一种NiCuZn铁氧体材料及其制备方法和用途与流程

文档序号:16851350发布日期:2019-02-12 22:46阅读:235来源:国知局
一种NiCuZn铁氧体材料及其制备方法和用途与流程

本发明属于电子材料技术领域,尤其涉及一种nicuzn铁氧体材料及其制备方法和用途。



背景技术:

随着电子信息产业的快速发展,特别是智能移动终端产品的日新月异,如智能手机、智能手表等消费类电子产品功能趋于多样化,然而大部分电子产品的充电装置互不兼容,电源线杂乱。目前,技术最为成熟的电磁感应式无线充电系统凭借其兼容性较好,携带方便,安全性高等优势脱颖而出,但其存在的显著不足在于充电效率远低于有线充电。

存在上述问题的原因是在电磁感应式无线充电中,其发射端线圈和接受端线圈是分离,故两耦合线圈间的空隙较大,导致线圈耦合不紧密,存在较大的漏感。另外,由于装配空间受限,其线圈处于金属环境中,两线圈间的磁通密度变化被大大削弱,进而影响了能量传输效率。为了解决上述存在的问题,工程人员选择在无线充电系统的接受端线圈与金属片间加入一块软磁铁氧体材料作为隔磁片,要求隔磁片的具有高磁导率、低损耗,即隔磁片复数磁导率的实部大,虚部小。

目前,市场上用的磁性材料隔磁片大部分都是nizncu铁氧体隔磁片。较普遍的是fairrite公司的material44型nizncu铁氧体材料,其磁性能在100~200khz间,铁氧体磁片实部也只能达到500,虚部10左右。所以就目前无线充电发展来看,提高其接收端隔磁片的磁导率实部,降低虚部仍是有待解决的问题。

cn104030674a公开了一种nizncu铁氧体材料及其制备方法,其主成份以摩尔百分比为:fe2o3:48.5~49.5mol%;zno:25~29mol%;nio:11.5~20.5mol%;cuo:5~9.5mol%;掺杂成份质量百分比为:0≤v2o5≤0.12wt%。制备出的nicuzn铁氧体材料在100~200khz频率区间,起始磁导率μ率区为950~1000;

cn104909736a公开了一种镍锌铁氧体材料及其制备方法,其原料组成包括主成分和副成分,主成分以各自标准物计的含量为:49.6mol%≤fe2o3≤50.5mol%,12.5mol%≤nio≤13.5mol%,29.2mol%≤zno≤32mol%,7mol%≤cuo≤9mol%。相对主成分,副成分以标准物计的含量为:0.01wt%≤moo3≤0.1wt%,0.01wt%≤nd2o3≤0.05wt%。所述镍锌铁氧体采用传统的氧化物法制备,在100~200khz的频率区间,磁导率700≤μ′≤900。

cn105837195a公开了一种nizncu铁氧体材料及其制备方法。该nizncu铁氧体材料其配方为nixznycu1-x-yfe2-ao3-3a/2,0.24≤x≤0.25,0.58≤y≤0.61,0.02≤a≤0.03,其原料主成份为nio、zno、cuo和fe2o3,无掺杂;在1mhz处,磁环在1000℃的条件下烧结,复数磁导率的实部μ′为1300~1400,虚部μ″为150~160。

上述公开的专利中,材料性能都是采用磁芯测试的性能,对应的是无线充电用硬质磁片,而受无线充电的接收端条件所限,通常采用具有柔性的铁氧体片,为了实现铁氧体片具有良好的贴合性和柔软性,在烧结后的铁氧体片上、下表面分别贴合pet单面胶和双面胶后进行裂片处理,将铁氧体片粉破碎成若干小片。但由于裂片后铁氧体碎片之间存在气隙,导致铁氧体片的复数磁导率的实部μ′和虚部μ″都会有较大衰减,经实验证明,根据上述专利中公布的复数磁导率指标,制成无线充电接收端用的柔性铁氧体片的磁导率μ′还达不到500,导致无线充电效率低下。



技术实现要素:

针对现有技术中存在的上述不足,本发明的目的在于提供一种nicuzn铁氧体材料及其制备方法和用途。本发明提供的nicuzn铁氧体材料磁导率高,损耗低,性能稳定且制备周期短,生产成本较低,可用于电磁感应式无线充电技术,特别适合于无线充电接收端所需的柔性铁氧体隔磁片。

为达此目的,本发明采用以下技术方案:

第一方面,本发明提供一种nicuzn铁氧体材料,所述nicuzn铁氧体材料主要由fe2o3、zno、nio和cuo组成,以所述nicuzn铁氧体材料的总摩尔量为100%计,fe2o3的摩尔百分数为48.8~50mol%,zno的摩尔百分数为32~34mol%,nio的摩尔百分数为6.5~8mol%,cuo的摩尔百分数为8.5~12.7mol%。

本发明中,以所述nicuzn铁氧体材料的总摩尔量为100%计,fe2o3的摩尔百分数为48.8~50mol%,例如48.8mol%、49mol%、49.2mol%、49.4mol%、49.6mol%、49.8mol%或50mol%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;

zno的摩尔百分数为32~34mol%,例如32mol%、32.5mol%、33mol%、33.5mol%或34mol%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;

nio的摩尔百分数为6.5~8mol%,例如6.5mol%、7mol%、7.5mol%或8mol%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;

cuo的摩尔百分数为8.5~12.7mol%,例如8.5mol%、9mol%、10mol%、11mol%、12mol%或12.7mol%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

本发明中采用的缺铁或正分值的配方,所以要求上述fe2o3的摩尔比不大于50%。由于铁氧体材料采用缺铁和正分值的配方时,烧结过程不易出现fe2+,从而得到电阻率较高的材料,使得nizncu铁氧体具有较低损耗。

本发明中所述的zno含量要求控制在32.0~34.0mol%范围内,因为在nizncu铁氧体中,要获得高磁导率的铁氧体材料,要求提高zno含量,随zn2+含量的增多,它会把原来a位上的fe3+离子挤到b位,材料中的分子磁矩会增大,进而导致磁导率上升。但考虑到本发明中的材料应用于智能手机等移动终端设备中,要求其具有合适的工作温度,所以要求其居里温度不小于95℃。在铁氧体材料中,随着zno含量的增加,居里温度tc会显著减少,这是因为zn2+为非磁性离子,随着铁氧体中含锌离子越多,降低了a位与b位上的磁性离子数目,使得a位与b位之间的超交换作用减弱,从而导致居里温度tc下降。

本发明中所述的nio含量要求控制在6.5~8.0mol%范围内,全部的nio与fe2o3发生反应生成镍铁氧体,镍铁氧体是磁性相;如果nio含量低于6.5mol%,nizncu铁氧体材料的磁导率会降低。此外,还可以采用ni2o3作为原材料,依照镍含量的摩尔比计算重量便可;

本发明中所述cuo是助溶剂,用于降低铁氧体材料的烧结温度。

本发明提供的nizncu铁氧体材料在100~300khz范围内,复数磁导率的实部μ′为1600~2000和虚部μ″不大于50,100khz、1194a/m、25℃下饱和磁感应强度bs≥240mt和矫顽力hc≤60a/m,100khz、200mt、25℃下功率损耗pcv为350~450mw/m3,居里温度tc为95~110℃。

以下作为本发明优选的技术方案,但不作为对本发明提供的技术方案的限制,通过以下优选的技术方案,可以更好的达到和实现本发明的技术目的和有益效果。

作为本发明优选的技术方案,以所述nicuzn铁氧体材料的总摩尔量为100%计,fe2o3的摩尔百分数为49.5~49.8mol%,zno的摩尔百分数为33.15~33.8mol%,nio的摩尔百分数为7.3~7.85mol%,cuo的摩尔百分数为9.05~9.5mol%。

优选地,所述nicuzn铁氧体材料为片状材料。

优选地,所述nicuzn铁氧体材料为柔性材料。对本发明提供的nicuzn铁氧体材料进行一些处理后即可使其成为柔性片状材料,用作柔性铁氧体隔磁片。

第二方面,本发明提供一种如第一方面所述nicuzn铁氧体材料的制备方法,所述方法包括以下步骤:

(1)对配方量的fe2o3原料、zno原料、nio原料和cuo原料进行湿法混合并破碎,然后烘干,得到粉料;

(2)对步骤(1)所述粉料升温后进行预烧,得到预烧粉料;

(3)对步骤(2)所述预烧粉料进行破碎,然后烘干,得到烘干粉料;

(4)将步骤(3)所述烘干粉料制成生坯;

(5)对步骤(4)所述生坯进行烧结,得到所述nicuzn铁氧体材料。

本发明提供的制备方法各步骤的相互配合保证了制备出的nicuzn铁氧体材料的优良性能,同时流程短,工艺易于控制,产品稳定性好,利于批量化生产。

作为本发明优选的技术方案,步骤(1)所述fe2o3原料中fe2o3的质量分数≥99.4wt%,例如99.4wt%、99.5wt%、99.6wt%、99.7wt%、99.8wt%或99.9wt%等,即优选fe2o3原料的纯度≥99.4wt%。

优选地,步骤(1)所述zno原料中zno的质量分数≥98.0wt%,例如98wt%、98.5wt%、99wt%或99.5wt%等,即优选zno原料的纯度≥98.0wt%。

优选地,步骤(1)所述nio原料中nio的质量分数≥99.0wt%,例如99.0wt%、99.2wt%、99.4wt%、99.6wt%或99.8wt%等,即优选nio原料的纯度≥99.0wt%。

优选地,步骤(1)所述cuo原料中cuo的质量分数≥98.0wt%,例如98wt%、98.5wt%、99wt%或99.5wt%等,即优选cuo原料的纯度≥98.0wt%。

优选地,步骤(1)所述湿法混合并破碎的方法为球磨。

优选地,所述球磨过程中,待破碎原料、水和锆球的质量比为1:1:5,所述球磨过程中水为溶剂,锆球为球磨介质。本发明中原料、水和锆球的质量之比不局限于上述配比。

优选地,所述球磨在行星式球磨机、卧式球磨机或砂磨机中进行,优选为在砂磨机中进行。

优选地,当所述球磨在行星式球磨机中进行时,球磨时间为1~2h,例如1h、1.5h或2h等,球磨转速为250~300r/min,例如250r/min、260r/min、270r/min、280r/min、290r/min或300r/min等。

优选地,当所述球磨在卧式球磨机中进行时,锆球球径使用两种尺寸,锆球和锆球的质量比为1:1。

优选地,当所述球磨在卧式球磨机中进行时,球磨时间为2~6h,例如2h、3h、4h、5h或6h等,球磨转速为40~80r/min,例如40r/min、50r/min、60r/min、70r/min或80r/min等。

本发明中,锆球直径和大小以及锆球的质量比不局限于上述范围。

优选地,当所述球磨在砂磨机中进行时,球磨时间为1~2h,例如1h、1.5h或2h等,球磨转速为50~100r/min,例如50r/min、60r/min、70r/min、80r/min、90r/min或100r/min等。

优选地,当所述球磨在砂磨机中进行时,锆球的尺寸为本发明中,锆球直径和大小不局限于上述范围。

优选地,步骤(1)所述烘干在烘箱或喷雾干燥装置中进行。所述喷雾干燥装置包括压力喷雾干燥装置或者离心喷雾干燥装置。

优选地,当步骤(1)所述烘干在烘箱中进行时,烘干温度为100~120℃,例如100℃、105℃、110℃、115℃或120℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,当步骤(1)所述烘干在喷雾干燥装置中进行时,所述喷雾干燥装置的进口温度为350~400℃,例如350℃、360℃、370℃、380℃或400℃等,出口温度为95~115℃,例如95℃、100℃、105℃、110℃或115℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,当步骤(1)所述烘干在喷雾干燥装置中进行时,在湿法混合并破碎的过程中加入聚乙烯醇(pva)水溶液,所述聚乙烯醇水溶液的浓度为10wt%,所述聚乙烯醇水溶液的加入量为fe2o3原料、zno原料、nio原料和cuo原料的总质量的6~8wt%,例如6wt%、6.5wt%、7wt%、7.5wt%或8wt%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

作为本发明优选的技术方案,步骤(2)中,先将步骤(1)所述粉料置于氧化铝匣钵和/或氧化锆匣钵中后再进行预烧。

优选地,步骤(2)所述升温的升温速率为2~4℃/min,例如2℃/min、3℃/min或4℃/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,步骤(2)所述预烧的温度为860~940℃,例如860℃、870℃、880℃、890℃、900℃、910℃、920℃、930℃或940℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,步骤(2)所述预烧的时间为2~3h,例如2h、2.5h或3h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,步骤(2)所述预烧在推板窑、辊道窑或回转窑中进行.

优选地,当步骤(2)所述预烧在回转窑中进行时,窑管内径为1~1.8m,高温区的长度为5~10m,高温区设定温度为860~940℃,回转窑的旋转速度为5~20r/min,回转窑进料量为80~200kg/h。

作为本发明优选的技术方案,步骤(3)所述破碎的方法为球磨。

优选地,所述球磨在球磨机中进行。

优选地,所述球磨浆料粒度控制在d50为1.0~1.4μm范围内。

优选地,所述球磨的时间为1~2h,例如1h、1.5h或2h等,,球磨的转速为250~300r/min,例如250r/min、260r/min、270r/min、280r/min、290r/min或300r/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,所述球磨过程中,待破碎物料、水和锆球的质量之比为1:1.25:5。

优选地,步骤(3)所述烘干的温度为100~200℃,例如100℃、120℃、140℃、160℃、180℃或200℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,步骤(3)所述烘干在烘箱中进行。

作为本发明优选的技术方案,步骤(4)中,所述制成生坯的方法包括:将步骤(3)所述烘干粉料与粘结剂混合后过筛造粒并压制成型,得到生坯。这种制坯方法在最后得到的铁氧体材料是用于测试材料性能的。

优选地,所述粘结剂包括聚乙烯醇(pva)水溶液,所述聚乙烯醇(pva)水溶液的浓度为10wt%。

优选地,所述粘结剂的加入量为步骤(3)所述烘干粉料和粘结剂的总质量的6wt~8wt%,例如6wt%、6.5wt%、7wt%、7.5wt%或8wt%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,所述压制成型的压力为5~8mpa,例如5mpa、6mpa、7mpa或8mpa等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,所述压制成型将生坯压制成环状。即制成磁环,可以用于检测铁氧体材料的性能。

优选地,步骤(4)中,所述制成生坯的方法包括:对步骤(3)所述烘干粉料进行混浆,对得到的浆料进行流延成型,得到生坯,所述生坯为片状。这种制生坯的方法可以在最后得到柔性铁氧体材料。

作为本发明优选的技术方案,步骤(5)所述烧结的温度为920~980℃,例如920℃、940℃、960℃或980℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,步骤(5)所述烧结的时间为2~3h,例如2h、2.5h或3h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。

优选地,步骤(5)还包括:当步骤(4)所述生坯为片状时,在得到的所述nicuzn铁氧体材料的两面分别贴合聚对苯二甲酸乙二醇酯(pet)单面胶和丙烯酸压敏胶(psa)双面胶后进行裂片处理,得到柔性nicuzn铁氧体片材料。

作为本发明所述制备方法的进一步优选技术方案,所述制备方法包括以下步骤:

(1)对配方量的fe2o3原料、zno原料、nio原料和cuo原料在球磨机中进行球磨,球磨时间为1~2h,球磨转速为250~300r/min,球磨过程中,待破碎原料、水和锆球的质量比为1:1:5,然后在烘箱中烘干100~120℃,得到粉料;

(2)对步骤(1)所述粉料置于氧化铝匣钵和/或氧化锆匣钵中,以2~4r/min的升温速率升温至860~940℃后进行预烧,预烧的时间为2~3h,得到预烧粉料;

(3)在球磨机中对步骤(2)所述预烧粉料进行球磨,球磨的时间为1~2h,球磨的转速为250~300r/min,球磨过程中,待破碎物料、水和锆球的质量之比为1:1.25:5,然后在烘箱中100~200℃烘干,得到烘干粉料;

(4)对步骤(3)所述烘干粉料进行混浆,对得到的浆料进行流延成型,得到生坯,所述生坯为片状;

(5)对步骤(4)所述生坯在920~980℃下进行烧结,烧结的时间为2~3h,烧结后在得到的nicuzn铁氧体材料的两面分别贴合聚对苯二甲酸乙二醇酯单面胶和丙烯酸压敏胶双面胶后进行裂片处理,得到柔性nicuzn铁氧体片材料。

第三方面,本发明提供一种如第一方面所述nicuzn铁氧体材料的用途,所述nicuzn铁氧体材料用于无线充电领域。本发明提供的nicuzn铁氧体材料特别适合于作为无线充电接收端所需的柔性铁氧体隔磁片。

与现有技术相比,本发明具有以下有益效果:

(1)本发明提供的种nicuzn铁氧体材料采用合理的配方,通过控制nizncu铁氧体材料的各组成成分,实现了nizncu铁氧体材料具有较高的磁导率和较低的功率损耗。在100~300khz范围内,复数磁导率的实部μ′为1600~2000、虚部μ″≤50;在100khz、1194a/m、25℃条件下测试饱和磁感应强度bs≥240mt,矫顽力hc≤60;在100khz、200mt,25℃的条件下其功率损耗350~450mw/m3;居里温度tc为95~110℃。本发明中采用上述nizncu铁氧体材料制备出的柔性铁氧体片,在100~300khz范围内,复数磁导率的实部μ′为450~650、虚部μ″为3~20,居里温度tc为95~110℃。该柔性铁氧体片应用于无线充电的接收端,将无线充电的效率提高到70~80%。

(2)本发明提供的制备方法流程短,工艺易于控制,产品稳定性好,利于批量化生产。

附图说明

图1为本发明实施例1提供的nicuzn铁氧体磁环的复数磁导率磁谱;

图2为本发明实施例1提供的nicuzn铁氧体磁环的磁滞回路b-h曲线;

图3为本发明实施例9提供的nicuzn铁氧体磁环的磁导率μ与温度t的变化关系图;

图4为本发明实施例9提供的nicuzn铁氧体磁片的复数磁导率磁谱。

具体实施方式

为更好地说明本发明,便于理解本发明的技术方案,下面对本发明进一步详细说明。但下述的实施例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明保护范围以权利要求书为准。

以下为本发明典型但非限制性实施例:

实施例1

本实施例按照如下方法制备nicuzn铁氧体材料:

(1)按组成成分fe2o3为49.5mol%,zno为33.5mol%,nio为7.5mol%,cuo为9.5mol%的配方称取原材料;其中,原材料的纯度为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。将所得配料在行星式球磨机中球磨1h,转速为275r/min,原料、水和锆球的质量之比为1:1:5;其中,球径为的锆球按质量比1:1混合使用。将所得到的浆料放入烘箱,在120℃烘干得到粉料。

(2)将步骤(1)所得到的粉料置入氧化锆匣钵中预烧,温度为880℃升温速率为2℃/min,保温时间为2.5h。

(3)在步骤(2)预烧所得到的铁氧体材料在行星式球磨机中球磨1h,转速为275r/min,原料、水和锆球的质量之比为1:1.25:5。二次球磨浆料粒度为d50:1.26μm。将球磨所得到的浆料放入烘箱,在120℃烘干得到粉料。

(4)在步骤(3)所得到的粉料中加入总质量的7wt%的聚乙烯醇(pva)水溶液,均匀混合,过筛造粒,压制成型磁环。成型压力控制在6mpa。

(5)将步骤(4)成型所得到的磁环生坯在965℃进行烧结,保温2h后随炉自然冷却,得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为薄片状生坯,生坯经965℃烧结后获得烧结铁氧体片,再在烧结后的铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片破碎成若干小片,便制得柔性铁氧体片。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表1。

图1为本实施例中提供的nicuzn铁氧体磁环的复数磁导率磁谱,由该图可以看出测试频率f=300khz时,μ′为1884.52、μ″为23.26;此外,通过磁环的磁谱也能看出,当频率f=100~300khz范围内,本发明中nicuzn铁氧体材料的复数磁导率的实部μ′为1600~2000和虚部μ″≤50。

图2为本实施例提供的nicuzn铁氧体磁环的磁滞回路曲线,由该图可以看出在测试条件为100khz、1194a/m、25℃时,bs=256.4mt,hc=39.8a/m;由此可以看出,本发明中nicuzn铁氧体材料的饱和磁感应强度bs≥240mt,矫顽力hc≤60a/m。

实施例2

本实施例按照如下方法制备nicuzn铁氧体材料:

(1)按组成成分fe2o3为49.7mol%,zno为33.8mol%,nio为7.3mol%,cuo为9.2mol%的配方称取原材料;其中,原材料的纯度为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。将所得配料在砂磨机内进行研磨,砂磨机的研磨时间为1h,转速为72r/min。原料、水和锆球的质量之比为1:1:5,锆球球径为其中,加入原材料总质量6wt%的聚乙烯醇(pva)水溶液一起混合球磨。将所得到的浆料倒入搅拌池内,采用压力喷雾的方法实施造粒干燥,进口温度为:350~380℃,出口温度为:95~110℃。

(2)将步骤(1)所得到的粉料置入储料斗中,料斗尾端接入回转窑入口,采用回转窑进行预烧。回转窑的窑管内径为1.5m,高温区的长度为8m,高温区设定温度为910℃,回转窑的旋转速度为8r/min,进料量为150kg/小时。

步骤(3)和(4)与实施例1相同。其中步骤(3)中,二次球磨浆料粒度为d50:1.34μm。

(5)将步骤(4)成型所得到的磁环生坯在962℃进行烧结,保温3h冷却得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为薄片状生坯,生坯经962℃烧结后获得烧结铁氧体片,再在烧结铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片粉破碎成若干小片,便制得柔性铁氧体片。

本实施例步骤(5)中得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表1。

实施例3

本实施例按照如下方法制备nicuzn铁氧体材料:

(1)按组成成分fe2o3为49.75mol%,zno为33.35mol%,nio为7.85mol%,cuo为9.05mol%的配方称取原材料;其中要考虑原材料的纯度,原材料的纯度要求为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。将所得配料在行星式球磨机中球磨1h,转速为275r/min,原料、水和锆球的质量之比为1:1:5;其中,球径为的锆球按质量比1:1混合使用。将所得到的浆料放入烘箱,在120℃烘干得到粉料。

步骤(2)、(3)和(4)与实施例1相同。其中步骤(3)中,二次球磨浆料粒度为d50:1.16μm。

(5)将步骤(4)成型所得到的磁环生坯在958℃进行烧结,保温3h冷却得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为薄片状生坯,生坯经958℃烧结后获得烧结铁氧体片,再在烧结后的铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片粉破碎成若干小片,便制得柔性铁氧体片。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表1。

实施例4

本实施例按照如下方法制备nicuzn铁氧体材料:

(1)按组成成分fe2o3为49.8mol%,zno为33.15mol%,nio为7.7mol%,cuo为9.35mol%的配方称取原材料;其中要考虑原材料的纯度,原材料的纯度要求为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。将所得配料在行星式球磨机中球磨1h,转速为275r/min,原料、水和锆球的质量之比为1:1:5;其中,锆球为按质量比1:1混合使用。将所得到的浆料放入烘箱,在120℃烘干得到粉料。

步骤(2)、(3)和(4)与实施例1相同。其中步骤(3)中,二次球磨浆料粒度为d50:1.29μm。

(5)将步骤(4)成型所得到的磁环生坯在969℃进行烧结,保温2h后冷却得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为薄片状生坯,生坯经969℃烧结后获得烧结铁氧体片,再在烧结后的铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片粉破碎成若干小片,便制得柔性铁氧体片。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表1。

实施例5

本实施例的具体制备方法参照实施例2,区别在于,步骤(1)中,按组成成分fe2o3为48.8mol%,zno为34.0mol%,nio为6.5mol%,cuo为10.7mol%的配方称取原材料。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表2。

实施例6

本实施例的具体制备方法参照实施例2,区别在于,步骤(1)中,按组成成分fe2o3为50.0mol%,zno为32.0mol%,nio为8.0mol%,cuo为10.0mol%的配方称取原材料。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表2。

实施例7

本实施例的具体制备方法参照实施例2,区别在于,步骤(1)中,按组成成分fe2o3为50.0mol%,zno为33.5mol%,nio为8mol%,cuo为8.5mol%的配方称取原材料。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表2。

实施例8

本实施例的具体制备方法参照实施例2,区别在于,步骤(1)中,按组成成分fe2o3为48.8mol%,zno为32.0mol%,nio为6.5mol%,cuo为12.7mol%的配方称取原材料。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表2。

实施例9

本实施例按照如下方法制备nicuzn铁氧体材料:

(1)按组成成分fe2o3为49.5mol%,zno为33.5mol%,nio为7.5mol%,cuo为9.5mol%的配方称取原材料;其中,原材料的纯度为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。将所得配料在行星式球磨机中球磨1.5h,转速为300r/min,原料、水和锆球的质量之比为1:1:5;其中,锆球为按质量比1:1混合使用。将所得到的浆料放入烘箱,在110℃烘干得到粉料。

(2)将步骤(1)所得到的粉料置入氧化锆匣钵中预烧,温度为940℃升温速率为3℃/min,保温时间为3h。

(3)在步骤(2)预烧所得到的铁氧体材料在行星式球磨机中球磨1.5h,转速为250r/min,原料、水和锆球的质量之比为1:1.25:5。二次球磨浆料粒度为d50:1.26μm。将球磨所得到的浆料放入烘箱,在100℃烘干得到粉料。

(4)在步骤(3)所得到的粉料中加入总质量的6wt%的聚乙烯醇(pva)水溶液,均匀混合,过筛造粒,压制成型磁环。成型压力控制在5mpa。

(5)将步骤(4)成型所得到的磁环生坯在980℃进行烧结,保温2.5h后随炉自然冷却,得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为薄片状生坯,生坯经980℃烧结后获得烧结铁氧体片,再在烧结后的铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片破碎成若干小片,便制得柔性铁氧体片。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表3。

图3为本实施例中提供的nicuzn铁氧体磁环的磁导率μ与温度t的变化图,由该图可以看出在100℃时,μ开始出现衰减,根据居里温度计算法则,即0.8μmax和0.2μmax两点的连线与μ=1的交点的温度,可以推算出其居里温度约为105℃。

图4为本实施例中提供的nicuzn铁氧体片的复数磁导率磁谱,由该图可以看出测试频率f=300khz时,μ′为626.64、μ″为5.63;此外,通过铁氧体片的磁谱也能看出,当频率f=100~300khz范围内,铁氧体片复数磁导率的实部μ′为450~650和虚部μ″≤20。

实施例10

本实施例按照如下方法制备nicuzn铁氧体材料:

(1)按组成成分fe2o3为49.5mol%,zno为33.5mol%,nio为7.5mol%,cuo为9.5mol%的配方称取原材料;其中,原材料的纯度为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。将所得配料在行星式球磨机中球磨2h,转速为250r/min,原料、水和锆球的质量之比为1:1:5;其中,球径为的锆球按质量比1:1混合使用。将所得到的浆料放入烘箱,在100℃烘干得到粉料。

(2)将步骤(1)所得到的粉料置入氧化锆匣钵中预烧,温度为860℃升温速率为4℃/min,保温时间为2h。

(3)在步骤(2)预烧所得到的铁氧体材料在行星式球磨机中球磨2h,转速为300r/min,原料、水和锆球的质量之比为1:1.25:5。二次球磨浆料粒度为d50:1.26μm。将球磨所得到的浆料放入烘箱,在200℃烘干得到粉料。

(4)在步骤(3)所得到的粉料中加入总质量的8wt%的聚乙烯醇(pva)水溶液,均匀混合,过筛造粒,压制成型磁环。成型压力控制在8mpa。

(5)将步骤(4)成型所得到的磁环生坯在920℃进行烧结,保温3h后随炉自然冷却,得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为片状生坯,生坯经920℃烧结后获得烧结铁氧体片,再在烧结铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片破碎成若干小片,便制得柔性铁氧体片。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表3。

实施例11

本实施例的具体制备方法参照实施例1,区别在于,步骤(1)中,将所得配料在砂磨机内进行研磨,砂磨机的研磨时间为1.5h,转速为100r/min,原料、水和锆球的质量之比为1:1:5,锆球直径为其中,加入原材料总质量的7wt%的聚乙烯醇(pva)水溶液一起混合球磨。将所得到的浆料倒入搅拌池内,采用压力喷雾的方法实施造粒干燥,进口温度为:350~380℃,出口温度为:95~100℃。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表3。

实施例12

本实施例的具体制备方法参照实施例1,区别在于,步骤(1)中,将所得配料在砂磨机内进行研磨,砂磨机的研磨时间为2h,转速为50r/min,原料、水和锆球的质量之比为1:1:5,锆球直径为其中,加入原材料总质量的8wt%的聚乙烯醇(pva)水溶液一起混合球磨。将所得到的浆料倒入搅拌池内,采用压力喷雾的方法实施造粒干燥,进口温度为:380~400℃,出口温度为:110~115℃。

本实施例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表3。

对比例1

步骤(1)、(2)、(3)和(4)与实施例1相同。其中,步骤(1)中,按组成成分fe2o3为48.5mol%,zno为34.30mol%,nio为7.75mol%,cuo为9.20mol%的配方称取原材料;其中要考虑原材料的纯度,原材料的纯度要求为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。步骤(3)中,二次球磨浆料粒度为d50:1.23μm。

(5)将步骤(4)成型所得到的磁环生坯在963℃进行烧结,保温3h后冷却得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为片状生坯,生坯经969℃烧结后获得烧结铁氧体片,再在烧结铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片破碎成若干小片,便制得柔性铁氧体片。

本对比例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表1。

对比例2

步骤(1)、(2)、(3)和(4)与实施例1相同。其中,步骤(1)中,按组成成分fe2o3为50.4mol%,zno为31.80mol%,nio为7.8mol%,cuo为10.0mol%的配方称取原材料;其中要考虑原材料的纯度,原材料的纯度要求为:fe2o3为99.46wt%,zno为98.15wt%,nio为99.38wt%,cuo为98.26wt%。步骤(3)中,二次球磨浆料粒度为d50:1.33μm。

(5)将步骤(4)成型所得到的磁环生坯在973℃进行烧结,保温2h后冷却得到烧结后的磁环。

(6)将步骤(3)中所得的粉料混浆、浆料经过流延成型为片状生坯,生坯经973℃烧结后获得烧结铁氧体片,再在烧结铁氧体片上、下表面分别贴合pet单面胶和psa双面胶后进行裂片处理,将铁氧体片破碎成若干小片,便制得柔性铁氧体片。

本对比例步骤(5)的得到的磁环和步骤(6)得到的柔性铁氧体片的性能检测结果见表1。

性能测试方法

对本发明各实施例和对比例的磁环以及柔性铁氧体片进行性能测试,具体为:采用agilente4990a阻抗分析仪测试磁环或铁氧体片在频率为300khz时复数磁导率的实部μ′和虚部μ″;采用岩崎通讯sy-8218型b-h测试仪测试磁环或铁氧体片在100khz、1194a/m、25℃条件时的饱和磁感应强度bs和矫顽力hc,以及100khz、200mt,25℃条件下的功率损耗pcv,采用电感测试仪测试磁导率μ与温度t变化的曲线,推算居里温度tc。具体测试结果列表如下:

表1

表2

表3

综合上述实施例和对比例可知,本发明提供的nizncu铁氧体材料采用合理的配方以及适宜的制备方法,得到的较高的磁导率实部和较低的磁导率虚部,饱和磁感应强度高,性能良好,适用于无线充电领域,对比例没有采用本发明的方案,因而无法取得本发明的优良效果。

申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1