一种Si-SiC衬底材料及其制备方法

文档序号:10564036阅读:617来源:国知局
一种Si-SiC衬底材料及其制备方法
【专利摘要】本发明是一种Si?SiC导电衬底材料及其制备方法。该材料是一种由光伏硅切割废料制备的Si?SiC导电衬底材料,按重量计其组成为:酸洗后的光伏硅切割固体废料65~99.5%、碳化硅0~30%、改性铝粉0.5%~5%。该材料的制备方法是:将酸洗后的废料,碳化硅粉料以及经硅烷偶联剂包裹改性的铝粉进行混料,均匀后,将混合料、水、分散剂、粘结剂、增塑剂等进行球磨混合成浆料,流延成型成薄片,干燥后在氩气保护下烧结,最终得到复合Si?SiC太阳能导电衬底陶瓷薄片。本发明实现了废料的资源化利用,同时降低了太阳能衬底材料的生产成本,为光伏硅切割废料合成一种具有高附加值产品的有效方法。
【专利说明】
一种S 1-S i C衬底材料及其制备方法
技术领域
[0001 ]本发明涉及导电材料,特别是光伏硅切割废料的回收制备太阳能沉底导电材料的方法。
【背景技术】
[0002]硅切割废渣是指在晶硅片材的加工过程中对高纯度的单晶硅或者多晶硅进行切割时产生的一种废料,主要来自于集成电路用基板和太阳能电池基板的多线切割和打磨抛光过程。在实际加工过程中,有大约一半的晶体娃以娃粉的形式散失掉。该部分娃与碳化娃颗粒,PEG溶液一起形成废砂浆。为了降低成本,减少污染,通常将其中的碳化硅磨料和PEG进行回收,用于再次切割,对于回收的硅粉,一般用于提纯后,再次用于太阳能基板或者集成电路硅板。但是,随着碳化硅切削次数的增加,其切削能力已经不能满足生产的需要,就不能进行回收用于切割,还有一些硅粉即使提纯后,纯度无法达到硅板要求,这些都很难再应用,变成了工业废料。废料中的高纯度硅、碳化硅以及PEG都是很有价值的,如果能够将它们合理利用,将会减少环境污染,也可以提高资源利用率。目前,对于光伏硅的回收研究较多,如中国专利公开号CN102502650A,发明名称“一种从晶硅切割废砂浆中获取晶硅组份的方法;“中国专利公开号CN102352281A,发明名称“一种硅片切割废砂浆中回收聚乙二醇和碳化硅颗粒的方法”;中国专利公开号CN104229801A,发明名称“一种回收利用硅切割废砂浆及硅渣的方法及所用装置”。
[0003]目前,废砂浆直接利用的较少,大多数是作为添加剂添加到混凝土或者墙体砖里面,或者合成一些附加值较低的产品,例如中国专利公开号CN103819149A,发明名称为:“一种以单/多晶硅切割废料为主要原料的免烧砖”;也有一些合成附加值较高产品的研究,例如中国专利公开号CN102442826A,发明名称;“一种以光伏硅切割废料制备的碳化硅复合陶瓷及其制造方法”。尚未见到以光伏硅切割废砂合成高附加值的复合S1-SiC太阳能导电衬底材料的报道。

【发明内容】

:
[0004]本发明要提供的技术问题是:提供一种复合S1-SiC太阳能导电衬底材料的制备方法,以实现废料的资源化利用,使之成为新材料制备的原料,又由于其良好的导电性,能够同时满足太阳能电池中的电极材料,具有良好的市场竞争力;本发明的另一目的在于提供上述S 1-S i C太阳能导电衬底材料的制造方法,以降低太阳能衬底材料的生产成本。
[0005]本发明解决其技术问题采用以下的技术方案:
[0006]本发明提供的S1-SiC导电衬底材料,是一种由光伏硅切割废料制备的S1-SiC导电衬底材料,按重量计,该材料组成为:酸洗后的光伏硅切割固体废料65?99.5 %、碳化硅O?30%、改性铝粉0.5%?5%。
[0007]所述的光伏硅切割固体废料中,按重量计,含有硅50.375%?77.113%,碳化硅14.625%?22.387%。
[0008]所述的酸洗后光伏硅切割废料的组成为;硅77.5%,碳化硅22.5%。
[0009]所述的改性铝粉由以下方法制成:先将有机硅偶联剂WD51和有机硅偶联剂WD60配成为质量分数5%?10%的偶联剂酒精溶液;铝粉与偶联剂酒精溶液按质量比为100:15进行混合;搅拌,使铝粉充分被偶联剂酒精溶液润湿,最后干燥。
[0010]本发明提供的S1-SiC导电衬底材料的制备方法,包括以下步骤:
[0011 ] (I)按重量计,将酸洗后的光伏硅切割固体废料65?99.5%,碳化硅O?30%,以及经硅烷偶联剂包裹改性的铝粉0.5 %?5 %进行混料均匀,得到混合料;
[0012](2)将混合料、水、分散剂、粘结剂、增塑剂进行球磨混合成浆料,按重量计,该浆料组成为:混合料60 %?76 %、水20 %?40 %、分散剂0.8 %?1.5 %、粘结剂0.5 %?I %、增塑剂2%?4% ;
[0013](3)将浆料流延成型成薄片,干燥后在氩气保护下烧结,得到所述衬底材料。
[0014]上述方法中:所用分散剂为聚羧酸铵盐或聚丙烯酸铵盐。
[0015]上述方法中:所用粘结剂为聚乙烯醇、阿拉伯树胶、聚醋酸乙烯酯中的一种。
[0016]上述方法中,所述烧结工艺为:从室温按I?2°C/min速度升温至600°C进行排胶,然后按5°C/min速度升温至1340°C?1420°C,保温2h,随炉温冷却。
[0017]本发明与现有技术相比具有以下的主要的优点:
[0018](I)利用单/多晶硅切割废料作为原料制备S1-SiC太阳能导电衬底材料。不需要将切割废料中的Si和SiC进一步分离,简化了工艺流程。同时解决了 SiC和Si进行分离时,产生的环境污染问题,为光伏硅切割废料提供了一条高附加值利用的有效途径。
[0019](2)由于导电衬底材料中含有SiC颗粒,当其在Si基体分散均匀后,能使裂纹扩展时,路径发生偏转,从而使材料具有更大的机械强度,所获得S1-SiC太阳能导电衬底材料,机械强度高,工作寿命长。其最大密度可以达到2.414g/cm3,显气孔率最好可以低至7.43%
[0020](3)采取高温渗铝的方法,使铝粉在高温时融化,填充并且包裹在硅以及碳化硅表面,形成良好的导电性能,其电阻率低至2.134X10—3Ω.cm;并且填充过后,S1-SiC太阳能导电衬底材料更加致密,其机械强度会更加良好。
[0021](4)由于大量采取了廉价的光伏硅切割废料作为原料,从而大大降低生产太阳能衬底材料的原料成本,极大的提高了产品竞争力。
【附图说明】
[0022]图1是本发明实施例4所制备的S1-SiC太阳能导电衬底材料的XRD图谱。
[0023]图2是本发明实施例4所制备的S1-SiC太阳能导电衬底材料的扫描电镜图(X
1600)ο
【具体实施方式】
[0024]下面将结合实施例及附图对本发明做进一步的详细描述。
[0025]实施例1:
[0026]1、A1粉的表面改性处理:
[0027]将两种有机硅偶联剂按一定比例溶于酒精中(有机硅偶合剂质量分数为10%),搅拌30分钟,使其充分混合,按照质量比铝粉:有机硅偶联剂酒精溶液=100:15向铝粉中滴加配置好的上述溶液,搅拌30分钟,使铝粉充分润湿后,将其置于烘箱中,设置温度60?80°C,使酒精充分挥发。
[0028]2、浆料的配置:
[0029]将酸洗光伏硅切割废料、SiC粉体、改性铝粉,按照质量比69.5:30:0.5混合,然后按照质量比粉体:水= 70:30加入适量的去离子水搅拌成浆体以及添加相对于浆体质量I %的分散剂聚丙烯酸铵,进行球磨混合,混合均匀后,再添加相对于浆体质量0.5 %的阿拉伯树胶、质量2 %的增塑剂乙二醇,再次进行球磨混合,制成浆料。
[0030]4、水基流延成型及干燥处理:
[0031]将浆料进行流延成型处理后置于烘箱中,设置温度40°C,干燥5h,得到具有一定强度的素胚。
[0032]5、烧结:
[0033]将素胚放入气氛炉中,缓慢通入纯Ar,排气Ih后,按升温速率I?2°C/min升温至6000C,然后50C/min升温至烧结温度1380°C,并保温2h,在Ar气氛中缓慢冷却,得到复合S1-SiC太阳能导电衬底陶瓷薄片。经排水法方法检测得陶瓷薄片密度为2.163g/cm3,显气孔率20.61%,经霍尔效应仪检测得电阻率为9.628 Ω.cm。
[0034]实施例2:
[0035]1、A1粉的表面改性处理:
[0036]将两种有机硅偶合剂按一定比例溶于酒精中(有机硅偶合剂质量分数为10%),搅拌30分钟,使其充分混合,按照质量比铝粉:有机硅偶联剂酒精溶液=100:15向铝粉中滴加配置好的上述溶液,搅拌30分钟,使铝粉充分润湿后,将其置于烘箱中,设置温度60?80°C,使酒精充分挥发。
[0037]2、浆料的配置:
[0038]将酸洗光伏硅切割废料,SiC粉体,铝粉,按照99.5:0:0.5混合,按照粉体:水=70:30加入适量的去离子水搅拌成浆体以及添加相对于浆体质量1%的分散剂聚丙烯酸铵,进行球磨混合,混合均匀后,再添加相对于浆体质量0.5%的阿拉伯树胶、质量2%的增塑剂乙二醇,再次进行球磨混合,制成浆料。
[0039]4、水基流延成型及干燥处理:
[0040]将浆料进行流延成型处理后置于烘箱中,设置温度40°C,干燥5h,得到具有一定强度的素胚。
_] 5、烧结:
[0042]将素胚放入气氛炉中,缓慢通入纯Ar,排气Ih后,按升温速率I?2°C/min升温至6000C,然后50C/min升温至烧结温度1380°C,并保温2h,在Ar气氛中缓慢冷却,得到复合S1-SiC太阳能导电衬底陶瓷薄片。经排水法方法检测得陶瓷薄片密度为2.263g/cm3,显气孔率10.55%,经霍尔效应仪检测得电阻率4.104X10—2 Ω.cm。
[0043]实施例3:
[0044]1、A1粉的表面改性处理:
[0045]将两种有机硅偶合剂按一定比例溶于酒精中(有机硅偶合剂质量分数为10%),搅拌30分钟,使其充分混合,按照质量比铝粉:有机硅偶联剂酒精溶液=100:15向铝粉中滴加配置好的上述溶液,搅拌30分钟,使铝粉充分润湿后,将其置于烘箱中,设置温度60?80°C,使酒精充分挥发。
[0046]2、浆料的配置:
[0047]将酸洗光伏硅切割废料,SiC粉体,改性铝粉,按照65: 30: 5混合,按照粉体:水=70: 30加入适量的去离子水搅拌成浆体以及添加相对于浆体质量I %的分散剂聚丙烯酸铵,进行球磨混合,混合均匀后,再添加相对于浆体质量0.5%的阿拉伯树胶、质量2%的增塑剂乙二醇,再次进行球磨混合,制成浆料。
[0048]3、水基流延成型及干燥处理:
[0049]将浆料进行流延成型处理后置于烘箱中,设置温度40°C,干燥5h,得到具有一定强度的素胚。
[0050]4、烧结:
[0051]将素胚放入气氛炉中,缓慢通入纯Ar,排气Ih后,按升温速率I?2°C/min升温至6000C,然后50C/min升温至烧结温度1380°C,并保温2h,在Ar气氛中缓慢冷却,得到复合S1-SiC太阳能导电衬底陶瓷薄片。经排水法方法检测得陶瓷薄片密度为2.374g/cm3,显气孔率12.86%,经霍尔效应仪检测得电阻率为8.543X 10—2 Ω.cm。
[0052]实施例4:
[0053]1、A1粉的表面改性处理:
[0054]将两种有机硅偶合剂按一定比例溶于酒精中(有机硅偶合剂质量分数为10%),搅拌30分钟,使其充分混合,按照质量比铝粉:有机硅偶联剂酒精溶液=100:15向铝粉中滴加配置好的上述溶液,搅拌30分钟,使铝粉充分润湿后,将其置于烘箱中,设置温度60?80°C,使酒精充分挥发。
[0055]2、浆料的配置:
[0056]将酸洗光伏硅切割废料,SiC粉体,改性铝粉,按照85:10: 5混合,按照粉体:水=70: 30加入适量的去离子水搅拌成浆体以及添加相对于浆体质量I %的分散剂聚丙烯酸铵,进行球磨混合,混合均匀后,再添加相对于浆体质量0.5%的阿拉伯树胶、质量2%的增塑剂乙二醇,再次进行球磨混合,制成浆料。
[0057]3、水基流延成型及干燥处理:
[0058]将浆料进行流延成型处理后置于烘箱中,设置温度40°C,干燥5h,得到具有一定强度的素胚。
[0059]4、烧结:
[0060]将素胚放入气氛炉中,缓慢通入纯Ar,排气Ih后,按升温速率I?2°C/min升温至6000C,然后50C/min升温至烧结温度1380°C,并保温2h,在Ar气氛中缓慢冷却,得到复合S1-SiC太阳能导电衬底陶瓷薄片。经排水法方法检测得陶瓷薄片密度为2.414g/cm3,显气孔率7.43%,经霍尔效应仪检测得电阻率为2.134X 10—3 Ω.cm。
[0061 ] 实施例5:
[0062]1、A1粉的表面改性处理:
[0063]将两种有机硅偶合剂按一定比例溶于酒精中(有机硅偶合剂质量分数为10%),搅拌30分钟,使其充分混合,按照质量比铝粉:有机硅偶联剂酒精溶液=100:15向铝粉中滴加配置好的上述溶液,搅拌30分钟,使铝粉充分润湿后,将其置于烘箱中,设置温度60?80°C,使酒精充分挥发。
[0064]2、浆料的配置:
[0065]将酸洗光伏硅切割废料,SiC粉体,改性铝粉,按照89:10:1混合,按照粉体:水=70: 30加入适量的去离子水搅拌成浆体以及添加相对于浆体质量I %的分散剂聚丙烯酸铵,进行球磨混合,混合均匀后,再添加相对于浆体质量0.5%的阿拉伯树胶、质量2%的增塑剂乙二醇,再次进行球磨混合,制成浆料。
[0066]3、水基流延成型及干燥处理:
[0067]将浆料进行流延成型处理后置于烘箱中,设置温度40°C,干燥5h,得到具有一定强度的素胚。
[0068]4、烧结:
[0069]将素胚放入气氛炉中,缓慢通入纯Ar,排气Ih后,按升温速率I?2°C/min升温至6000C,然后50C/min升温至烧结温度1380°C,并保温2h,在Ar气氛中缓慢冷却,得到复合S1-SiC太阳能导电衬底陶瓷薄片。经排水法方法检测得陶瓷薄片密度为2.389g/cm3,显气孔率8.15%,经霍尔效应仪检测得电阻率为8.124X 10—3 Ω.cm。
[0070]实施例6:
[0071]1、A1粉的表面改性处理:
[0072]将两种有机硅偶合剂按一定比例溶于酒精中(有机硅偶合剂质量分数为10%),搅拌30分钟,使其充分混合,按照质量比铝粉:有机硅偶联剂酒精溶液=100:15向铝粉中滴加配置好的上述溶液,搅拌30分钟,使铝粉充分润湿后,将其置于烘箱中,设置温度60?80°C,使酒精充分挥发。
[0073]2、浆料的配置:
[0074]将酸洗光伏硅切割废料,SiC粉体,改性铝粉,按照85:10: 5混合,按照粉体:水=70: 30加入适量的去离子水搅拌成浆体以及添加相对于浆体质量I %的分散剂聚丙烯酸铵,进行球磨混合,混合均匀后,再添加相对于浆体质量0.5%的阿拉伯树胶、质量2%的增塑剂乙二醇,再次进行球磨混合,制成浆料。
[0075]3、水基流延成型及干燥处理:
[0076]将浆料进行流延成型处理后置于烘箱中,设置温度40°C,干燥5h,得到具有一定强度的素胚。
[0077]4、烧结:
[0078]将素胚放入气氛炉中,缓慢通入纯Ar,排气Ih后,按升温速率I?2°C/min升温至6000C,然后50C/min升温至烧结温度1340°C,并保温2h,在Ar气氛中缓慢冷却,得到复合S1-SiC太阳能导电衬底陶瓷薄片。经排水法方法检测得陶瓷薄片密度为2.393g/cm3,显气孔率8.23%,经霍尔效应仪检测得电阻率为8.084X 10—3 Ω.cm。
【主权项】
1.一种S1-SiC导电衬底材料,其特征是一种由光伏硅切割废料制备的S1-SiC导电衬底材料,按重量计该材料组成为:酸洗后的光伏硅切割固体废料65?99.5%,碳化硅O?30 %、改性铝粉0.5%?5 %。2.根据权利要求1所述的S1-SiC导电衬底材料,其特征在于所述的光伏硅切割固体废料中,按重量计,含有金属硅50.375 %?77.113 %,碳化硅14.625 %?22.387 %。3.根据权利要求2所述的S1-SiC导电衬底材料,其特征在于按重量计,所述的酸洗后光伏硅切割废料的组成为;硅77.5%,碳化硅22.5%。4.根据权利要求1所述的S1-SiC导电衬底材料,其特征在于所述的改性铝粉由以下方法制成:先将有机硅偶联剂WD51和有机硅偶联剂WD60配成为质量分数5%?10%的偶联剂酒精溶液;按铝粉与偶联剂酒精溶液质量比为100:15进行混合;搅拌,使铝粉充分被偶联剂酒精溶液润湿,最后干燥。5.—种S1-SiC导电衬底材料的制备方法,该方法包括以下步骤: (1)按重量计,将酸洗后的光伏硅切割固体废料65?99.5%,碳化硅O?30%,以及经硅烷偶联剂包裹改性的铝粉0.5 %?5 %进行混料均匀,得到混合料; (2)将混合料、水、分散剂、粘结剂、增塑剂进行球磨混合成浆料,按重量计,该浆料组成为:混合料60 %?76 %、水20 %?40 %、分散剂0.8 %?I.5 %、粘结剂0.5 %?I %、增塑剂2% ?4%; (3)将浆料流延成型成薄片,干燥后在氩气保护下烧结,得到所述衬底材料。6.根据权利要求5所述的S1-SiC导电衬底材料的制备方法,其特征在于:所用分散剂为聚羧酸铵盐或聚丙烯酸铵盐。7.根据权利要求5所述的S1-SiC导电衬底材料的制备方法,其特征在于:所用粘结剂为聚乙烯醇、阿拉伯树胶、聚醋酸乙烯酯中的一种。8.根据权利要求5所述的S1-SiC导电衬底材料的制备方法,其特征在于烧结工艺为:从室温按I?2°C/min速度升温至600°C进行排胶,然后按5°C/min速度升温至1340°C?14200C,保温2h,随炉温冷却。
【文档编号】C04B35/515GK105924170SQ201610238856
【公开日】2016年9月7日
【申请日】2016年4月15日
【发明人】王浩, 熊圣安, 杨小剑
【申请人】武汉理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1