可增强植物对渗透压的抵抗力的新转录因子的制作方法

文档序号:3543464阅读:885来源:国知局
专利名称:可增强植物对渗透压的抵抗力的新转录因子的制作方法
技术领域
本发明涉及一种受渗透压诱导的植物转录因子AtSIZ;一种编码所述转录因子的基因;以及一种利用所述基因增强植物对压力的抵抗力的方法。
因此,只要对所述渗透压的耐受性有轻微增加,即可期望大量促进农业生产力和农作物的产量。为此,正在进行着许多关于渗透压的植物调控机制、以及涉及所述机制的调控因子的研究。最近的研究已经揭示,植物应用精巧的机制部分地适应渗透压,对这种压力-适应的重要要求之一为对一个基因的转录激活,该基因编码了一种该适应所必须的蛋白质。(Jang etal.,Plant Mol.Biol.,37839-847,1998;Liu et al.,Science,2801943-1945,1998;Pardo et al.,Proc.Natl.Acad.Sci.USA,959681-9686,1998;Lie et al.,Proc.Natl.Acad.Sci.USA,973730-3734,2000)。
许多受某些压力诱导的基因已经被分离出来了,其特性也已进行了广泛地研究,这有助于理解有关于渗透压适应的机制。根据上述这些研究,已经很清楚有多重信号途径可引起渗透压-反应基因的诱导(Jonak et al.,Proc.Natl.Acad.Sci.USA,9311274-11279,1996;Ishitani et al.,Plant Cell 91935-1949,1997),所述这些途径包括ABA(脱落酸)-依赖型或ABA-非依赖型途径(La Rosa et al.,Plant Physiol.,85174-181,1987;Savoure et al.,Mol.Gen.Genet.,254104-109,1997)。另外,已发现一些信号途径对所有渗透压条件如高盐、脱水以及寒冷而言是共有的(Jang et al.,Plant Mol.Biol.,37839-847,1 998;Liu et al.,Science,2801943-1945,1998;Pardo et al.,Proc.Natl.Acad.Sci.USA,959681-9686,1998;Lie et al.,Proc.Natl.Acad.Sci.USA,973730-3734,2000)。
如上所述,转录控制在所述适应反应中发挥了关键性的作用,并有可能受特异性转录因子调控,若干编码所述转录因子或其同系物的压力-诱导基因现已被分离和定性。(Tague et al.,Plant Mol.Biol.28267-279,1995;Bastola et al.,Plant Mol.Biol.,24701-713,1998;Kasuga et al.,Nat.Biotechnol.,17287-291,1999;van Der Krol et al.,Plant Physiol.,1211153-1162,1999;Nakashima et al.,Plant Mol Biol.,42657-665,2000)。进一步研究提供的信息认为,所述已发现基因中的几个基因编码的转录因子具有一个锌指结构。所述转录因子的例子包括Atmyb2、ATHB-7、mlip15(Kusano et al.,Mol.Gen.Genet.,248507-5 17,1995;Soderman et al.,Plant J.10375-381,1996)、Alfinl(Bastola et al.,Plant Mol.Biol.,24701-713,1998)、AZF1、AZF2、以及AZF3(Sakamoto et al.,Gene,24823-32,2000)。
拟南芥植物中的Atmyb2特异性地受脱水压力诱导,然后结合在一段保守的MYB识别序列上,拟南芥的同源转换区基因ATHB-2的诱导由脱水或脱落酸处理引起。农作物中的Mlip15是一种具有bZIP结构的转录因子同构体,受低温诱导。Alfinl,一种锌指蛋白,受高盐压力诱导,并具有一个MsPRP2启动子-结合部位。在调控紫花苜蓿根部中MsPRP2的表达时,Alfinl蛋白发挥了重要作用,并因此有助于提高紫花苜蓿植物的耐盐性。最近有一个报道中提出,已分离和定性了一个编码DRE/CRT结合蛋白的基因系。(Liu et al.,Plant Cell,101391-1406,1998)。根据该报道,所述基因系包括DREB1(结合了蛋白的脱水-诱导元件)和DREB2,该DREB2结合了9个一致性序列,所述一致性序列位于多种受脱水或低温诱导的基因(如RD29A、Cor6.6以及RD17)的启动子区域。不过,上述转录因子只是组成了涉及渗透压反应的大转录因子群的因子中的一部分。
因此,关于上述压力-诱导基因,转录因子可调控其转录,通过引起转录因子在植物中的过度表达或抑制,有助于构建植物对压力的抵抗。
所以,本发明的一个目的是提供一种新的植物转录因子,所述转录因子受渗透压诱导,并诱导多种压力-诱导基因的表达。
本发明的另一个目的是提供一种编码所述转录因子的基因,以及一种包含所述基因的真核表达载体。
本发明的再一个目的是提供一种提高植物对渗透压的抵抗力的方法,该方法通过用所述基因转化植物实现。
根据本发明的一方面内容,本发明的前述或其他目的可通过提供植物转录因子AtSIZ来实现,所述AtSIZ有一个包含596个氨基酸残基的氨基酸序列SEQ ID NO2。
转录因子AtSIZ从拟南芥中分离,在氨基酸残基211-325之间有3个C3H-型的锌指结构。该AtSIZ在C-末端区域有一个转录活化结构域。此外,所述AtSIZ激活多种受渗透压诱导的基因如COR15a(冷调控蛋白)赋予对冷的抵抗、RD29,赋予对脱水、寒冷、以及高浓度盐的抵抗的转录。
当从C-末端区域缺失大约206个氨基酸残基时,AtSIZ对压力-诱导基因的转录有同样的启动能力。但是另外再缺失45个氨基酸残基时,所述AtSIZ的转录-启动能力大大降低。因为这个原因,认为包含氨基酸残基345-390的区域在AtSIZ的转录调控活性中发挥了重要作用。此外,在缺失了C-末端氨基酸残基391-596后,包含氨基酸残基1-390的一部分AtSIZ蛋白可用于构建一种对渗透压的植物抵抗。关于本发明,本发明提供了包含氨基酸序列SEQ ID NO2的氨基酸残基1-390的一部分AtSIZ蛋白。
关于本发明的另一方面,提供了一种编码所述转录因子AtSIZ的基因AtSIZ。该基因有一个表示为SEQ ID NO1的核苷酸序列,并受渗透压(尤其是高浓度NaCl)诱导。
当AtSIZ基因发生一个突变时,植物变得对渗透压敏感。结果突变植物在其叶子中累积花青素,并破坏叶缘,从而出现了小的、黄化的叶子。而另一方面,即使在野生株植物无法生存的条件下(归因于高浓度NaCl处理所产生的渗透压),过度表达AtSIZ的植物也表现出高存活率。
最后,关于本发明的另一个方面,提供了一种借助在植物中引入AtSIZ基因、构建过度表达所述基因的转化植物而增强植物对渗透压的抵抗力的方法。使用这种方法,植物产量可以大大增加。基因转化时,所述AtSIZ基因可以是AtSIZ的全长cDNA,或者是编码部分AtSIZ蛋白(氨基酸残基1-390)的部分基因,该部分AtSIZ蛋白仅包含对压力-诱导基因有转录-启动能力的一个区域。
这里所用的术语“渗透压-诱导基因”或“渗透压-反应基因”指编码受渗透压(由于植物暴露于高浓度盐、低温、脱水、或者外源性ABA处理而引起)诱导的蛋白质的基因;或者涉及对渗透压的耐受性或抵抗力的基因。术语“互补-AtSIZ”指包含活性AtSIZ基因的重组载体,其可以在AtSIZ失活突变体中表达转录因子AtSIZ。术语“互补-AtSIZ突变体”指用互补-AtSIZ转化的突变植物。
另外,这里所指的编码转录因子AtSIZ的基因用斜体描述,即“AtSIZ基因”或“AtSIZ”,而受所述基因编码的蛋白质表示为“AtSIZ蛋白”或“AtSIZ”。
结合附图,通过下列详细的描述,本发明的上述和其它目的、特征以及优点更加易于理解。


图1中示出了其他含有锌指的蛋白质氨基酸序列与AtSIZ氨基酸序列(从AtSIZ基因的核苷酸序列推论得出)的对比。
图2中示出了不同植物组织如花(F)、叶(L)、根(R)、长角果(S)中AtSIZ基因表达模式的Northern印渍分析。
图3中示出了受不同渗透压(数字代表渗透压的处理时间)诱导的AtSIZ基因表达模式的Northern印渍。
图4示出了为选择和确定突变体(其AtSIZ基因中插入了一个T-DNA)而进行PCR筛选和Southern印渍的结果,以及T-DNA插入到AtSIZ的位置(以核苷酸序列分析的结果为基础)A)是初步PCR产品的琼脂糖凝胶,这里LB表示T-DNA左端的特异性引物;B)是三次PCR产品的琼脂糖凝胶;和C)示出了在具有T-DNA的选定突变体中,T-DNA插入AtSIZ的位置。
图5中示出了对T-DNA插入突变体显型的检测结果A)示出了T-DNA插入突变体(mt)和野生株(WT)中AtSIZ表达模式的Northern印渍分析,和B)示出了不同NaCl浓度处理后(b、c和d分别表示25、50和100mM)栽培的植物与一般生长条件下(a)栽培的植物的叶子显型对比,其中数字2、4、6、8分别表示从植物底部2nd、4th、6th、8th处的叶子。
图6中示出了在T-DNA插入突变体中补充AtSIZ cDNA后对NaCl压敏感性的检测结果A)示出了在互补-T-DNA突变植物(mt/AtSIZ)、T-DNA插入突变体(mt)和野生株(WT)中AtSIZ表达的Northern印渍分析,和B)示出了不同NaCl浓度(a、b、c和d分别表示0、25、50和100mM)处理后栽培的植物的叶子显型对比,其中数字2、4、6、8分别表示从植物底部2nd、4th、6th、8th处的叶子。
图7中示出了在野生株(WT)、T-DNA插入突变体(mt)和互补-T-DNA突变植物(其中2-2和5-4表示独立的突变株)中AtSIZ、COR5a以及RD29A表达模式的Northern印渍分析,其中NaCl指150mM NaCl 6小时处理,cold指4℃低温6小时处理。
图8中示出了野生株(WT)和互补-T-DNA突变植物(其中1-6、2-4以及19-4表示独立的突变株)中AtSIZ表达模式的Northern印渍分析(A);和对NaCl呈现不同敏感性的植物的照片(B)。
图9a中示出了在C-末端区域有缺失的GAL4-AtSIZ融合结构的示意图,所述GAL4-AtSIZ融合结构包含不同长度的AtSIZ片段,该AtSIZ片段与编码GAL4 DNA-结合结构域(GAL4 BD)的基因相连,图中Rich-E表示富含谷氨酸残基的区域。
图9b中示出了分别按AtSIZ不同长度(如图9a所示)转化的酵母中β-半乳糖苷酶活性测定的结果。
实现本发明的最好方式本发明人试图分离一种受渗透压诱导的新基因。将对照cDNAs(来自未暴露于压力的植物)与个体单个cDNAs(来自暴露于高盐压力的植物的cDNA文库)杂交,结果植物中组成型表达的cDNAs被削减,构建了削减文库。
特别是,用生物素标记对照cDNAs。然后将其与个体单个cDNAs(来自包含受高盐压力诱导的cDNA的cDNA文库)杂交。借助生物素与链霉亲和素的结合特性,通过应用包有链霉亲和素的膜去除杂交cDNA。经过去除过程,残余的单个cDNA为特异性受高浓度盐压力诱导的基因,然后可进行序列分析。结果发现了15个基因克隆(其表达受渗透压诱导)。在发现的克隆中,一个核苷酸序列尚未知的新克隆(OS183)被作为探针用来寻找全长cDNA。所述全长cDNA已被分离。该全长cDNA的长度为2267bp,推定分子重量大约为66kDa,并具有一个编码596个氨基酸的开放阅读框架,该全长cDNA被命名为AtSIZ(Arabidopsis thaliana Stress-Induced Zincfinger,拟南芥压力-诱导锌指)。
AtSIZ基因的核苷酸序列表示为SEQ ID NO1,从AtSIZ基因的核苷酸序列推出的AtSIZ蛋白的核苷酸序列表示为SEQ ID NO2。受所述AtSIZ基因编码的AtSIZ蛋白与其他具有锌指结构的蛋白质有很高的同源性(见图1)。该AtSIZ蛋白有C3H-型锌指结构,所述锌指结构包含一个位于氨基酸序列中部的一致性序列CX7CX5CX3H(C为半胱氨酸,H为组氨酸,X为任意氨基酸)。另外,所述AtSIZ蛋白有一个酸性区域,该酸性区域有6个位于锌指区域上游的连续谷氨酸残基。
本发明的一个实施例中,根据检测AtSIZ表达模式的目的,分别从拟南芥的花、叶子、根部以及长角果分离出总RNAs,并进行Northern印渍分析。可见AtSIZ依据不同组织以不同水平进行表达,根部组织显示了最高水平的表达,花次之,叶组织再次之,长角果组织很少表达(见图2)。同时,因为在拟南芥植物上被相对高浓度NaCl处理的部位,AtSIZ最先分离,所以可能有必要根据渗透压的强度和种类再检测所述AtSIZ的表达模式。将拟南芥的幼苗分别暴露在较高浓度NaCl、脱水、寒冷、以及外源性脱落酸(ABA),并进行Northern印渍分析。结果显示尽管AtSIZ的表达水平有所不同,但其表达共同受上述处理诱导,证实AtSIZ参与了对一般性渗透压的反应。另外,就所述AtSIZ的表达根据压力条件变动而言,已发现所述AtSIZ的表达受某种压力条件调控(见图3)。
本发明的另一实施例中,已发现当AtSIZ基因发生突变时,突变植物对NaCl压力敏感,而当AtSIZ过度表达时,植物对NaCl压力的抵抗力增强。
从转化植物(ABRC,USA,有一个T-DNA插入片段)中特异性选取突变植物(在其AtSIZ中有一个T-DNA插入片段)。为从一组转化植物中获取个体基因组DNAs,借助AtSIZ基因3’-或5’-端特异性引物与T-DNA右端特异性引物(RB)或左端特异性引物(LB)的结合,进行了PCR。然后使用标记的AtSIZ cDNA做探针与PCR产品杂交,进行了Southern印渍。如图4所示,在T-DNALB端特异性引物与AtSIZ基因3’-端特异性引物结合的位置,扩增PCR产品与AtSIZ cDNA杂交,提示一个T-DNA已插入到AtSIZ。通过序列分析,已确证了所获得的PCR产品的性质,也明确了T-DNA的插入位置。已发现T-DNA插入在AtSIZ基因的615核苷酸处。
使用选定的突变植物(其AtSIZ由于插入T-DNA而突变),检测了AtSIZ的生理作用。将所述突变植物暴露在各种压力条件下,并检测它们的显型。突变植物在其叶子中累积花青素。尽管野生植物对25mM浓度的NaCl无反应,但突变植物在叶子边缘处破坏了叶子。另外,在高浓度NaCl下,突变植物的叶子比野生植物的叶子小,并有黄色显型。上述结果证实突变植物(其AtSIZ上有突变)对NaCl压力比野生型植物更敏感。因此,提示AtSIZ与对NaCl压力的抵抗力有关。
在本发明的另一个实施例中,实施了一个互补实验清楚地证实了AtSIZ的生理活性。即测试突变体的互补能力以证实由于AtSIZ基因中插入了一个T-DNA而导致了突变植物的上述显型变化。
将一个AtSIZ cDNA插入pBIB-HYG(一个携带潮霉素抵抗标记的二元载体)以构建一个AtSIZ互补体。利用土壤杆菌介导的真空渗透法,将所述互补体引入突变植物,所述突变植物在AtSIZ上有一个由于插入了一个T-DNA而引起的突变。使用Northern印渍确认所述互补体。可见互补-AtSIZ突变植物的AtSIZ以高水平表达。将野生株、AtSIZ-失活突变体和互补-AtSIZ突变植物对NaCl压力的敏感度进行了比较。互补-AtSIZ突变植物对NaCl的抵抗力呈与野生植物相近的水平(见图6)。上述结果证实了AtSIZ-失活突变体的NaCl敏感显型是由于在其AtSIZ基因中插入了一个T-DNA引起的。
本发明的另一实施例中,检测了AtSIZ是否作为转录因子参与了对其它基因(受NaCl压力诱导)的转录调控。COR15a和RD29A作为压力-诱导基因,其表达可以被外源性ABA处置或多种渗透压所诱导。
COR15a是COR(cold-regulated,冷调控)基因中的一种,所述COR基因在经受冷适应的植物中发现,有可能其基因产品可参与寒冷抵抗(Artus etal.,Proc.Natl.Acad.Sci.USA,93(23)13404-13409,1996)。根据最近的一个报告,COR15a的组成型表达提高了拟南芥在寒冷条件下的存活率。低温诱导了质膜的物理连续性和通透性的破坏,从而引起了渗透控制。所述破坏使细胞质和细胞器中的物质漏出,并引起细胞膜与内源膜的融合,例如与叶绿体外膜的融合,从而降低了对寒冷的抵抗力。COR15aA是一种压力-诱导基因,其通过削弱细胞膜与叶绿体对寒冷的反应而提高植物的存活率。
RD29是拟南芥植物的一个基因,其表达受脱水、寒冷、或高浓度盐的诱导。有RD29A和RD29B两种类型。生长在水分缺乏地方的植物的多数细胞器和组织中都存在RD29A的启动子,所以所述植物对脱水压力的抵抗力增强(Yamaguchi et al.,Mol.Gen.Genet.,236331-340,1993)。
已检测了COR15a和RD29A在野生株、AtSIZ-失活突变体以及AtSIZ-互补突变植物中对高浓度NaCl、寒冷压反应的表达水平。AtSIZ上的突变特异性地抑制NaCl压对COR15a表达的诱导,但不能抑制寒冷压对COR15a表达的诱导(见图7)。另一方面,RD29A的表达在AtSIZ-失活突变体中受NaCl或寒冷压高度诱导,提示AtSIZ上的突变不影响NaCl或寒冷压对RD29A表达的诱导。上述结果有力地证实AtSIZ参与了对压力(尤其是NaCl压)-诱导基因表达的诱导。
通过应用一种过度表达AtSIZ植物的实验,进一步证实了AtSIZ对NaCl压反应的参与。一种转化植物(以高于野生株10-20倍水平表达AtSIZ)对高浓度NaCl压的抵抗力增强(见图8)。
本发明的另一个实施例中,确定了AtSIZ蛋白作为一种转录因子的活性及其活性位置。使用酵母1-杂交体系,证实了AtSIZ具有转录启动活性。杂交技术基于一个事实,即如果AtSIZ具有转录活化能力,当AtSIZ被表达以连接在GAL4DNA-结合蛋白上时,一种报告基因gal1-LacZ的转录将会被激活。在酵母中,AtSIZ激活了gal1-LacZ转录,这证实了AtSIZ具有转录启动活性。缺失测试显示在206个氨基酸残基从AtSIZ的SEQ ID NO2氨基酸序列C-末端缺失时,不改变AtSIZ的转录-启动活性。但再缺失45个氨基酸残基时,严重降低了AtSIZ的转录启动活性。因为这个原因,认为包含345-390氨基酸的区域在AtSIZ的转录激活活性中发挥了重要作用(见图9a和图9b)。因此,包含1-390氨基酸的一部分AtSIZ蛋白可以用于增强植物对渗透压的抵抗力。
下文中,将结合不同例子对本发明详细描述。所述例子仅以说明性的目的提供,不能仅仅局限于这些例子解释本发明。
例1拟南芥的栽培本发明的实验中所用的所有拟南芥在22℃培植间或温室中栽培,所述温室被控制为保持16小时日光/8小时黑暗的循环以及70%的相对湿度。幼苗在Murashige-Skoog(MS)琼脂平板上培养,或在含有MS液体培养基(以100转/分搅拌)的250毫升培育烧瓶中,被予以一种化学处理。收集选定的植物组织并立即在液氮下冷冻。
例2渗透压-诱导基因的分离为特异性分离其表达受渗透压(尤其是高盐压力)诱导的基因,构建了一个削减文库,然后从所述文库中随机选出cDNAs,并借助对cDNAs的序列分析进行了筛选。对该削减文库,将来自暴露于高盐压力植物的cDNAs与来自对照植物(未暴露于高盐压力)的cDNAs进行杂交,以削减组成型表达的cDNAs。
2-1拟南芥植物的栽培将拟南芥植物在如例1同样的条件下栽培,1个星期后,以获取压力-诱导cDNAs为目的,通过将培养基改变为含0.15M NaCl的MS培养基,将幼苗暴露在高盐压力下。再培养幼苗1-6小时,同时搅拌。立即冷冻所有的幼苗并在-80℃下保存。
2-2RNA的提取和cDNA文库的构建为准备一个渗透压-来源性的cDNA文库,利用锂氯化物/苯酚提取法,首先从冷冻幼苗中提取总RNA,所述冷冻幼苗已在0.15M NaCl中处理了6小时。根据mRNA分离试剂盒(Pharmacia,USA)的要求处理总RNA,从而分离出poly(A)+RNA。作为对照,对未经过高盐处理的幼苗也予以上述过程,同样分离出poly(A)+RNA。然后,关于渗透压-来源性的cDNA,使用一个cDNA合成试剂盒(Stratagene,USA),构建了一个cDNA文库。将个体cDNAs连接在λZAP II(Stratagene,USA)上,最后构建了一个λZAP IIcDNA文库。
2-3削减文库的构建关于该λZAP II cDNA文库,获得了大量丝状噬菌体,由此纯化了个体单链DNAs。为从该λZAP II cDNA文库中去除含有组成型表达cDNAs的克隆,通过与对照cDNA的杂交进行了削减,所述λZAP II cDNA文库来自施加了压力的植物。
为对对照cDNA进行生物素标记,将上述过程中准备的过量的双链cDNA进行PCR,PCR反应时渗入生物素标记的dUTP。
具体地说,应用100ng对照双链cDNA作为模板。以一对寡核苷酸为引物进行合成,该一对寡核苷酸分别具有SEQ ID NO3和SEQ ID NO4的核苷酸序列,每一种应用50ng。在PCR反应混合物中渗入50μM生物素-16-dUTP,以此获得标记了生物素的cDNA。PCR反应条件为94℃30秒、38℃30秒、72℃30秒,共进行50次循环。
为削减组成型表达的cDNAs,应用了杂交。在65℃下,将来自λZAP IIcDNA文库的0.1μg单链cDNA与1μg生物素标记的对照cDNA探针加入到杂交混合液(包含50mM Tris-HCl,pH7.5、0.25M NaCl以及1.0mMEDTA),65℃培养过夜。将杂交液与包有链霉亲和素的膜一起冰水培养2小时,并偶尔搅拌,然后去除膜。因为链霉亲和素与生物素有很高的亲和力,可以通过去除包有链霉亲和素的膜,将与对照cDNA(用生物素标记)杂交的cDNA样品去除。也就是说,杂交之后,杂交液中仅留有对高盐压力特异性表达的cDNAs。通过应用苯酚/氯仿和氯仿提取这些cDNAs。然后,-20℃下于所述cDNAs中加入2μg信号tRNA和冷乙醇,从而进行沉淀。利用电穿孔方法将上述获取的cDNAs转染到一个E.coli宿主细胞。通过这种方法,准备好了削减文库。在所述削减文库中随机选择克隆,并使用自动测序仪对其DNA序列进行了分析。
通过测序分析,发现了15个渗透压-诱导ESTs(新的表达序列)。其中,发现4个cDNAs是新的基因。后面的实验使用特异性携带一个0.8kb DNA的克隆。
例3AtSIZcDNA的分离利用国家生物技术信息中心(NCBI)的Blast程序,对氨基酸序列进行了同源体探测,该氨基酸序列由所述克隆的核苷酸序列推论得出。该氨基酸序列与其他具有锌指结构的蛋白质有很高程度的同源性。数据探测结果显示,所述序列与C3H-同构体有55.7%的同源性,与C3H-Znfp2有23.7%的同源性,与PEI1有19.1%的同源性,如图1所示。因此,本发明将上面分离出的基因所表达的蛋白质命名为AtSIZ(Arabidopsis thalianaStress-Induced Zinc Finger,拟南芥压力-诱导锌指结构)。
因为cDNA克隆只具有AtSIZ基因的一部分,有必要找出携带全长AtSIZ的克隆。为获取全长基因,用AtSIZ插入片段做探针来筛选例2中构建的λZAP II cDNA文库。一个携带全长cDNA的克隆被分离。该cDNA的长度为2267bp(SEQ ID NO1),推定分子重量大约为66kDa,且其开放阅读框架编码了596个氨基酸。将该全长cDNA亚克隆到pBluescript中,构建一个重组质粒。将该重组质粒转化到E.coli中,并将该转化细胞于2000年11月3日存放到隶属于韩国生物科学与生物技术研究协会(KRIBB)的韩国模式菌种收集处(KCTC),存放号为No.KCTC 0886BP。
利用国家生物技术信息中心(NCBI)的BlastX程序,对AtSIZ蛋白的氨基酸序列进行同源体比较,所述AtSIZ蛋白的氨基酸序列由全长cDNA推论得出。比较在C3H-同构体(蛋白质登记号为No.g1871192)、C3H-Znfp2(g3643609)以及PEI1(g2961542)的氨基酸序列之间进行。可见在涉及锌指结构的氨基酸序列的中间区域,上述具有锌指结构的蛋白质有很高的同源性(见图1)。图1中,与AtSIZ的氨基酸相同的氨基酸用黑色标记。根据分析结果,AtSIZ蛋白(推论得出)的锌指区域有一个CX7CX5CX3H一致性序列,证实为C3H-型锌指。另外,AtSIZ有一个含6个连续谷氨酸残基的酸性区域,所述谷氨酸残基位于锌指区域的上游。
例4不同渗透压对AtSIZ表达的诱导为确定AtSIZ的功能,检测了不同组织中、不同渗透压诱导的AtSIZ的表达模式。
4-1不同组织中的表达模式使用氯化锂/苯酚方法,分别从叶、花、根以及长角果组织中提取总RNAs。用AtSIZ cDNA做探针,准备Northern印渍以评定所述组织中的转录水平。将从每种组织中提取的15μg总RNA在65℃下热处理15分钟,以解开其二级结构,并与甲醛凝胶加样缓冲液(50%甘油、1mM乙二胺四乙酸、pH8.0、0.25%溴酚蓝、0.25%二甲苯苯胺FF,蒸馏水中)混合。将每份样品加到含2.2M甲醛的1%琼脂糖凝胶上,然后在4V/cm电压下缓慢电泳。将显现了RNAs的凝胶浸泡在焦碳酸二乙酯去离子水(DEPC-H2O)中,以去除甲醛。然后利用毛细管转移作用,将凝胶转移至一片尼龙膜上,放置大约16小时,然后80℃热处理1小时,从而固定RNAs。借助一种随机引物标记试剂盒(Boeringer Mannheim,Germany),用[α-32P]dCTP标记AtSIZcDNA,以作为一种用于杂交的探针。通过溴化乙啶染色,确保各有相同数量的总RNAs被加入到凝胶的每一加样孔中。最后,为检测杂交体,将膜在-70℃下曝光在X-光片上。结果见图2。可见AtSIZ在不同组织中以不同水平表达。根部组织显示了高水平的表达,花次之,叶组织随后,但在长角果组织中很少有表达。
4-2不同渗透压下的表达模式另外,关于0.15M NaCl对拟南芥直物中AtSIZ表达的影响,进一步在不同的渗透压强度和种类下检测了AtSIZ的表达模式。将拟南芥幼苗分别暴露在150mM NaCl高盐浓度、脱水、4℃低温、以及外源性脱落酸(ABA)下。分离总RNAs,并利用例4-1中的相似方法将其进行Northern印渍分析。结果如图3所示。AtSIZ的表达受上述所有处理诱导,提示AtSIZ参与了对一般性渗透压的反应。尽管AtSIZ有上述共同的表达,但其表达模式随压力条件的不同而不同。关于外源性脱落酸和150mM NaCl处理,在每种处理后1小时,AtSIZ的表达出现高峰,然后降低。关于低温处理,开始时在低水平上诱导AtSIZ的表达,在处理后6小时,出现大的增加,这暗示在低温压力下,AtSIZ的诱导表达至少有两种机制。另一方面,关于脱水处理,在处理后30分钟内,AtSIZ的表达出现高峰,而且该表达水平在处理后持续6小时以上。所以,上述结果证实了在不同压力条件下,AtSIZ的表达在不同水平上被调控。
例5分离一种在其AtSIZ基因中插入了T-DNA的拟南芥突变植物有必要将野生型植物与AtSIZ基因-失活植物比较,以了解AtSIZ的生理作用。
为选取一种在其AtSIZ基因中插入了T-DNA的突变体,利用PCR筛选方法(McKinney et al.,Plant J.,4613-622,1995)探查一组转化植物的基因组DNAs(ABRC,USA),该转化植物具有一个T-DNA标记。利用AtSIZ基因(SEQ ID NO1)3’-端和5’-端特异性引物(分别为SEQ ID NO5和SEQID NO6)与T-DNA右端特异性引物(RB)和左端特异性引物(LB)(分别为SEQ ID NO7和SEQ ID NO8)的结合,进行三轮PCR筛选。以个体基因组DNAs(ABRC,USA)为各自的模板,该个体基因组DNAs取自一组具有T-DNA插入片段的转化植物。
用标记了32P的AtSIZ cDNA做探针,将上述获得的PCR产品进行了Southem印渍分析,以探测杂交体。结果如图4A所示。借助T-DNALB端特异性引物与AtSIZ 3’-端特异性的结合,找到了一种扩增了的PCR产品,提示该PCR产品在其AtSIZ基因中有一个T-DNA插入片段。通过这种方式,选取了在其AtSIZ基因中插入了一个T-DNA的转化植物。
通过对上述获得的基因组DNA的Southem印渍(数据未示出)分析,确证了上述转化植物中AtSIZ基因的裂解。另外,用一种转录标记基因nptII做探针进行Southern印渍,确证了在植物基因组中只有一个拷贝的T-DNA(数据未示出)。同时,利用卡那霉素抗性,选取了一种失活纯合突变植物,并提取了其DNA,然后进行PCR扩增,证实了有一个T-DNA插入。
为证明所述PCR产品与AtSIZ基因是完全相同的,也为证实T-DNA插入的位置,将PCR产品亚克隆到一种pBluescript载体上,然后进行序列分析。结果发现T-DNA被插入到AtSIZcDNA序列的615核苷酸处(见图4C)。
例6T-DNA插入突变体的显型测定对突变植物的显型进行了检测以确定AtSIZ的生理作用。
首先,从纯合突变体和野生植物中提取总RNA,并进行Northem印渍分析,以确定突变植物中的AtSIZ没有表达。
在土壤中栽培野生株(WT)和突变植物(mt)3个星期,然后在液体培养基中栽培植物10天,所述液体培养基被不同浓度NaCl处理过。关于突变体,当在一般生长条件下于土壤中生长时,尽管通过Northem印渍没有发现AtSIZ的表达(图5A),但与野生植物(WT)相比,很少可以见到不同显型。然而,突变体对NaCl压力高度敏感。突变植物在其叶子中累积花青素。在用25mM NaCl处理植物时,野生植物没有反应,但突变植物长出了边缘破损的叶子(图5B,方格b的较低部分)。同样,在用50mM NaCl处理植物时,野生型植物对压力没有反应(图5B,方格c的较上部分),而突变植物的叶子比野生植物小,而且是黄色的(图5B,方格c的较低部分)。更进一步,在用100mM NaCl处理植物时,野生植物没有反应,突变植物的叶子较小而且剧烈黄化,而野生型植物的叶子在边缘上很少有黄化。上述结果证实,相比野生型植物,突变植物对NaCl压力更敏感。
例7互补测验将突变植物从插入了T-DNA的的转基因株中分离。因此,测验突变体的互补能力,以证实突变植物的上述渗透压-敏感显型是由于在AtSIZ基因中插入了一个T-DNA引起的。
7-1构建一种AtSIZ互补体和一种用该互补体形成的互补-AtSIZ突变体产品。
将AtSIZ cDNA插入到pBIB-HYG,该pBIB-HYG是一种携有潮霉素抵抗标记基因的二元载体(Becker D.,Institut fur Genetic der Universitat zu Koln,FRG, Nucleic Acid Res.,180(1)203,1990),以构建一种AtSIZ互补体。
首先,将pBluescript中亚克隆化的AtSIZ用Xho I进行消化,并借助Klenow和dNTPs的混合物,将Xho I的5’-凸出补平以形成平性末端的DNA。然后,用Xba I限制性切割DNA以产生一个AtSIZ插入片段。该插入片段被连接在pBIB-HYG载体的Xba I/Ecl 136 II位点,确保该插入片段位于CaMV 35S启动子和Nos终止子之间,从而构建了一种能够表达转录因子(该因子由AtSIZ编码)的重组载体。
将上述方法构建的重组载体用于转化一种突变植物,该突变植物有一个失活的AtSIZ基因。利用土壤杆菌-介导的真空渗透法(Clough et al.,PlantJ.,16735-743,1998)转化突变植物,由此转录因子AtSIZ可以形成互补体。在含有50μg/ml潮霉素的MS平板上筛选突变植物。将所选择的植物转移到土壤中,并获取其种子。在含有潮霉素的MS平板上再筛选种子。通过这种方式,获取了互补-AtSIZ突变体的纯合T2株。从野生株、突变体和互补-AtSIZ纯合T2突变体中提取总RNA,然后用标记了32P的AtSIZ cDNA做探针,进行Northern印渍分析。图6显示互补-AtSIZ纯合T2突变株2-2和5-4包含大量的AtSIZ基因转录,而AtSIZ-失活突变体包含很少的转录。
7-2互补-AtSIZ突变植物的NaCl压力-敏感测验。
通过测量不同NaCl浓度下对NaCl压力的敏感度,检测了互补-AtSIZ纯合突变体抵抗NaCl压力的能力。在土壤中栽培野生株、突变体和互补-AtSIZ纯合T2突变体(2-2株)3个星期。然后,每隔3天分别将所述植物浸入0、25、50和100mM NaCl溶液中,随后进行干燥和培养。将上述步骤重复10天。
如图6B所示,互补-AtSIZ纯合突变植物与野生植物以相似的水平显示了对NaCl的耐受性。这证实AtSIZ-失活突变体对NaCl压力的显型可以被一种AtSIZ互补体改变。也就是说,这证实了AtSIZ-失活突变体对NaCl的敏感性是由于在AtSIZ中插入了T-DNA引起的。
例8AtSIZ对压力-诱导基因的转录激活的影响。
实验结果显示,在AtSIZ-失活突变体中对NaCl压力的敏感性增加,以此为基础,检测了是否AtSIZ参与了对其它基因(其表达受NaCl压力诱导)的转录调控。将总RNAs分别从野生株、突变体以及互补-AtSIZ突变植物中提取,随后进行Northern印渍分析。
将上述每一种植物在液体MS培养基中栽培1星期,并在150mM NaCl和4℃低温下暴露6小时。作为压力-诱导基因,COR15a和RD29A(Urao etal.,Plant Cell,51529-1539,1993;Baker et al.,Plant Mol Biol.,24701-713,1994)充当了报告基因。其表达可以被外源性ABA处理或各种渗透压所诱导。用32P-标记的AtSIZ cDNAs、COR15a(Thomashow M.F.,GenBank登记号No.U01377)以及RD29A(Yamaguchi-Shinozaki,GenBank登记号No.D13044)做探针,进行了Northern印渍分析。
在AtSIZ-失活突变体中和互补-AtSIZ突变植物中,检测了COR15a和RD29A对NaCl和寒冷压力的表达模式。关于COR15a,NaCl压力在互补-AtSIZ突变植物中可强烈诱导其表达,而在AtSIZ-失活突变体中无法诱导其表达。另一方面,寒冷压力在AtSIZ-失活突变体中和互补-AtSIZ突变体中同样强烈诱导了COR15a的表达,提示AtSIZ上的突变不影响寒冷压力对COR15a表达的诱导。关于RD29A,在AtSIZ-失活突变体中和互补-AtSIZ突变体中,NaCl或寒冷压力强烈诱导了其表达,提示AtSIZ上的突变不影响NaCl或寒冷压力对RD29A表达的诱导。
因此,证实AtSIZ对某些渗透压(尤其是NaCl压力)-诱导基因的转录活性有影响。
例9由于AtSIZ过度表达使植物对压力的抵抗力增加通过上述提及的结果,已证实AtSIZ基因参与了对NaCl压力的反应。因此,构建了过度表达AtSIZ的转化植物,并检测了该转化植物对NaCl压力的抵抗性。
首先,为构建携带了AtSIZ基因的重组载体,将AtSIZcDNA插入到一个pBI121二元载体中(Dr.Goodman,Harvard Medical School,GeneticsDepartment),该载体具有一个CaMV(Cauliflower mosaic virus,菜花样花叶病毒)35S启动子,替代了GUS(β-葡糖苷酸酶)编码区。应用真空渗透法将重组载体转移到野生拟南芥植物。详细的要求如下所述。将pBluescript中亚克隆化的AtSIZ用Spe I进行消化,并借助Klenow和dNTPs的混合物,将Spe I的5’-凸出补平以形成平性末端的DNA。然后,用Sma I限制性切割DNA以产生一个AtSIZ插入片段。该插入片段被连接在pBI121上,所述pBI121用Sma I和Ecl 136 II限制性切割,确保插入片段定位在CaMV35S启动子和Nos转录终止子之间,从而构建了一个重组二元质粒pBI121-AtSIZ,该质粒能够过度表达AtSIZ。
借助真空渗透,将由此构建的重组质粒用于转化拟南芥植物。进行转化时,22℃皿中培养野生植物4个星期。钳出第一个栓子(bolt)。当第二个栓子长至2-10cm时,进行渗透。同时,钳出第一个栓子后第3天,在5mlLB肉汤中,将进行了pBI121-AtSIZ转化的土壤杆菌菌落培养过夜,随后在500ml LB培养基中培养,直至其浑浊度达OD600=2.0。通过离心(5,500xg)采集细胞,并在5%蔗糖溶液中重悬细胞至OD600=0.8。在悬浮液中加入表面活性剂Silwet L-77,以达到0.05%的最终浓度,并将溶液转移到有倾口的烧杯中。将培养皿倒立,所以仅仅是植物的地上部分被浸入到土壤杆菌溶液中,浸30秒。移走培养罐,将其侧倒在地,并在黑暗中保持24小时。第二天,将培养皿正立,并在22℃温室中栽培,直至种子成熟。采集干的种子。借助含有50mg/L卡那霉素的MS平板挑选转化了的植物。通过这种方式,获得了AtSIZ-过度表达突变体的纯合T2株。从植物中提取总RNA,随后用32P-标记的AtSIZcDNA作为探针,进行Northern印渍分析。图8显示转基因株1-6、2-4以及19-4显示了强烈的AtSIZ表达,提示AtSIZ插入片段被高度表达。
关于对高浓度NaCl压力的反应,将这些AtSIZ-过度表达突变植物进行了显型检测。将所述植物栽培2个星期,并每隔3天予以200mM NaCl处理。处理后第10天观察显型。图8B示出了野生株(WT)和转基因株19-4植物的外观。作为参照,其它转基因株与19-4株有相同的外观,所以图8中不再示出。已定量了这些植物对NaCl的抵抗力。将植物的种子在300mMNaCl下处理10天,然后播种。在3个独立的实验中,测试了野生株和AtSIZ-过度表达突变体的各20棵植物。图8B示出了各自的平均数据。AtSIZ-过度表达突变植物对高浓度NaCl显示了抵抗力,尤其是栽培了3个星期的植物存活了大约70%(抵抗力70±5),而野生株植物无法生存。上述结果证实AtSIZ参与了植物对强烈NaCl压力的适应性。
例10转录因子AtSIZ的功能结构域分析AtSIZ的序列分析给出信息,即AtSIZ编码了C3H-型锌指结构的多肽。这里确定了AtSIZ是否象其它锌指蛋白质一样,充当了一种转录因子,同时确定了AtSIZ的哪一个区域激活了转录。已对AtSIZ基因进行了缺失分析。从AtSIZ蛋白的C-末端连续缺失,并将其逐一插入到载体pAS2-1上编码GAL4 DNA结合结构域的区域下游,然后借助酵母1-杂交体系(Clonetech,USA)评价所述缺失的影响。详细地说,将全长序列(氨基酸残基1-596)和不同长度的C-末端缺失序列(氨基酸残基1-470、1-390、1-345、1-201以及1-133)中的每一个插入到pAS2-1(Clonetech,USA)的BamHI位点,确保所述每一个序列能被表达为连接在GAL4结合结构域3’-端的融合蛋白。将上述构建的重组载体和一个对照pAS2-1分别引入一种酵母体系Y190(Clontech,USA),然后选择色氨酸阳性克隆作为转化体。使用显色测定法(Li et al.,Science,2621870-1874,1993),检测编码β-半乳糖苷酶的基因的转录活性。将选出的酵母细胞置于3MM Whatman滤纸片上,并用X-gal溶液浸泡,然后在室温下放置3小时,从而进行显色。
如图9b所示,可见全长AtSIZ蛋白与GAL4 DNA-结合域融合,所以强烈诱导β-半乳糖苷酶的转录。该结果证实了AtSIZ是一种有力的转录因子。在206个氨基酸从C-末端(即Del 1和Del 2)缺失时,转录-激活活性没有改变。另一方面,当再缺失45个氨基酸残基时(即Del 3;与SEQ ID NO2序列的氨基酸残基1-345相对应),该缺失结构显示了非常低的β-半乳糖苷酶诱导水平。另外,在缺失锌指区时(即Del 4;氨基酸残基1-201),不显示β-半乳糖苷酶活性。因此,上述结果证实AtSIZ在植物细胞中充当了转录因子的角色。另外,很清楚206个氨基酸对转录调控活性不是必要的,该206个氨基酸位于AtSIZ的氨基酸序列SEQ ID NO2的C-末端。工业应用如上所述,显而易见,本发明提供了一种受渗透压诱导的新转录因子,该转录因子是一种被命名为AtSIZ的蛋白质,具有锌指结构,其基因是AtSIZ。AtSIZ的失活使植物对渗透压敏感,而AtSIZ的过度表达赋予植物对渗透压的抵抗。另外,AtSIZ作为一种转录因子,对某些渗透压-诱导基因显示了其活性,这里公开了其活性位点。因此,有可能用携带AtSIZ的表达载体来转化植物,以使植物过度表达AtSIZ,从而构建一种针对渗透压的植物抵抗。所以,有可能实现植物产量的大量增加。
尽管出于说明性的目的公开了本发明的优选实施,但本专业技术人员会理解,在不偏离本发明的范围和实质的情况下,可对本发明进行各种修改、增加和替代,所述本发明的范围和实质如权利要求所限定的内容。
国际承认用于专利程序的微生物保存布达佩斯条约国际表原始保藏存单至基诺麦因有限公司(GENOMINE,INC.)(Environmental Eng.Bldg.226,Pohang University of Science & Technology,#San31,Hyoja-dong,Nam-ku,Pohang 790-784,Republic of Korea)
序列表<110> 基诺麦因有限公司等<120> 可增强植物对渗透压的抵抗力的新转录因子<130> OPF0106/PCT<160> 7<170> KOPATIN 1.5<210> 1<211> 2273<212> DNA<213> 拟南芥<220><221> CDS<222> (166)..(1956)<223> 基因编码C3H锌蛋白质AtSIZ<400> 1aattcggcac gaggtaaaaa ccaagttcct tttaaaagga gcctctcctt tctcatttga 60tccttcttca aaaaccccaa ccacttcttc tccccaaaaa cctccaaagt ttcaatcttt 120acttctctct ttttctccaa gttatcttct tttctaggaa gagatatg tgc ggt 174MetCysGly1gca aag agc aac ctt tgc tca tct aaa acc cta aca gaa gtc gaa ttc 222Ala Lys Ser Asn Leu Cys Ser Ser Lys Thr Leu Thr Glu Val Glu Phe5 10 15atg agg cag aaa tca gaa gac gga gct tcc gcc acg tgt ctc ctc gaa 270Met Arg Gln Lys Ser Glu Asp Gly Ala Ser Ala Thr Cys Leu Leu Glu20 25 30 35ttc gcc gcc tgt gat gat ctt tca tcg ttt aag aga gag atc gaa gag 318Phe Ala Ala Cys Asp Asp Leu Ser Ser Phe Lys Arg Glu Ile Glu Glu40 45 50aat cca tcg gtg gag att gat gag tca ggg ttt tgg tat tgc aga cgg 366Asn Pro Ser Val Glu Ile Asp Glu Ser Gly Phe Trp Tyr Cys Arg Arg55 60 65gtc ggg tct aag aag atg ggt ttt gaa gaa aga aca cca ctt atg gtt 414Val Gly Ser Lys Lys Met Gly Phe Glu Glu Arg Thr Pro Leu Met Val70 75 80gct gct atg tat gga agc atg gaa gtg ttg aat tac ata att gcc aca 462Ala Ala Met Tyr Gly Ser Met Glu Val Leu Asn Tyr Ile Ile Ala Thr85 90 95gga aga tcc gat gtg aac aga gtt tgc agt gac gag aaa gtc act gct 510Gly Arg Ser Asp Val Asn Arg Val Cys Ser Asp Glu Lys Val Thr Ala100 105 110 115ctt cac tgt gca gtt tct ggc tgt tct gtt tct atc gtt gag atc atc 558Leu His Cys Ala Val Ser Gly Cys Ser Val Ser Ile Val Glu Ile Ile120 125 130aag atc ttg ctt gat gct tnt gct tca cct aat tgt gtt gac gct aat 606Lys Ile Leu Leu Asp Ala Ala Ala Ser Pro Asn Cys Val Asp Ala Asn135 140 145ggg aac aaa ccg gtt gat ttg ttg gct aaa gat tct cgg ttt gtt cct 654Gly Asn Lys Pro Val Asp Leu Leu Ala Lys Asp Ser Arg Phe Val Pro150 155 160aac cat agt ata aag gcg gtt gag gtt tta ctg acc ggg att cat ggt 702Asn His Ser Ile Lys Ala Val Glu Val Leu Leu Thr Gly Ile His Gly165 170 175tcg gtt atg gaa gaa gag gag gag gaa ctg aag agt gtt gtg act aag 750Ser Val Met Glu Glu Glu Glu Glu Glu Leu Lys Ser Val Val Thr Lys180 185 190 195tat cca gct gat gca tca ctt cct gat att aac gaa ggt gtt tat gga 798Tyr Pro Ala Asp Ala Ser Leu Pro Asp Ile Asn Glu Gly Val Tyr Gly200 205 210act gat gat ttt agg atg ttt agc ttt aag gtt aag cca tgt tct agg 846Thr Asp Asp Phe Arg Met Phe Ser Phe Lys Val Lys Pro Cys Ser Arg215220 225gct tat tca cat gat tgg act gaa tgt cct ttt gtt cat cct ggt gag 894Ala Tyr Ser His Asp Trp Thr Glu Cys Pro Phe Val His Pro Gly Glu230 235 240aat gca agg agg aga gat cct agg aag tat cct tac act tgt gtg cct 942Asn Ala Arg Arg Arg Asp Pro Arg Lys Tyr Pro Tyr Thr Cys Val Pro245 250 255tgt ccc gag ttt cgt aaa ggg tct tgt cct aaa gga gat tcg tgt gag 990Cys Pro Glu Phe Arg Lys Gly Ser Cys Pro Lys Gly Asp Ser Cys Glu260 265 270 275tac gcg cac ggt gtt ttc gag tct tgg ctt cac ccg gcg cag tat agg 1038Tyr Ala His Gly Val Phe Glu Ser Trp Leu His Pro Ala Gln Tyr Arg
280285 290aca cgg ctt tgc aaa gat gag act ggt tgt gct agg aga gtt tgt ttc 1086Thr Arg Leu Cys Lys Asp Glu Thr Gly Cys Ala Arg Arg Val Cys Phe295 300 305ttt gct cat aga cgg gat gag tta aga ccg gtt aat gct tct act ggt 1134Phe Ala His Arg Arg Asp Glu Leu Arg Pro Val Asn Ala Ser Thr Gly310 315 320tct gca atg gtt tca cca agg tcg tct aat cag tct cct gag atg tct 1182Ser Ala Met Val Ser Pro Arg Ser Ser Asn Gln Ser Pro Glu Met Ser325 330 335gtt atg tct cct ttg acg ctg gga tca tcg cca atg aac tct cct atg 1230Val Met Ser Pro Leu Thr Leu Gly Ser Ser Pro Met Asn Ser Pro Met340 345 350 355gct aat ggt gtt cct ttg tct cca aga aat ggt ggt tta tgg cag aac 1278Ala Asn Gly Val Pro Leu Ser Pro Arg Asn Gly Gly Leu Trp Gln Asn360 365 370aga gtt aat agc ctt aca cca cca ccg ttg cag ctt aat ggt agc aga 1326Arg Val Asn Ser Leu Thr Pro Pro Pro Leu Gln Leu Asn Gly Ser Arg375 380 385ttg aag tcg act ttg agt gct ata tat atg gat atg gag atg gaa ctt 1374Leu Lys Ser Thr Leu Ser Ala Ile Tyr Met Asp Met Glu Met Glu Leu390 395 400agg ttt cgc ggt ttg gat aac cgg aga ctt ggt gat ctc aag cca tcc 1422Arg Phe Arg Gly Leu Asp Asn Arg Arg Leu Gly Asp Leu Lys Pro Ser405 410 415aac ctc gaa gag act ttc gga tca tat gac tca gct tct gtg atg caa 1470Asn Leu Glu Glu Thr Phe Gly Ser Tyr Asp Ser Ala Ser Val Met Gln420 425 430 435ctt caa tca cca agc agg cat tct cag atg aac cac tat ccg tct tca 1518Leu Gln Ser Pro Ser Arg His Ser Gln Met Asn His Tyr Pro Ser Ser440 445 450cct gtg agg cag cct cct cct cat gga ttc gaa tct tca gca gcc atg 1566Pro Val Arg Gln Pro Pro Pro His Gly Phe Glu Ser Ser Ala Ala Met455 460 465gca gct gca gtg atg aat gca aga tcc tca gcg ttt gcg aaa cgc agc 1614Ala Ala Ala Val Met Asn Ala Arg Ser Ser Ala Phe Ala Lys Arg Ser470 475 480ttg agt ttc aaa cca gct cca gta gct tct aat gtc tcc gat tgg gga 1662Leu Ser Phe Lys Pro Ala Pro Val Ala Ser Asn Val Ser Asp Trp Gly485 490 495tca cca aat ggg aag ctt gag tgg gga atg caa ata tat gag ctg aac 1710Ser Pro Asn Gly Lys Leu Glu Trp Gly Met Gln Ile Tyr Glu Leu Asn500 505 510 515aag ttg agg aga agt gcc tcc ttc ggc att cat gga aac aac aac aac 1758Lys Leu Arg Arg Ser Ala Ser Phe Gly Ile His Gly Asn Asn Asn Asn520 525 530agt gtg tca cgc cct gct aga gac tac agt gac gag cca gat gtg tcg 1806Ser Val Ser Arg Pro Ala Arg Asp Tyr Ser Asp Glu Pro Asp Val Ser535 540 545tgg gtg aac tca ctg gtg aaa gag aat gca cca gag aga gtg aat gag 1854Trp Val Asn Ser Leu Val Lys Glu Asn Ala Pro Glu Arg Val Asn Glu550 555 560agg gtt ggg aat acg gtg aat ggt gca gcg agt aga gac aag ttt aag 1902Arg Val Gly Asn Thr Val Asn Gly Ala Ala Ser Arg Asp Lys Phe Lys565 570 575ctg ccg tcg tgg gca gag caa atg tat ata gac cat gag cag cag att 1950Leu Pro Ser Trp Ala Glu Gln Met Tyr Ile Asp His Glu Gln Gln Ile580 585 590 595gtg gcataag aagcagaaag aaagatgtgg gatttatatt gcttttgtct 2000Val Alatctgggcctc tctacacaga atctaacaaa tctggcaata attctttgat ttgtgtttga2060cccatagttt ggttactagt atatgttttt ttatgttctt tttttcttag tcattctctt2120gtccttcgtg acactatgta atgattaaaa gcaaataatt gatgcatgag ttcaaatgtt2180ctttgaagga tccatcttat tagctttgta attgttgtga tatcttaatc ttattggtta2240cgtaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 2273<210> 2<211> 597<212> PRT<213> 拟南芥<400> 2Met Cys Gly Ala Lys Ser Asn Leu Cys Ser Ser Lys Thr Leu Thr Glu1 5 10 15Val Glu Phe Met Arg Gln Lys Ser Glu Asp Gly Ala Ser Ala Thr Cys20 25 30Leu Leu Glu Phe Ala Ala Cys Asp Asp Leu Ser Ser Phe Lys Arg Glu
35 40 45Ile Glu Glu Asn Pro Ser Val Glu Ile Asp Glu Ser Gly Phe Trp Tyr50 5560Cys Arg Arg Val Gly Ser Lys Lys Met Gly Phe Glu Glu Arg Thr Pro65 70 75 80Leu Met Val Ala Ala Met Tyr Gly Ser Met Glu Val Leu Asn Tyr Ile85 90 95Ile Ala Thr Gly Arg Ser Asp Val Asn Arg Val Cys Ser Asp Glu Lys100 105 110Val Thr Ala Leu His Cys Ala Val Ser Gly Cys Ser Val Ser Ile Val115 120 125Glu Ile Ile Lys Ile Leu Leu Asp Ala Ala Ala Ser Pro Asn Cys Val130 135 140Asp Ala Asn Gly Asn Lys Pro Val Asp Leu Leu Ala Lys Asp Ser Arg145 150 155 160Phe Val Pro Asn His Ser Ile Lys Ala Val Glu Val Leu Leu Thr Gly165 170 175Ile His Gly Ser Val Met Glu Glu Glu Glu Glu Glu Leu Lys Ser Val180 185 190Val Thr Lys Tyr Pro Ala Asp Ala Ser Leu Pro Asp Ile Asn Glu Gly195 200 205Val Tyr Gly Thr Asp Asp Phe Arg Met Phe Ser Phe Lys Val Lys Pro210 215 220Cys Ser Arg Ala Tyr Ser His Asp Trp Thr Glu Cys Pro Phe Val His225 230 235 240Pro Gly Glu Asn Ala Arg Arg Arg Asp Pro Arg Lys Tyr Pro Tyr Thr245 250 255Cys Val Pro Cys Pro Glu Phe Arg Lys Gly Ser Cys Pro Lys Gly Asp260 265 270Ser Cys Glu Tyr Ala His Gly Val Phe Glu Ser Trp Leu His Pro Ala275 280 285Gln Tyr Arg Thr Arg Leu Cys Lys Asp Glu Thr Gly Cys Ala Arg Arg290 295 300Val Cys Phe Phe Ala His Arg Arg Asp Glu Leu Arg Pro Val Asn Ala305 310 315 320Ser Thr Gly Ser Ala Met Val Ser Pro Arg Ser Ser Asn Gln Ser Pro325 330 335Glu Met Ser Val Met Ser Pro Leu Thr Leu Gly Ser Ser Pro Met Asn340 345 350Ser Pro Met Ala Asn Gly Val Pro Leu Ser Pro Arg Asn Gly Gly Leu355 360 365Trp Gln Asn Arg Val Asn Ser Leu Thr Pro Pro Pro Leu Gln Leu Asn370 375 380Gly Ser Arg Leu Lys Ser Thr Leu Ser Ala Ile Tyr Met Asp Met Glu385 390 395 400Met Glu Leu Arg Phe Arg Gly Leu Asp Asn Arg Arg Leu Gly Asp Leu405 410 415Lys Pro Ser Asn Leu Glu Glu Thr Phe Gly Ser Tyr Asp Ser Ala Ser420 425 430Val Met Gln Leu Gln Ser Pro Ser Arg His Ser Gln Met Asn His Tyr435 440 445Pro Ser Ser Pro Val Arg Gln Pro Pro Pro His Gly Phe Glu Ser Ser450 455 460Ala Ala Met Ala Ala Ala Val Met Asn Ala Arg Ser Ser Ala Phe Ala465 470 475 480Lys Arg Ser Leu Ser Phe Lys Pro Ala Pro Val Ala Ser Asn Val Ser485 490 495Asp Trp Gly Ser Pro Asn Gly Lys Leu Glu Trp Gly Met Gln Ile Tyr500 505 510Glu Leu Asn Lys Leu Arg Arg Ser Ala Ser Phe Gly Ile His Gly Asn515520 525Asn Asn Asn Ser Val Ser Arg Pro Ala Arg Asp Tyr Ser Asp Glu Pro530 535 540Asp Val Ser Trp Val Asn Ser Leu Val Lys Glu Asn Ala Pro Glu Arg545 550 555 560Val Asn Glu Arg Val Gly Asn Thr Val Asn Gly Ala Ala Ser Arg Asp565 570 575Lys Phe Lys Leu Pro Ser Trp Ala Glu Gln Met Tyr Ile Asp His Glu580 585 590Gln Gln Ile Val Ala
595<210> 3<211> 13<212> DNA<213> 人工序列<220><223> 构建渗透压基因的削减文库的5′引物<400> 3aattcggcac gag 13<210> 4<211> 15<212> DNA<213> 人工序列<220><223> 构建渗透压基因的削减文库的3′引物<400> 4tttttttttt ttttt 15<210> 5<211> 17<212> DNA<213> 人工序列<220><223>AtSIZ基因的PCR 5′引物<400>5agcaaccttt gctcatc 17<210>6<211>17<212>DNA<213>人工序列<220><223>AtSIZ基因的PCR 3′引物<400>6gatggatcct tcaaaga 17<210>7<211>19<212>DNA<213>人工序列<220><223>T-DNA的PCR的右边引物<400>7tcgggcctaa cttttggtg 19<210>8<211>19<212>DNA<213>人工序列<220><223>T-DNA的PCR的左边引物<400>8gaacatcggt ctcaatgca 19
权利要求
1.一种转录因子,包括氨基酸序列SEQ ID NO2的氨基酸残基1-390。
2.根据权利要求1所述的转录因子,其中,该因子从拟南芥中分离。
3.根据权利要求1所述的转录因子,其中,该因子具有C3H-型锌指结构,转录活性结构域在C-末端区域。
4.根据权利要求1-3其中任意之一所述的转录因子,其中,该因子包含氨基酸序列SEQ ID NO2,并被命名为AtSIZ蛋白。
5.一种编码根据权利要求1所述转录因子的基因。
6.根据权利要求5所述的基因,其中,该基因包含核苷酸序列SEQ IDNO1,并被命名为AtSIZ基因。
7.一种包含根据权利要求5所述基因的真核表达载体。
8.根据权利要求7所述的真核表达载体,其中,该载体包含核苷酸序列为SEQ ID NO1的AtSIZ基因(保藏号KCTC 0886BP)。
9.一种增强植物对渗透压的抵抗力的方法,包括用权利要求7所述的表达载体转化植物的步骤,从而过度表达权利要求1所述的转录因子。
10.根据权利要求9所述的的方法,其中,渗透压包括受高浓度盐、低温、脱水以及脱落酸处理诱导的压力。
11.一种转化植物,其对渗透压的抵抗力通过权利要求9或权利要求10所述的方法得以增强。
全文摘要
本发明涉及一种受渗透压诱导的植物转录因子AtSIZ;一种编码所述转录因子的基因;以及一种利用所述基因增强植物对压力的抵抗力的方法。所述AtSIZ蛋白是一种从拟南芥中分离的多肽,它包含C
文档编号C07K14/415GK1478148SQ01819762
公开日2004年2月25日 申请日期2001年3月9日 优先权日2000年12月2日
发明者黄仁焕, 朴海兰 申请人:基诺麦因有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1