涉及一种基于3dp增材制造技术的碳化硅基陶瓷零件制造方法。



背景技术:

碳化硅基陶瓷材料具有低密度、耐高温、耐腐蚀、高强度、高硬度、高耐磨等优良性能,是制造航空航天领域的理想材料,但是其固有的低韧性和难以加工导致其不太适用传统加工。

增材制造是一种融合信息技术、材料技术、制造技术等多学科发展起来的先进制造技术,通过材料逐层积累成型制造实体零件,对复杂零件的近净成型具有巨大的优势,同时也为零件内部的复杂结构的制造提供了新的思路和方法。

目前,复杂的碳化硅基陶瓷零件普遍采用凝胶注模技术或者热压法制造,前者所制造的碳化硅基陶瓷零件致密度较低,常温和高温的力学性能较差,后者难以实现具有复杂结构的零件的制造,特别是具有空心结构的零件。



技术实现要素:

本发明的目的在于克服上述不足,提供一种基于3dp增材制造技术的碳化硅基陶瓷零件制造方法,该方法通过对颗粒级配后的碳化硅陶瓷粉末加入适量的碳化硅短纤维混合均匀制成3dp打印设备用的陶瓷粉末;然后利用混合后的粉末原料进行打印,实现碳化硅基陶瓷零件素坯的成型;再对碳化硅陶瓷叶片素坯进行真空脱脂、化学气相沉积以及热等静压处理后,最终得到高强度碳化硅陶瓷零件。

为了达到上述目的,本发明包括以下步骤:

步骤一,对碳化硅陶瓷粉末采用颗粒级配方法进行配比,将颗粒级配后的碳化硅陶瓷粉体和质量分数2~4%的碳化硅短纤维均匀混合,得到3dp打印设备用的碳化硅陶瓷粉体;

步骤二,配置双重固化体系的3dp打印墨水;

步骤三,建立碳化硅基陶瓷零件的三维cad模型并建立分层和扫描路径的数据;

步骤四,将碳化硅陶瓷叶片的制作数据导入双重固化体系的陶瓷粉末3dp打印设备,并利用步骤二中制备的陶瓷粉末进行打印成形,得到碳化硅基陶瓷零件的素坯;

步骤五,对碳化硅基陶瓷零件素坯进行干燥和真空脱脂处理;

步骤六,将干燥脱脂后的碳化硅基陶瓷零件通过化学气相渗透工艺对碳化硅基陶瓷零件进行致密化处理;

步骤七,最后通过热等静压工艺制得具有良好的高温综合性能的碳化硅基陶瓷零件。

所述步骤一中,得到3dp打印设备用的碳化硅陶瓷粉体的具体方法如下:

第一步,将粒度为45μm、20μm、5μm、2μm的碳化硅粉末质量按10:5:2:1的比例与质量分数2%~4%的碳化硅短纤维、质量分数的8%石墨粉末混合得到陶瓷粉;

第二步,在陶瓷粉中加入含量约为粉末质量的0.2~0.5%的柠檬酸,以触发粘接剂的凝固反应;

第三步,将上述混合粉末进行干法球磨30min,待充分混合后制成3dp打印用的碳化硅基陶瓷粉体。

所述步骤二中,配置双重固化体系的3dp打印墨水的具体方法如下:

第一步,配制第一粘接剂,以胶体二氧化硅作为粘接剂,以蒸馏水作为介质,以丙二醇作为湿润剂,以三乙醇胺作为基料,其中胶体二氧化硅和蒸馏水按照质量比为7:10混合,添加质量分数为5~7%的丙二醇,3~5%的三乙醇胺,置于磁力搅拌器上搅拌20min,待均匀混合后制得第一粘接剂;

第二步,第二粘接剂为光敏树脂基粘接剂,通过双重固化3dp打印设备的外置紫外光照射,发生固化达到粘接基体粉末的作用。

所述步骤五中,干燥和真空脱脂处理的工艺如下:

将制得的碳化硅基陶瓷零件的素坯放置于真空脱脂炉内,在20℃条件下真空干燥2h,随后自室温起,以1℃/min的升温速率,升温至300℃,保温10min;然后以1℃/min的升温速率,升温至600℃,保温3h。

所述步骤六中,化学气相渗透工艺如下:

将烧结好的碳化硅基陶瓷零件置于化学气相渗透设备中,以三氯甲基硅烷与氢气为原料,根据坯体的大小设置相应的温度和时间,渗透压强设定为10kpa,实现对碳化硅陶瓷零件的致密化处理。

所述步骤八中,热等静压工艺如下:

将化学气相渗透后的碳化硅基陶瓷零件坯体置于热等静压设备中,在温度为1500℃、压力为200mpa条件下烧结强化1h,最终制得高性能致密碳化硅基陶瓷零件。

与现有技术相比,本发明通过对颗粒级配后的碳化硅陶瓷粉末加入适量的碳化硅短纤维混合均匀制成3dp打印设备用的陶瓷粉末;然后利用混合后的粉末原料进行打印,实现碳化硅基陶瓷零件素坯的成型;再对碳化硅陶瓷叶片素坯进行真空脱脂、化学气相渗透以及热等静压处理后,最终得到高强度碳化硅陶瓷零件,本发明利用3dp增材制造技术制造的碳化硅基陶瓷零件经一系列后处理后可得到具有良好高温综合性能的致密零件,同时解决了复杂结构零件制造困难的难题,利用3dp增材技术实现了碳化硅基陶瓷零件的快速制造,有效的避免了具有空心结构复杂零件的制造过程的一系列复杂的制造工艺,在保证综合性能满足要求的同时,极大的减少了制造时间和成本,是具有革命性的一项新技术,具有非常大的市场价值。

附图说明

图1为本发明的流程图。

具体实施方式

下面结合实施例对本发明做进一步说明。

实施例1:

1、3dp打印设备用的碳化硅陶瓷粉体的制备;

将粒度为45μm、20μm、5μm、2μm的碳化硅粉末、碳化硅短纤维、石墨粉末按陶瓷粉体配比表1配比成分混合后,在陶瓷粉术中加入含量约为粉末重量的0.2–0.5%的柠檬酸,以触发粘接剂的凝固反应,配制完成后进行球磨30min充分混合成为3dp打印设备用的碳化硅陶瓷粉体;

表1陶瓷粉体配比

2、配置双重固化体系的3dp打印墨水;

粘接剂1的配置:将胶体二氧化硅(颗粒尺寸为5-100nm,溶液中基料的ph值应为9-12,使胶体二氧化硅稳定,防止其过早凝固,采用于不锈镍喷头)和三乙醇胺(基料)采用聚乙二醇作粘接反应的催化剂促进粘接反应,粘接剂配方如表2,配制完成后置于磁力搅拌器上搅拌20min;

表2粘接剂1配方

粘接剂2为光敏树脂;

3、建立碳化硅陶瓷叶片的三维cad模型并建立分层和扫描路径的数据;

使用三维造型软件设计出所需结构形状的零件模型,特别是有内腔的复杂结构的零件模型,并将零件进行分层切片处理,层片厚度为0.1mm,得到3dp打印设备的数据模型;

4、碳化硅基陶瓷零件坯体3dp工艺打印成型;

将碳化硅陶瓷叶片的制作数据导入双重固化体系的陶瓷粉末3d打印机,并利用步骤1)制备的陶瓷粉末和步骤2)制备的两种粘接剂进行打印成形,启动设备,开启光敏树脂固化用的紫外光照射器按规定程序的打印完成后,取出制得的坯体,去除多余的未粘接的粉末原料后得到零件的坯体;

5、对碳化硅基陶瓷零件素坯进行干燥和真空脱脂处理;

将制得的碳化硅基陶瓷零件的素坯放置于真空脱脂炉内,在20℃条件下真空干燥2h,随后自室温起,以1℃/min的升温速率,升温至300℃,保温10min;然后以1℃/min的升温速率,升温至600℃,保温3h;

6、将烧结后的碳化硅基陶瓷零件通过化学气相渗透工艺对碳化硅基陶瓷零件进行致密化处理;

将烧结好的碳化硅基陶瓷零件置于化学气相渗透设备中,以三氯甲基硅烷与氢气为原料,根据坯体的大小设置相应的温度和时间,渗透压强设定为10kpa,实现对碳化硅陶瓷零件的致密化处理;

7、最后通过热等静压工艺制得具有良好的高温综合性能的碳化硅基陶瓷零件。

将化学气相渗透后的碳化硅基陶瓷零件坯体置于热等静压设备中,在温度为1500℃、压力为200mpa条件下烧结强化1h,最终制得高性能致密碳化硅基陶瓷零件。

实施例2:

步骤一,将粒度为45μm、20μm、5μm、2μm的碳化硅粉末质量按10:5:2:1的比例与质量分数2%~4%的碳化硅短纤维、质量分数8%石墨粉末混合得到陶瓷粉;

步骤二,在陶瓷粉中加入含量约为粉末重量的0.2%的柠檬酸,以触发粘接剂的凝固反应,配制完成后;

步骤三,进行干法球磨30min充分混合成为3dp打印设备用的碳化硅基陶瓷粉体;

步骤四,配制第一粘接剂,以胶体二氧化硅作为粘接剂,以蒸馏水作为介质,以丙二醇作为湿润剂,以三乙醇胺作为基料,其中胶体二氧化硅和蒸馏水按照质量比为7:10混合,添加质量分数为5%的丙二醇,3%的三乙醇胺,置于磁力搅拌器上搅拌20min,待均匀混合后制得第一粘接剂;

步骤五,第二粘接剂为光敏树脂,通过外置的紫外光照射,光敏树脂发生固化达到粘接基体粉末的作用,得到双重固化体系的3dp打印墨水;

步骤六,建立碳化硅基陶瓷零件的三维cad模型并建立分层和扫描路径的数据;

步骤七,将碳化硅陶瓷叶片的制作数据导入双重固化体系的陶瓷粉末3d打印机,并利用步骤二中制备的陶瓷粉末进行打印成形,得到碳化硅基陶瓷零件的素坯;

步骤八,将制得的碳化硅基陶瓷零件的素坯放置于真空脱脂炉内,在20℃条件下真空干燥2h,随后自室温起,以1℃/min的升温速率,升温至300℃,保温10min;然后以1℃/min的升温速率,升温至600℃,保温3h;

步骤九,将烧结好的碳化硅基陶瓷零件置于化学气相渗透设备中,以三氯甲基硅烷与氢气为原料,根据坯体的大小设置相应的温度和时间,渗透压强设定为10kpa,实现对碳化硅陶瓷零件的致密化处理;

步骤十,最后将化学气相渗透后的碳化硅基陶瓷零件坯体置于热等静压设备中,在温度为1500℃、压力为200mpa条件下烧结强化1h,最终制得高性能致密碳化硅基陶瓷零件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1