生产在大于8的PH下可分散的氧化铝的方法与流程

文档序号:17929667发布日期:2019-06-15 00:43阅读:438来源:国知局
生产在大于8的PH下可分散的氧化铝的方法与流程

本申请要求于2016年8月29日提交的美国申请号62/380,770的优先权,将其公开内容通过引用结合于此用于所有目的。

本发明涉及制备在大于8的ph下可分散的氧化铝的新方法以及高度可分散的氧化铝。



背景技术:

在高度可分散的氧化铝的领域中,柠檬酸作为铝氧化物的有效分散剂是众所周知的。通常,柠檬酸在酸性ph(ph低于7)下用作分散剂,然而,确实存在使用柠檬酸来稳定在碱性ph下分散的氧化铝的商业产品。虽然柠檬酸是有效的分散剂,但是其限制在于在ph大于7时,这些柠檬酸分散剂在合理的重量载荷(例如在10重量%的al2o3)下具有变得十分粘稠的趋势。这限制了它们在许多应用中的使用。为了解决此粘度问题,将粘度调节剂添加至这些氧化铝分散体中。添加这些粘度调节剂的问题在于它们向氧化铝分散体中的引入,例如聚丙烯酸盐/酯,会影响分散体以及在干燥和煅烧后的所得产物的性质。

本发明的发明人已经找到了对于此问题的解决方案。

发明

根据本发明的第一方面,提供了一种制备氧化铝的方法,所述方法包括以下步骤:

i)提供氧化铝浆料;

ii)使氧化铝浆料老化以形成老化的氧化铝浆料,其包含微晶尺寸为38至(120面)的氧化铝;

iii)向老化的氧化铝浆料中添加三羧酸以形成酸改性的浆料;

iv)使酸改性的浆料在75℃至125℃的温度下老化以形成产物浆料;

以及

v)将产物浆料喷雾干燥,

所述方法的特征在于,在所述方法的步骤iii)中与三羧酸一起添加二羧酸,或者在步骤iv)之后、在步骤v)中的喷雾干燥之前将二羧酸添加至产物浆料。

通过本发明方法生产的氧化铝在大于8、优选大于9并且最优选大于9.5的ph下是可分散的。

氧化铝浆料包含羟基氧化铝(aluminumoxyhydroxide)、氧化铝、氢氧化铝或其混合物。氧化铝浆料优选地包含勃姆石(boehmite)、三羟铝石(bayerite)、三水铝矿(gibbsite)、γ-氧化铝、过渡型(δ-θ)氧化铝(transitional(delta-theta)aluminas)及其混合物。更优选地,氧化铝浆料包含勃姆石和γ-氧化铝,并且最优选地包含勃姆石。

可以以多种方式生产氧化铝浆料。可以经由烷醇铝(烃氧基铝,aluminumalkoxides)在水中的水解、通过氧化铝盐在至少水中的沉淀、或通过铝化合物在至少水中的悬浮来生产氧化铝浆料。提供经由烷醇铝(例如勃姆石)在水中的水解制得的氧化铝浆料是优选的。取决于生产路线,氧化铝浆料的ph为6-10。

通过加热至95-220℃的温度持续30分钟至8小时的时间使氧化铝浆料老化。在老化后,氧化铝浆料优选地包含微晶尺寸为40至(120面)的氧化铝,更优选地,老化的氧化铝浆料包含微晶尺寸为60至(120面)的氧化铝,并且最优选微晶尺寸为80至(120面)的氧化铝。

三羧酸可以作为溶液或作为粉末添加。三羧酸包括柠檬酸、异柠檬酸(isocitricacid)、乌头酸(aconiticacid)、丙三甲酸(tricarballylicacid)、苯均三甲酸(trimesicacid)及其衍生物,优选地,三羧酸包括柠檬酸、苯均三甲酸和乌头酸,并且最优选地,三羧酸包括柠檬酸。本发明提供三羧酸的衍生物、特别是其钠盐和铵盐的用途。三羧酸盐的衍生物包括柠檬酸钠(柠檬酸一钠、柠檬酸二钠和柠檬酸三钠)和柠檬酸铵(柠檬酸一铵、柠檬酸二铵和柠檬酸三铵)。也可以使用三羧酸的混合物。

向氧化铝浆料中添加三羧酸(单独或与二羧酸一起)将ph降至ph为1至6,因而氧化铝浆料变为酸改性的浆料。

将酸改性的浆料老化10分钟至1小时的时间。用于使酸改性的浆料老化的更优选的温度范围是优选85℃至115℃的温度,最优选地,酸改性的浆料在95℃至105℃的温度下老化。

二羧酸包括丙二酸、琥珀酸、戊二酸(gluatricacid)、己二酸、庚二酸、马来酸、富马酸、戊烯二酸、粘康酸、柠康酸、中康酸及其混合物。优选地,二羧酸包括丙二酸、柠康酸、中康酸、富马酸、马来酸、琥珀酸及其混合物。最优选地,二羧酸包括丙二酸。

在步骤i)的氧化铝浆料中氧化铝的百分比为1至15重量%al2o3,并且优选5至10重量%al2o3。

以al2o3为基础,在本发明方法的步骤iii)中和/或步骤iv)之后添加的酸(三羧酸和二羧酸)的总量为酸改性的浆料或产物浆料(取决于何时添加二羧酸)的0.5至15重量%,优选2至11重量%,并且最优选4至9重量%。

本发明的优点在于两种酸都可以在初始处理中添加并与氧化铝反应,并且因此这消除了对于粘度调节剂的需要。

在三羧酸的存在下使氧化铝老化是有利的,因为这增大了材料随时间的分散性和稳定性。

在产物浆料老化之前或老化之后,二羧酸可以与三羧酸通过预混合这些酸同时添加,或者通过顺序添加这些酸。这两种方法都生产具有类似性质的材料。如果二羧酸与三羧酸同时添加,则优选将这些酸预混合。

根据本发明的第二方面,提供了一种在大于8的ph下高度可分散的氧化铝,其具有高于90%的分散性以及对于10重量%的溶胶低于5pa.s的粘度。

优选地,在大于8的ph下高度可分散的氧化铝的粘度具有高于90%的分散性以及对于10重量%的溶胶低于1pa.s的粘度。

优选地,高度可分散的氧化铝具有在大于9.5的ph下高于95%的分散性以及对于10重量%的溶胶低于0.4pa.s的粘度。

按照实施例部分描述的方法测量高度可分散的氧化铝的粘度。

宽泛描述

根据本发明的第一方面,提供了一种制备氧化铝方法,所述氧化铝在大于8的ph下是可分散的,更优选在大于9的ph下是可分散的,并且最优选在大于9.5的ph下是可分散的。所述方法包括提供氧化铝浆料例如勃姆石浆料(通过勃姆石在水中的水解制备),并在95至220℃的温度下将该浆料水热老化约30分钟至8小时的时间,以形成所需微晶尺寸的老化的氧化铝浆料,该所需微晶尺寸典型地为40至(120面)、更优选60至(120面),最优选地该老化的氧化铝浆料包含微晶尺寸为80至(120面)的氧化铝。

氧化铝浆料将具有6-10的ph。

微晶尺寸通过x射线衍射(xrd)分析干燥粉末来确定。120-面峰高、半峰全宽(fwhm)和角度由xrd光谱获得。将此信息输入用于确定微晶尺寸的scherrer方程。还输入关于具体仪器的其他信息,包括谱线增宽和x射线波长。求解该方程得到所测量的晶面的尺寸。这在本发明的领域中是众所周知的。

在本发明的一个实施方案中,将三羧酸(例如柠檬酸)和二羧酸(例如丙二酸)在水中预分散(预混合),并且添加至老化的氧化铝浆料中以形成酸改性的浆料。这些酸也可以顺序地添加至老化的氧化铝浆料中以形成酸改性的浆料。在添加一种或多种酸之后,氧化铝浆料将具有1至6的ph,并且因此称为酸改性的浆料。

然后使酸改性的浆料老化10分钟至1小时的时间。用于此老化过程的温度范围为75℃至125℃,更优选85℃至115℃,并且最优选地,使酸性改性的浆料在95℃至105℃的温度下老化以形成产物浆料。

作为备选方案,所述方法可以包括在产物浆料老化之后且在喷雾干燥之前将二羧酸(即丙二酸)添加至产物浆料,而不是与三羧酸(即柠檬酸)一起添加。使用这两种方法将生产具有类似性质的材料。

然后将产物浆料喷雾干燥并收集。

所述方法生产包括以下特性的氧化铝;在大于8的ph下高于90%的分散性以及对于10重量%的溶胶低于5pa.s的粘度。

优选地,在大于8的ph下高度可分散的氧化铝具有高于90%的分散性以及对于10重量%的溶胶低于1pa.s的粘度。

更优选地,所述氧化铝具有在大于9.5的ph下高于95%的分散性以及对于10重量%的溶胶低于0.4pa.s的粘度。

实施例

现在将通过非限制性实施例和附图的方式来描述本发明,其中:

图1示出了了分别按照实施例1和2在5重量%和10重量%的氧化铝分散体的粘度,并且比较例2证实了根据本发明的二羧酸添加对产物浆料的粘度的影响。

通过首先生产处于指定ph的氧化铝分散体来测量分散性。这通过将10重量%的氧化铝添加至氢氧化铵的水溶液(ph为10)来完成。使用氢氧化铵的浓溶液来调节ph。将分散体搅拌30分钟。然后将分散体离心30分钟,之后倾析除去上清液。将任何残余的粉末在120℃干燥并且集中起来。通过以下方式计算分散性:从添加的粉末的质量中减去干燥后的残余物的质量,然后除以添加的粉末的质量,并且最后将结果乘以100。

通过首先生产处于指定ph和10重量%固体含量的氧化铝分散体来测量粘度。这通过将氧化铝添加至氢氧化铵的水溶液并且根据需要使用氢氧化铵来调节ph而实现。然后将所得的浆料搅拌30分钟。然后将少量浆料转移至ta仪器dhr2流变仪的基板上,该流变仪在25℃温度平衡。将40mm平板几何体降低至必要的间隙,并且从修整过的间隙推动任何浆料。如果添加的浆料不足以完全填充平板下方的区域,则将平板升高并且添加另外的浆料。以100s-1的剪切速率启动仪器并且记录粘度。

实施例1-丙二酸/柠檬酸改性的氧化铝的制备

勃姆石浆料经由烷醇铝的水解来生产,并且在120℃水热老化2小时,以获得微晶尺寸为(120晶面)的氧化铝。将5重量%的柠檬酸和3重量%的丙二酸(基于氧化铝含量的重量百分比)在水中预混合,然后添加至勃姆石浆料以形成酸改性的浆料。将该酸改性的浆料在105℃老化1小时以形成产物浆料,然后将该产物浆料喷雾干燥并且收集产物。

实施例2-柠檬酸改性的氧化铝(之后用丙二酸改性)的制备

勃姆石浆料经由烷醇铝的水解来生产,并且在120℃水热老化2小时,以获得微晶尺寸为(120晶面)的氧化铝。将5重量%的柠檬酸(基于氧化铝含量的重量百分比)添加至勃姆石浆料以形成酸改性的浆料。然后将该酸改性的浆料在105℃老化1小时以形成产物浆料。然后该产物浆料通过添加3重量%的丙二酸进行改性,并且搅拌30分钟。然后将该改性的产物浆料喷雾干燥并且收集产物。

比较例1-不具有老化步骤iv)的实施例1

勃姆石浆料按照实施例1提供,并且进行水热老化以获得微晶尺寸为(120晶面)的氧化铝。将5重量%的柠檬酸和3重量%的丙二酸(基于氧化铝含量的重量百分比)在水中预混合并且添加至勃姆石浆料以形成酸改性的浆料。然后将该酸改性的浆料喷雾干燥并且收集产物。

比较例2-柠檬酸改性的氧化铝的制备

勃姆石浆料按照实施例1提供,并且进行水热老化以获得微晶尺寸为(120晶面)的氧化铝。将在水中的5重量%柠檬酸(基于氧化铝含量的重量百分比)添加至勃姆石浆料以形成酸改性的浆料。将该酸改性的浆料在105℃老化1小时,然后喷雾干燥并且收集产物。

比较例3-具有与氧化铝一起老化的丙二酸和在老化后添加的柠檬酸的实施例2

勃姆石浆料按照实施例1提供,并且进行水热老化以获得微晶尺寸为(120晶面)的氧化铝。添加3重量%的丙二酸(基于氧化铝含量的重量百分比),然后将该勃姆石浆料在105℃老化1小时。然后将浆料通过添加5重量%的柠檬酸进行改性,并且搅拌30分钟以形成产物浆料。然后将该产物浆料喷雾干燥并且收集产物。

结果包含在下表1中并且一些在图1中示出。

表1

如表1中的结果所显示的,柠檬酸改性勃姆石(比较例2)确实是高度可分散的,然而该材料的粘度(1.3pa.s)对于在许多潜在应用中使用来说太高。在水热老化之前将丙二酸与柠檬酸共同添加至浆料(实施例1)生产具有稍高分散性(97.5%)和低得多的粘度(0.156pa.s)的材料。这是足以在许多应用中使用的流体。备选地,丙二酸可以在氧化铝浆料已经与柠檬酸一起老化之后添加至氧化铝浆料(实施例2),这与实施例1相比没有任何负面影响。事实上,所生产的材料在分散性和粘度方面几乎相同。

这些材料的添加和老化顺序在生产能够产生低粘度高ph溶胶的高度可分散材料中是重要步骤。在其中氧化铝不是在所述酸存在下进行老化的情况下(比较例1),材料胶凝化并且不产生分散体。当单独的丙二酸与氧化铝一起老化,并且在老化后添加柠檬酸时(比较例3),材料在10的ph下进行分散时也胶凝化。

图1进一步示出了在相同条件下,相比于比较例2,使用实施例1和2中生产的样品,在10重量%和ph10下生产的分散体在溶胶粘度方面的差异。使用丙二酸和柠檬酸二者制备的样品的溶胶粘度显著低于仅使用柠檬酸制备的样品的溶胶粘度。30分钟后,使用来自实施例1的材料生产的溶胶的粘度为0.156pa.s,而使用来自实施例2的材料生产的溶胶的粘度为0.180pa.s,两者均显著低于由比较例2中的材料制备的溶胶的粘度,其粘度为1.3pa.s。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1