一种应用于水声换能器的压电陶瓷材料及制备方法与流程

文档序号:11170050
一种应用于水声换能器的压电陶瓷材料及制备方法与制造工艺

本发明属于新型无机非金属材料领域,更具体地,涉及一种应用于水声换能器的压电陶瓷材料及制备方法。



背景技术:

在现代技术中,作为大功率水声换能器件的材料主要运用于压电换能器,压电换能器是利用压电材料的正逆压电效应制造的换能器,其广泛应用于军事卫星、导弹、飞机、舰艇、雷达和军用机器人等关键部件。在实际应用中,以压电型大功率水声换能器的应用占主导地位,而大功率压电型换能材料又以压电陶瓷为主。

对于发射型换能器压电陶瓷材料,首先要满足大功率,高效率的要求,其中大功率压电陶瓷材料要求材料有高压电常数(d33≥270pC/N)、高机电耦合系数(Kp≥0.56)和高机械品质因数(Qm≥1000),并且强场下的介电损耗tanδ要尽可能小(tanδ≤0.4%)。其中,d33和Kp两个参数反映压电陶瓷材料的压电性能,Qm和tanδ两个参数反映压电陶瓷材料的损耗性能。另外,为缓解压电换能器的过热问题,压电陶瓷材料的强场非线性变化量需要尽可能低,即在交流电场场强变化过程中引入材料的相对介电常数εr的变化量需要尽可能低。

目前,研究和应用最为广泛的是PZT-8体系压电陶瓷材料,其具有发热量低,热稳定性好,抗张强度高,机械品质因数Qm值高的优点,但该体系压电陶瓷材料的压电性能不够好,无法满足d33≥270pC/N或Kp≥0.56。此外,清华大学李龙土等研究CeO2掺杂下锑锰锑钴锆钛酸铅Pb[(Mn1/3Sb2/3)x(Co1/3Sb2/3)yTizZrw]O3得到较为优异的损耗特性,并得出CeO2有助于晶粒细化和均匀的结论,但是其压电性能不是很理想。鞠超对大功率收发兼备型压电陶瓷配方Pb0.94Sr0.06(Zr0.53Ti0.47)O3进行了掺杂改性,得出当掺杂物为0.10wt%(Ni2O3+Cr2O3)+0.05wt%MnO2+0.30wt%CeO2时,体系具有最佳压电和介电性能d33=338pC/N,Kp=0.626,εr=1260,tanδ=0.38%,但是其机械品质因数Qm仅有421。

综上,现有大功率压电陶瓷材料的压电性能或者损耗性能存在着缺点,不能广泛应用于大功率水声换能器件等领域。



技术实现要素:

针对现有技术的缺陷,本发明的目的在于解决现有大功率压电陶瓷材料的压电性能或者损耗性能存在着缺点,不能广泛应用于大功率水声换能器件等领域的技术问题。

为实现上述目的,第一方面,本发明实施例提供了一种应用于水声换能器的压电陶瓷材料,其化学通式表示如下:

Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3+xwt%CeO2+ywt%Yb2O3+zwt%BiFeO3;式中Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3为基体陶瓷粉体,xwt%表示CeO2占所述基体陶瓷粉体的重量百分比,ywt%表示Yb2O3占所述基体陶瓷粉体的重量百分比,zwt%表示BiFeO3占所述基体陶瓷粉体的重量百分比,所述压电陶瓷材料的压电常数大于或等于300pC/N,机电耦合系数大于或等于0.56,在5kV/cm交流电场下的强场下的介电损耗最小为2.74%,机械品质因数大于或等于1301,0<x≤1,0≤y≤0.9,0≤z≤0.55。

本发明实施例提供的压电陶瓷材料的压电常数大于或等于300pC/N,机电耦合系数大于或等于0.56,在5kV/cm交流电场下的强场下的介电损耗最小为2.74%,机械品质因数大于或等于1301,即该压电陶瓷材料的压电性能和损耗性能均符合大功率水声换能器件的需求,是一种性能较优的压电陶瓷材料,具有广阔的应用前景。

可选地,当y=0时,0.10≤z≤0.55,当z=0时,0.05≤y≤0.9。

本发明实施例可通过选择合适的重量掺杂比例,以调控压电陶瓷材料的烧结温度、压电性能或损耗性能。

可选地,当y=z=0时,随着x的增加,所述压电陶瓷材料的强场介电损耗呈降低趋势,若x=0,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗为4.06%,若x=1,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗为2.74%,若x=0.75,则所述压电陶瓷材料在交流电场场强由1kV/cm变化至5kV/cm过程中引入的相对介电常数变化量为336;若x由0变化至0.25,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗从4.06%降低到3.69%,所述压电陶瓷材料的机械品质因数从1181提高到1621,所述压电陶瓷材料在小信号下介电损耗从0.517%降低到0.447%,所述压电陶瓷材料的压电常数和机电耦合系数变化不大。

需要说明的是,小信号下介电损耗指的是在交流电压为1V下的介电损耗。压电陶瓷材料在交流电场场强由1kV/cm变化至5kV/cm过程中引入的相对介电常数变化量反映压电陶瓷材料的强场非线性,当相对介电常数变化量越小,则压电陶瓷材料的强场非线性越小,压电陶瓷材料的强场非线性越小,越可以在其应用到大功率保证大功率水声换能器的较高工作效率的同时有效缓解换能器过热问题,有利于提高换能器的使用寿命和工作精度。

本发明实施例提供的压电陶瓷材料在PMS-PZT体系的基础上,掺杂适量的CeO2可以改善PMS-PZT体系的损耗性能,同时对压电性能的影响较低,使得PMS-PZT+xwt%CeO2(0≤x≤1)体系压电陶瓷材料的压电性能满足大功率水声换能器的需求,同时相比PMS-PZT体系大大降低了小信号和强场下的介电损耗,且提升了机械品质因数。

可选地,当x=0.25,z=0时,若y由0变化至0.15,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗从3.69%降低到3.16%,所述压电陶瓷材料的机械品质因数从1621提高到1809,所述压电陶瓷材料的压电常数从331pC/N提高到368pC/N,所述压电陶瓷材料的机电耦合系数从0.585提高到了0.626;若y=0.50,则所述压电陶瓷材料在交流电场场强由1kV/cm变化至5kV/cm过程中引入的相对介电常数变化量为256。

可选地,当x=0.25,y=0时,若z由0变化至0.2,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗从3.69%降低到3.26%,所述压电陶瓷材料的压电常数由331pC/N上升至359pC/N,所述压电陶瓷材料的机电耦合系数由0.585上升为0.622;相比x=y=z=0时压电陶瓷材料的性能,当x=0.25,y=0,z=0.55时,所述压电陶瓷材料在小信号下的介电损耗从0.517%降低到0.338%,所述压电陶瓷材料的机械品质因数从1181提高到1475,所述压电陶瓷材料的压电常数d33也从353pC/N上升到364pC/N。

第二方面,本发明实施例提供了一种上述第一方面所述的压电陶瓷材料的制备方法,包括:

将Pb3O4原料粉体、SrCO3原料粉体、MnO2原料粉体、Sb2O3原料粉体、ZrO2原料粉体以及TiO2原料粉体按照化学计量比混合加热得到Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3基体陶瓷粉体;将CeO2、Yb2O3以及BiFeO3原料粉体中的至少一种与Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3基体陶瓷粉体按化学通式Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3+xwt%CeO2+ywt%Yb2O3+zwt%BiFeO3所示的重量百分比掺杂后获得混合粉体,将所述混合粉体球磨、造粒并干压形成坯片,将坯片在1180℃~1320℃烧结后获得所述压电陶瓷材料。

可选地,将Pb3O4原料粉体、SrCO3原料粉体、MnO2原料粉体、Sb2O3原料粉体、ZrO2原料粉体以及TiO2原料粉体按化学通式Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3所示的化学计量比混合,得到所述基体陶瓷粉体的原始混合粉体,并将所述基体陶瓷粉体的原始混合粉体在850℃~900℃下加热保温1~3小时得到所述基体陶瓷粉体。

可选地,当烧结温度为1320℃,y=z=0时,随着x的增加,所述压电陶瓷材料的晶粒尺寸呈降低趋势,所述压电陶瓷材料的强场介电损耗呈降低趋势,若x=0,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗为4.06%,若x=1,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗为2.74%,若x=0.75,则所述压电陶瓷材料在交流电场场强由1kV/cm变化至5kV/cm过程中引入的相对介电常数变化量为336;若x由0变化至0.25,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗从4.06%降低到3.69%,所述压电陶瓷材料的机械品质因数从1181提高到1621,所述压电陶瓷材料在小信号下介电损耗从0.517%降低到0.447%,所述压电陶瓷材料的压电常数和机电耦合系数变化不大。

可选地,当烧结温度为1220℃,x=0.25,z=0时,随着y的增加,所述压电陶瓷材料的晶粒尺寸呈增加趋势,若y由0变化至0.15,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗从3.69%降低到3.16%,所述压电陶瓷材料的机械品质因数从1621提高到1809,所述压电陶瓷材料的压电常数从331pC/N提高到368pC/N,所述压电陶瓷材料的机电耦合系数从0.585提高到了0.626;若y=0.50,则所述压电陶瓷材料在交流电场场强由1kV/cm变化至5kV/cm过程中引入的相对介电常数变化量为256。

本发明实施例提供的压电陶瓷材料在PMS-PZT+0.25wt%CeO2体系的基础上,掺杂适量的Yb2O3可以降低陶瓷烧结温度,以及改善PMS-PZT+0.25wt%CeO2体系的损耗性能,例如y=0.15时,5kV/cm交流电场下的介电损耗从3.69%降低到3.16%,机械品质因数1621提高到1809。y=0.50时,可以将强场非线性由374降低至256。

可选地,当烧结温度为1180℃,x=0.25,y=0时,若z由0变化至0.2,则所述压电陶瓷材料在5kV/cm交流电场下的强场介电损耗从3.69%降低到3.26%,所述压电陶瓷材料的压电常数由331pC/N上升至359pC/N,所述压电陶瓷材料的机电耦合系数由0.585上升为0.622;相比x=y=z=0时压电陶瓷材料的性能,当x=0.25,y=0,z=0.55时,所述压电陶瓷材料在小信号下的介电损耗从0.517%降低到0.338%,所述压电陶瓷材料的机械品质因数从1181提高到1475,所述压电陶瓷材料的压电常数d33也从353pC/N上升到364pC/N。

本发明实施例提供的压电陶瓷材料在PMS-PZT+0.25wt%CeO2体系的基础上,掺杂适量的BiFeO3可以进一步降低陶瓷烧结温度,以及提升PMS-PZT+0.25wt%CeO2体系的压电性能,同时一定程度上改善了小信号下的损耗性能。例如z=0.55时,小机械品质因数从1181提高到1479,小信号下的介电损耗从0.517%降低到0.338%,压电常数从353pC/N上升到364pC/N。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:

本发明通过采用添加两性稀土离子氧化物和硬性金属化合物相结合的方法,在降低烧结温度的同时还极大地减小了强场下的相对介电损耗和强场非线性。本发明实施例提供的压电陶瓷材料具有较为优良的小信号特性,具有高的机械品质因数Qm和低的介电损耗tanδ,同时还具有较高的压电常数d33和机电耦合系数Kp。本发明实施例提供的压电陶瓷材料的压电性能和损耗性能均符合大功率水声换能器件的需求,是一种性能较优的压电陶瓷材料,具有广阔的应用前景。

附图说明

图1为本发明实施例提供的压电陶瓷材料的制备方法流程示意图;

图2为本发明实施例提供的PMS-PZT+0.25wt%CeO2+zwt%(0≤z≤0.55)BiFeO3在1180℃烧结的的陶瓷样品的XRD图谱;

图3为本发明实施例提供的PMS-PZT+xwt%CeO2(0≤x≤1)的SEM对比示意图;

图4为本发明实施例提供的PMS-PZT+0.25wt%CeO2+ywt%Yb2O3(0≤y≤0.9)的SEM对比示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

在本发明实施例中,用化学通式:Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3+xwt%CeO2+ywt%Yb2O3+zwt%BiFeO3表示压电陶瓷材料的组成,式中Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3表示陶瓷的基体粉体,xwt%表示CeO2(氧化铈)占基体陶瓷粉体的重量百分比,ywt%表示Yb2O3(氧化镱)占基体陶瓷粉体的重量百分比,zwt%表示BiFeO3(铁酸铋)占基体陶瓷粉体的重量百分比,0≤x≤1,0≤y≤0.9,0≤z≤0.55。其中,当z=0时,0.05≤y≤0.9(Yb2O3);当y=0时,0.10≤z≤0.55(BiFeO3)。

本发明实施例提供的制备上述的压电陶瓷材料的方法包括混料、预烧、造粒、压片、烧结、涂银、极化等工艺步骤。通过在基体陶瓷粉体中添加CeO2、Yb2O3或BiFeO3中的至少一种掺杂物,可以将陶瓷的最佳烧结温度从1320℃降至1180℃,并能获得大的机械品质因数(Qm高达1809)、小的介电损耗(tanδ低至0.338%)、大的压电常数(d33高达368pC/N)、以及大的机电耦合系数(kp高达0.626),并且在保证良好的压电性能的同时,极大地降低了强场下介电损耗(5kV/cm场强下介电损耗由4.06%减小至2.74%),提高了压电陶瓷强场稳定性,满足大功率发射型水声换能器对陶瓷材料的应用要求。

图1为本发明实施例提供的压电陶瓷材料的制备方法流程图,包括如下步骤:

(1)预合成粉体制备:将分析纯Pb3O4、SrCO3、MnO2、Sb2O3、ZrO2、TiO2粉体作为原料,按通式的化学计量比进行配料,用去离子水作为球磨介质,球磨6小时,烘干过筛后,在850~900℃预烧2小时,得到基体陶瓷材料的预合成粉料。

需要说明的是,将基体陶瓷粉体的原始混合粉体在850℃~900℃下加热保温1~3小时,是为了使得基体粉体材料发生化学反应得到基体主晶相四方钙钛矿相。

(2)压电陶瓷的制备:以预合成基体陶瓷粉体的总重量来计算,按照通式所示重量百分比添加分析纯CeO2,Yb2O3,BiFeO3粉体中的一种或几种组合作为掺杂剂,以去离子水作为球磨介质再次球磨6小时,烘干后用PVA造粒,在50~100MPa下压成Ф15mm×1mm坯片,之后将坯片在空气气氛中1180~1320℃下保温2~3小时,烧结制得压电陶瓷材料。

(3)烧银:将陶瓷样品两个表面用丝网涂上中温银浆,将涂好银浆的样品放入电炉中煅烧,温度为550℃,保温15分钟。

(4)极化:将上好电极的陶瓷样品放入硅油中,在陶瓷样品上加上强电场进行极化。极化温度为120℃,极化电压为4kV/mm,极化时间为20分钟。

在本发明实施例中,将采用上述方法制备的压电陶瓷材料进行如下的性能测试:

(1)压电陶瓷微观结构分析

本发明采用JSM-7600F型扫描电镜,对烧结后的断裂面进行微观结构分析。观察陶瓷断面的晶粒大小,晶界厚度以及陶瓷的致密程度。

(2)压电陶瓷的相组成分析

本发明采用XRD来进行陶瓷的物相结构分析。使用的仪器是日本Shimadzu XRD-7000型X-RAY衍射仪,测试参数:10°~80°,扫描速率5°/min,步长0.020°。如图2所示为配方PMS-PZT+0.25wt%CeO2+zwt%BiFeO3在1180℃烧结的的陶瓷样品的XRD图谱,由XRD图谱可知,该组所有的样品都合成了纯的四方钙钛矿相,没有第二相产生。说明在基体陶瓷粉体的基础上掺杂CeO2,Yb2O3,BiFeO3等粉体材料未引入新的杂相。即本发明实施例提供的压电陶瓷材料的主晶相为四方钙钛矿相。

(3)压电陶瓷介电性能测试

将上好电极的压电陶瓷样品放在Agilent 4192A型阻抗分析仪上测试室温环境下测试频率为1kHz,小信号电压为1V下的电容值以及介电损耗。然后根据公式(1)计算压电陶瓷材料的相对介电常数εr

在此公式中,C为材料电容值,A为样品上下表面面积,t为样品的厚度,d为样品上下表面的直径,ε0为真空介电常数。

(4)压电陶瓷的压电性能测试

本实验测试的陶瓷样品是Ф15mm×1mm薄圆片。使用的测试仪器是安捷伦公司生产的HP4192型精密阻抗分析仪,测试陶瓷样品的谐振频率fs和反谐振频率fp,以及谐振频率的最小阻抗Zmin。之后按照国标《GB2414-81》压电材料性能测试方法来测试压电陶瓷的压电参数。压电参数通过以下公式确定。

(a)平面机电耦合系数kp

kp与圆片径向振动的串联谐振频率fs和并联谐振频率fp之间的关系比较复杂,一般不直接计算,而是测定fp、fs,通过(fp-fs)/fs=Δf/fs及泊松比σ来查表,得到kp值。

(b)压电系数d33

本实验中压电陶瓷的压电系数d33均采用中国科学院声学研究所生产的ZJ-3A准静态d33测试仪进行测量。

(5)压电陶瓷的强场性能测试

通过上海杨高电气有限公司生产的QS89型强场损耗测试仪测量出1kHz、不同电场强度(1kV/cm、2kV/cm、3kV/cm、4kV/cm和5kV/cm)下的电容及介电损耗值,并根据公式(1)算出强电场下的相对介电常数。随着施加场强的增加,强场介电常数和介电损耗也随之增加,我们要求得到在最大场强5kV/cm时尽可能小的强场介电损耗值和更小的强场非线性。

本发明根据大功率压电器件的要求对具有低损耗、好的强场稳定性以及低的强场非线性的硬性材料配方进行了研究。基体陶瓷粉体Pb0.98Sr0.02(Mn1/3Sb2/3)0.08Zr0.47Ti0.45O3属于锑锰-锆钛酸铅三元系(PMS-PZT),本发明选取PMS-PZT作为基本配方,探讨了CeO2掺杂对于陶瓷结构及小信号性能、强场损耗特性、强场非线性的影响,并在CeO2掺杂的基础上,分别研究了Yb2O3和BiFeO3掺杂对于PMS-PZT+CeO2陶瓷结构及性能的影响。

下面结合具体实例对本发明做进一步的详细、完整的说明。表1至表6是按照前述化学通式和制备方法,在不同组成配比和烧结温度的性能比较,其中,表1和表2分别为化学式配比为PMS-PZT+xwt%CeO2(0≤x≤1)的样品在1320℃烧结条件下的小信号性能对比表和强场性能对比表;表3和表4分别为化学式配比为PMS-PZT+0.25wt%CeO2+ywt%Yb2O3(0≤y≤0.9)的样品在1220℃烧结温度条件下的小信号性能对比表和强场性能对比表;表5—表6分别为化学式配比为PMS-PZT+0.25wt%CeO2+zwt%BiFeO3(0≤z≤0.55)的样品在1180℃烧结条件下的小信号性能对比表和强场性能对比表。

表1 不同CeO2配比的样品在烧结温度为1320℃条件下的小信号性能对比

表2 不同CeO2配比的样品在烧结温度为1320℃条件下的强场性能对比

本发明研究了从1220℃-1320℃烧结温度区间内的掺杂不同含量CeO2的PMS-PZT压电陶瓷的小信号性能和强场性能,发现1320℃烧结的组分性能最好,故仅列出1320℃烧结温度下的相关性能(见表1、2)。

根据图3所示的PMS-PZT+xwt%CeO2(0≤x≤1)的SEM对比图可知,随着CeO2的添加,晶粒尺寸明显减小,同时晶粒更加均匀致密,其中,图3中(a)-(e)分别对应表1中x=0,0.25,…,1.00所示配方得到的压电陶瓷材料的SEM图。但结合表1中的数据可知,掺杂过多的CeO2不利于压电性能的提高,如表1所示,随着CeO2掺杂量的提高,压电常数d33不断减小,同时机电耦合系数Kp也呈降低趋势。但是整体而言,掺杂CeO2得到的压电陶瓷材料的压电常数d33大于或等于312,机电耦合系数Kp大于或等于0.56,满足大功率压电陶瓷材料的压电性能需求。另外,CeO2的添加极大的降低了PMS-PZT陶瓷的强场介电损耗,如表2所示,1320℃烧结时,未添加CeO2的PMS-PZT陶瓷在5kV/cm交流电场下的强场介电损耗为4.06%(见实施例1),而掺杂1wt%CeO2的PMS-PZT陶瓷在相同条件下时强场介电损耗仅为2.74%(见实施例5)。当x=0.75时,1kV/cm交流电场下的相对介电常数为1581,而5kV/cm交流电场下的相对介电常数为1917,相对介电常数的变化量为336,因此材料的强场非线性较低。当掺杂少量的CeO2时,如x=0.25(见实施例2),相比x=0能够在降低强场介电损耗的同时(5kV/cm交流电场下的强场介电损耗从4.06%降低到3.69%),大大提高材料的机械品质因数(Qm从1181提高到1621)并且有效降低小信号下介电损耗(tanδ从0.517%降低到0.447%),同时也维持了一定的压电性能(d33只从353降低到331,Kp只从0.618降低到0.585)。满足水声换能器的基本要求。

综上,在PMS-PZT体系的基础上,掺杂适量的CeO2可以改善PMS-PZT体系的损耗性能,同时对压电性能的影响较低,使得PMS-PZT+xwt%CeO2(0≤x≤1)体系压电陶瓷材料的压电性能满足大功率水声换能器的需求,同时相比PMS-PZT体系大大降低了小信号和强场下的介电损耗,且提升了机械品质因数。

表3 不同Yb2O3配比的样品在烧结温度为1220℃条件下的小信号性能对比

表4 不同Yb2O3配比的样品在烧结温度为1220℃条件下的强场性能对比

在CeO2掺杂的基础上,本发明同时研究了烧结温度区间为1200℃-1280℃的掺杂不同含量Yb2O3的PMS-PZT压电陶瓷小信号性能和强场性能,我们列出了性能最好的在1220℃烧结的组分(见表3、4)。由于1200℃-1280℃烧结的压电陶瓷材料的压电性能和损耗性能均满足大功率水声换能器的需求,可知,掺杂Yb2O3能够有效降低配方的最佳烧结温度(从1320℃降低到了1220℃)。

根据图4所示的PMS-PZT+0.25wt%CeO2+ywt%Yb2O3(0≤y≤0.9)的SEM对比图可知,随着Yb2O3含量的增加,晶粒尺寸也随之增大,但是过量的Yb2O3会导致晶粒过分长大,晶界分布不明显,其中,图4中(a)-(e)分别对应表3中y=0.05,0.15,…,0.90所示配方得到的压电陶瓷材料的SEM图。而适量的Yb2O3掺杂能够有效提高陶瓷的综合性能,其中,y=0.15时(见实施例7),能够在上述最佳实施例2的基础上获得一个更低的强场介电损耗(5kV/cm交流电场下的介电损耗从3.69%降低到3.16%),同时,机械品质因数也得到很大的提高(Qm从1621提高到1809),并且压电性能得到了大的提升(压电常数d33也从331pC/N提高到了368pC/N,机电耦合系数Kp也从0.585提高到了0.626)。同时,当y=0.50时(见实施例9),能够获得比实施例2更低的强场非线性(1kV/cm交流电场下的相对介电常数为1146,而5kV/cm交流电场下的相对介电常数为1402,只变化了256,实施例2对应的相对介电常数变化量为374)。更低的强场非线性可以在保证大功率水声换能器的较高工作效率的同时有效缓解换能器过热问题,有利于提高换能器的使用寿命和工作精度。

综上,在PMS-PZT+0.25wt%CeO2体系的基础上,掺杂适量的Yb2O3可以降低陶瓷烧结温度,以及改善PMS-PZT+0.25wt%CeO2体系的损耗性能,例如y=0.15时,5kV/cm交流电场下的介电损耗从3.69%降低到3.16%,机械品质因数1621提高到1809。y=0.50时,可以将强场非线性由374降低至256。

表5 不同BiFeO3配比的样品在烧结温度为1180℃条件下的小信号性能对比

表6 不同BiFeO3配比的样品在烧结温度为1180℃条件下的强场性能对比

本发明研究了烧结温度区间为1140℃-1260℃的掺杂不同含量BiFeO3的PMS-PZT压电陶瓷小信号性能和强场性能,发现1140℃-1260℃烧结的压电陶瓷材料的压电性能和损耗性能均满足大功率水声换能器的需求,其中1180℃烧结的组分的压电性能和损耗性能最好,因此添加BiFeO3后可以将PMS-PZT+0.25wt%CeO2体系的最佳烧结温度由1320℃降低到1180℃,该烧结温度下的小信号性能和强场性能如表5、表6所示。

本发明实施例发现,添加0.20wt%的BiFeO3时(实施例12),能够在实施例2的基础上降低强场介电损耗(5kV/cm交流电场下的介电损耗从3.69%降低到3.26%),并且压电性能也有所提升(d33由331pC/N上升为359pC/N,Kp由0.585上升为0.622)。而当掺杂z=0.55的BiFeO3时(实施例14),和没有改性的PMS-PZT压电陶瓷基体相比(实施例1),虽然大功率下的强场性能稍有下降,但是其小信号下的损耗性能表现的十分优异(Qm从1181提高到1479,小信号下的介电损耗tanδ从0.517%降低到0.338%);压电常数d33也从353pC/N上升到364pC/N。

综上,在PMS-PZT+0.25wt%CeO2体系的基础上,掺杂适量的BiFeO3可以进一步降低陶瓷烧结温度,以及提升PMS-PZT+0.25wt%CeO2体系的压电性能,同时一定程度上改善了小信号下的损耗性能。例如z=0.55时,小机械品质因数从1181提高到1479,小信号下的介电损耗从0.517%降低到0.338%,压电常数从353pC/N上升到364pC/N。

与没有改性的PMS-PZT压电陶瓷相比,本发明的大功率压电陶瓷材料可以通过不同的稀土金属氧化物以及硬性氧化物掺杂获得优异的损耗特性:tanδ低至0.338%,Qm高达1809;并且使得烧结温度从1320℃降至1180℃;特别是得到了优异的强场性能:3kV/cm下的介电损耗tanδ=1.49%,5kV/cm下的介电损耗tanδ=2.74%;并且也获得了十分优异的压电性能:压电常数d33高达368pC/N,机电耦合系数kp高达0.626,满足发射型水声换能器对大功率压电陶瓷材料的应用要求,特别是大大降低了大功率压电换能器在高驱动条件下的过热问题,强场下较低的非线性也使得大功率换能器能够长时间稳定工作,良好的压电性能也使得压电换能器具备高的信号转换效率,有利于大功率压电陶瓷材料的工业化推广使用。

以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1