一种合成多级有序孔道材料的普适方法与流程

文档序号:14825179发布日期:2018-06-30 08:10阅读:593来源:国知局
一种合成多级有序孔道材料的普适方法与流程

本发明提出一种合成多级有序孔道材料的普适方法,属于多孔材料的制备技术领域。



背景技术:

有序介孔材料由于其独特的结构和性能,如比表面高,孔结构可控,孔分布均一,以及良好的热稳定性和机械稳定性,在诸多领域的应用中引起了广泛关注。制备有序介孔材料通常采用基于硬模板(如介孔二氧化硅和碳)或者软模板(如非离子表面活性剂)的模板技术。相比于软模板法,硬模板法(纳米铸造技术)是一种合成有序介孔材料的更具吸引力的方法,可被广泛用于合成多种有序介孔材料,如金属,碳,金属氧化物,金属氮化物,金属硫化物

通过在在介孔材料中引入大孔结构从而构建结合了相互连通的大孔和介孔的多级孔道结构纳米材料已被证明是提高介孔材料应用性能的有效方法。这种多级孔道结构材料中的大孔能够促进物质传递从而减少存在于单纯介孔金属中的扩散限制,同时介孔能够增加材料的表面积。目前,制备多级孔道结构材料的方法多种多样,其中结合胶体晶体(蛋白石)模板(硬模板)和表面活性剂模板(软模板)技术的双模板合成策略是制备具有有序相互连通的大孔介孔结构的多级孔道结构材料的一个有效方法。因其在大孔和介孔尺寸的孔结构的有序性和可调性,有序多级孔道材料(二氧化钛,碳和金属)已在众多领域的应用中展现出显著的性能优势,如催化,能量储存和转换,传感,吸附,和脱附。然而,对于许多材料而言缺少合适的软模板制备技术,同时对于大多数非硅前驱液而言,很难控制其水解和浓缩反应而形成有序介孔结构。因此,上述的硬模板和软模板相结合的硬-软-双模板法的应用受到限制。

本发明提出了一种新型的双硬模板法作为一种合成多级有序孔道材料的普适方法。其制备过程简单易行,条件温和可控。该方法可通过改变浸泡模板的目标前驱体可控地制备多种多级有序孔道材料。



技术实现要素:

本发明的目的是提供一种多级有序孔道结构材料的普适制备方法。该方法使用二氧化硅蛋白石作为大孔模板,填充在蛋白石孔隙中的介孔二氧化硅作为介孔模板。通过这种双硬模板法制备得到多级有序孔道结构的金属(如Pt,Pd)、合金(如Ni2P)和碳基材料(如碳和氮磷共掺杂碳)。

本发明的特点在于所采用的制备过程简单易行,条件温和可控。可通过改变浸泡模板的目标前驱体可控地制备多种多级有序孔道材料。是合成有序多级孔道材料的普适方法。

一种合成多级有序孔道材料的普适方法,按下述步骤制备:

(1)利用Stobe制备单分散的二氧化硅微球:首先将质量百分数为30%氨水、去离子水和无水乙醇搅拌混合,优选其中质量百分数为30%氨水、去离子水和无水乙醇的体积比20:7:150;然后加入混合均匀的正硅酸乙酯和无水乙醇的混合物,其中优选,正硅酸乙酯和无水乙醇的体积比为1:15;正硅酸乙酯与质量百分数为30%氨水的体积比为3:5,于室温搅拌24小时,反应结束后,利用乙醇和去离子水多次清洗,得到单分散微纳米级的二氧化硅微球(如290nm);

(2)将步骤(1)得到的单分散微纳米级二氧化硅微球分散在无水乙醇中,经过自然沉降自组装成三维有序的二氧化硅胶体晶体,最后经过750℃下煅烧得到烧结的二氧化硅胶体晶体蛋白石;

(3)将步骤(2)得到的二氧化硅胶体晶体蛋白石浸泡在介孔二氧化硅前驱体中,介孔二氧化硅前驱体为含有正硅酸乙酯、两亲性三嵌段共聚物F127、HNO3的乙醇和水的混合溶液,其中在介孔二氧化硅前驱体中正硅酸乙酯:两亲性三嵌段共聚物F127:HNO3,:无水乙醇:去离子水的摩尔比为1:0.008:0.01:5:3;室温搅拌1小时,将二氧化硅胶体晶体蛋白石浸泡到介孔二氧化硅前驱体中后,空气中室温陈化一段时间,取出模板,70℃陈化24h;在500℃煅烧10h去除表面活性剂F127,得到介孔二氧化硅/二氧化硅蛋白石复合物;

(4)将步骤(3)得到的介孔二氧化硅/二氧化硅蛋白石复合物作为模板浸泡到目标产物的前驱体溶液中,经过化学反应得到介孔二氧化硅/蛋白石复合物填充目标产物的复合物;再用5~10wt.%HF氢氟酸刻蚀去除介孔二氧化硅/蛋白石复合物模板后得到相应的多级有序孔道材料。

优选步骤(3)中模板在空气中室温陈化的时间为20~36h。

其中步骤(4)中的化学反应可以为常规的采用硬质模板法制备目标物质的反应。

优选:步骤(4)中目标前驱液溶液为质量分数为40%~60%的氯铂酸的乙醇溶液、PdCl2的盐酸溶液(优选PdCl2的质量分数为10%)、六水合氯化镍和次磷酸盐水溶液(优选六水合氯化镍和次磷酸盐摩尔比为1:1.5,六水合氯化镍的质量浓度优选为20%),或蔗糖、尿素和植酸的混合的水溶液(优选蔗糖、尿素和植酸质量比为1.6:0.3:0.3)。

本发明所用的模板是通过双模板法制备的二氧化硅蛋白石/介孔二氧化硅复合物。介孔二氧化硅的孔径为7~10nm。可以在模板内填充Pt、Pd、Ni2P、N/P掺杂碳的前驱体,再经过相应的热处理和模板刻蚀过程得到相应的有序多级孔道材料。所得有序多级孔道材料呈现出三维有序相互连通的大孔/介孔结构,介孔孔径约为3~5nm。其中组成目标产物的颗粒如Pt、Pd、Ni2P、NPC平均颗粒大小可以约为9nm。

附图说明

图1为实施例1制备的多级有序孔道结构Pt的透射电镜图和粉末X射线衍射图。

图2为实施例2制备的多级有序孔道结构Pd的透射电镜图和粉末X射线衍射图。

图3为实施例3制备的多级有序孔道结构Ni2P的透射电镜图和粉末X射线衍射图。

图4为实施例4制备的多级有序孔道结构碳的透射电镜图和粉末X射线衍射图。

图5为实施例5制备的多级有序孔道结构N/P掺杂碳的透射电镜图和粉末X射线衍射图。

上述附图中(a)为透射电镜图,(b)为X射线衍射图。

具体实施方式

以下结合实例对本发明的方法作进一步的说明。这些实例进一步描述和说明了本发明范围内的实施方案。给出的实例仅用于说明的目的,对本发明不构成任何限定,在不背离本发明精神和范围的条件下可对其进行各种改变。

这些实施例说明了有序多级孔道结构的Pt、Pd、Ni2P和NPC的合成过程。

实施例1

(1)首先将体积分别为20mL,7mL和150mL的13mol/L的氨水,去离子水和无水乙醇搅拌混合。然后加入混合均匀的15.6g正硅酸乙酯和180mL无水乙醇的混合溶液,将混合物置于25℃条件下,搅拌24小时,反应结束后,利用乙醇和去离子水多次清洗,将得到的单分散二氧化硅微球分散在无水乙醇中,自然沉降自组装,最后经过750℃下煅烧得到烧结的二氧化硅蛋白石;

(2)将步骤(1)得到的二氧化硅蛋白石浸泡在含有正硅酸乙酯,F127,HNO3,乙醇和去离子水摩尔比为1:0.008:0.01:5:3的介孔二氧化硅前驱液中。室温搅拌1小时,然后将3g二氧化硅蛋白石块体浸泡到上述前驱体中,空气中室温陈化36h,取出模板,70℃陈化24h。在500℃煅烧10h得到介孔二氧化硅/二氧化硅蛋白石复合物;

(3)称氯铂酸0.4g溶于1g无水乙醇中,搅拌1h,称制备好的介孔二氧化硅/二氧化硅蛋白石复合物0.4g浸泡到溶液中,室温浸渍2h,取出模板,室温真空干燥12h,然后在5%的H2环境下于150℃还原2h。还原结束后,用质量分数为5%的HF溶液去除二氧化硅复合模板,得到多级有序孔道结构Pt。所得样品被命名为A,A具有附图1的特征。

实施例2

多级有序孔道结构Pd的制备方法,步骤同实施例1,不同之处是步骤(3)中所用的目标前驱体改为氯钯酸溶液。

称取0.2g的PdCl2在90℃搅拌条件下加入2mL浓盐酸中,继续搅拌1h,将0.4g二氧化硅复合模板浸入上述前驱液,浸泡2h后取出模板,置于120℃干燥12h。待冷却至室温,将模板浸泡到2mL的水合肼溶液中(2wt.%),静置1h还原Pd2+,最后HF溶液(5wt.%)去除二氧化硅复合模板,得到多级有序孔道结构Pd。所得样品被命名为B,B具有附图2的特征。

实施例3

多级有序孔道结构Ni2P的制备方法,步骤同实施例1,不同之处是步骤(3)中所用的目标前驱体改为六水合氯化镍和次磷酸盐摩尔比为1:1.5的水溶液10mL。将0.4g二氧化硅复合模板浸入上述前驱液,室温浸泡2h后再80℃浸泡5h。取出模板,置于80℃干燥10h。在氮气保护下300℃热处理1h。最后HF溶液(5wt.%)去除二氧化硅复合模板,得到多级有序孔道结构Ni2P。所得样品被命名为C,C具有附图3的特征。

实施例4

多级有序孔道结构碳的制备方法,步骤同实施例1,不同之处是步骤(3)中所用的目标前驱体改为蔗糖,硫酸,和去离子水质量比1.6:0.14:(4~5)g的溶液。将0.4g二氧化硅复合模板浸入上述前驱液中,浸泡2h后取出模板,置于100℃干燥6h,继续在160℃干燥6h。重复模板浸泡和干燥过程。所得复合物在Ar保护下900℃裂解3h。最后HF溶液(5wt.%)去除二氧化硅复合模板,得到多级有序孔道结构碳。所得样品被命名为D,D具有附图4的特征。

实施例5

多级有序孔道结构碳的制备方法,步骤同实施例1,不同之处是步骤(3)中所用的目标前驱体改为蔗糖,尿素,植酸和去离子水质量比为1.6:0.3:0.3:(4~5)的水溶液。后续过程同实例4,刻蚀模板后得到多级有序孔道结构N/P掺杂碳。所得样品被命名为E,E具有附图5的特征。

所得产物利用透射电子显微镜(TEM)分析表明,本方法制备的二氧化硅的球径为290nm,制备得到的介孔二氧化硅/蛋白石复合物中,有序排列的二氧化硅球之间的孔隙内填充了具有有序介孔结构的二氧化硅,孔径在7~9nm,将目标前驱液填充整个模板,经过相应的化学处理,再刻蚀二氧化硅复合模板后,便得到了多级有序孔道结构材料。从透射电镜中可以看出,所得多级有序孔道结构材料具有均匀有序的大孔结构,且在大孔壁上分布着有序的介孔结构,说明其多级有序相互连通的大孔介孔结构。介孔径为3~5nm,平均颗粒大小为9nm。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1