含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料及其制备方法和应用与流程

文档序号:12856645阅读:844来源:国知局
含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料及其制备方法和应用与流程

本发明属于化学合成领域,具体地涉及一种含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合纳米材料(p(4vmib-pba)/ppy/go)的制备方法及其对多巴胺和对乙酰氨基酚的电化学检测。



背景技术:

近年来,导电聚合物/氧化石墨烯复合纳米片(cps/go)在能量储存、超级电容器和电化学传感器等方面展现出广阔的应用前景,聚合离子液体(pils)由于是一种固态聚合物电解质,本身具有聚合物和离子液体的特性,因此,通过将导电聚合物与聚合离子液体相结合,得到的兼具两者优点的新型复合材料在电化学传感器方面展现出了广泛的应用前景。

对乙酰氨基酚(ac)通常为白色结晶性粉末,有解热镇痛作用,用于感冒发烧、关节痛、神经痛、偏头痛、癌痛及手术后止痛等,而多巴胺(da)不仅是一种神经传导物质,也与各种上瘾行为有关。因此,对多巴胺和对乙酰氨基酚的识别和检测在实际生活中有着很重要的意义。



技术实现要素:

本发明的目的是制备一种含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合纳米材料(p(4vmib-pba)/ppy/go),将其用于同时识别和检测对乙酰氨基酚和多巴胺,进而提高检测效率,提高灵敏度。

为了实现上述目的,本发明采用的技术方案是:含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料,制备方法包括如下步骤:

1)利用hummer法,合成氧化石墨烯go,然后加入吡咯单体py,两者通过氢键结合得到聚吡咯/氧化石墨烯ppy/go,再将氯丙烯通过取代反应接在聚吡咯/氧化石墨烯ppy/go表面上,得中间体ppy/go-ch2-ch=ch2;再以n-乙烯基咪唑为单体,偶氮二异丁腈为引发剂,引发n-乙烯基咪唑在中间体ppy/go-ch2-ch=ch2表面发生乙烯基聚合反应,得聚n-乙烯基咪唑修饰的聚吡咯/氧化石墨烯复合纳米片pvi/ppy/go;

2)pvi/ppy/go与4-溴甲基苯硼酸发生取代反应,得到含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料(p(4vmib-pba)/ppy/go)。

上述的含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料,步骤1)具体包括,

1.1)合成氧化石墨烯go:将石墨和硝酸钠加入置于冰水浴中并盛有硫酸的三口瓶中,搅拌均匀后缓慢加入高锰酸钾,32-38℃反应30-40分钟后,室温下静置5-6天;然后用温水稀释,滴加过氧化氢至溶液呈亮黄色,离心洗涤至中性,干燥,得到氧化石墨烯go;

1.2)合成聚吡咯/氧化石墨烯ppy/go:将氧化石墨烯go和吡咯单体py加入到去离子水中,超声分散,再加入氯化铁,继续超声30-40分钟,产物用去离子水和乙醇离心洗涤,真空干燥,得ppy/go;优选的,吡咯单体py和氯化铁的摩尔比为1:3;

1.3)合成中间体ppy/go-ch2-ch=ch2:将氯丙烯,氢氧化钾和ppy/go分散于n-n二甲基甲酰胺中,60-70℃回流反应,用水和乙醇离心洗涤,干燥,得到ppy/go-ch2-ch=ch2;优选的,ppy/go和氯丙烯的质量比为3:5;

1.4)合成聚n-乙烯基咪唑修饰的聚吡咯/氧化石墨烯复合纳米片pvi/ppy/go:以n-乙烯基咪唑为单体,偶氮二异丁腈为引发剂,将ppy/go-ch2-ch=ch2、n-乙烯基咪唑和偶氮二异丁腈分散于氯仿溶液中,超声分散,然后在磁力搅拌条件下,将混合液加热到65-75℃,在氮气保护下,冷凝回流4-5h,反应结束后,用蒸馏水和氯仿对产物进行洗涤,离心,所得产物真空干燥,得到pvi/ppy/go;优选的,ppy/go-ch2-ch=ch2和n-乙烯基咪唑的质量比为1:5。

上述的含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料,步骤2)具体包括:将pvi/ppy/go和4-溴甲基苯硼酸和氢氧化钾加入到dmf中,超声分散,然后在磁力搅拌条件下,将混合液加热到55-65℃,回流反应6-7h,反应结束后,用蒸馏水和乙醇对产物进行洗涤,离心,所得产物真空干燥,得到含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合纳米片p(4vmib-pba)/ppy/go。优选的,pvi/ppy/go和4-溴甲基苯硼酸的质量比为3:5。

上述的含有苯硼酸的聚合离子液体修饰的聚吡咯/氧化石墨烯复合材料在制备电化学传感器中的应用。所述的电化学传感器在同时识别和检测对乙酰氨基酚和多巴胺中的应用。方法如下:将复合材料p(4vmib-pba)/ppy/go超声分散于乙醇中,然后滴涂电极上,作为修饰电极,将修饰电极应用于对乙酰氨基酚和多巴胺的同时检测。

本发明的有益效果是:本发明的p(4vmib-pba)/ppy/go纳米片结合了聚合离子液体、亲水性聚合物、导电聚合物和氧化石墨烯的优点以及苯硼酸类聚合物的优点,具有良好的电子传输能力、高比表面积、优异的亲水性能以及很好的电化学识别能力,可以作为识别和检测对乙酰氨基酚和多巴胺的电极材料,实现对对乙酰氨基酚和多巴胺的高效、灵敏检测。

本发明制备的p(4vmib-pba)/ppy/go,由于合成的聚合离子液体存在于复合材料的表面,不仅改善了材料在水溶液中的分散性,同时有效地优化了电子传输模式,使得这种复合材料表现出极佳的电催化性质,同时由于pba具有高识别能力和水溶性,因此,对对乙酰氨基酚和多巴胺的检测表现出优异的电化学活性并且呈现出足够大的阳极峰电位差(高达244mv),足以很好的识别和检测对乙酰氨基酚和多巴胺。对同时检测对乙酰氨基酚和多巴胺显示出优异的灵敏度和良好的稳定性,因此,p(4vmib-pba)/ppy/go纳米材料可以作为识别和检测对乙酰氨基酚和多巴胺的电极材料,实现对对乙酰氨基酚和多巴胺的高效灵敏检测。

附图说明

图1a是p(4vmib-pba)/ppy/go的扫描电镜图。

图1b是p(4vmib-pba)/ppy/go的透射电镜图。

图2是不同材料的tga图。

图3是不同材料的电极比较图。

图4是不同浓度多巴胺的差分脉冲伏安曲线图。

图5是不同浓度多巴胺与电流的线性关系图。

图6是不同浓度对乙酰氨基酚的差分脉冲伏安曲线图。

图7是不同浓度对乙酰氨基酚与电流的线性关系图。

具体实施方式

实施例1含有苯硼酸的聚吡咯/氧化石墨烯复合纳米材料(p(4vmib-pba)/ppy/go)

(一)制备方法

1)合成pvi/ppy/go

1.1)合成氧化石墨烯(go)

氧化石墨烯通过hummer法合成,首先,在250ml三口瓶中加入67.5ml浓硫酸,置于冰水浴中,再向三口瓶中加入2g石墨和1.6g硝酸钠,搅拌均匀后缓慢加入9g高锰酸钾,然后将三口瓶置于油浴锅,于32-38℃反应半小时之后,室温静置5天。然后用560ml60℃温水稀释,滴加过氧化氢(30%)至溶液呈亮黄色。最后,用去离子水离心洗涤至中性,放入真空干燥箱50℃干燥24小时,得到氧化石墨烯(go)。

1.2)合成聚吡咯/氧化石墨烯(ppy/go)

分别将0.1ggo和0.1g吡咯单体py加入到盛有50ml去离子水的烧瓶中,超声分散均匀后加入0.6g氯化铁超声30min,产物用去离子水和乙醇离心洗涤2-3次,50℃真空干燥24小时,得到聚吡咯/氧化石墨烯(ppy/go)。

1.3)合成中间体ppy/go-ch2-ch=ch2

分别将90mg聚吡咯/氧化石墨烯(ppy/go)、0.15g氢氧化钾和0.15g氯丙烯加入到75mldmf中,超声分散;之后置于油浴锅中60℃回流24小时;再分别用去离子水和乙醇洗涤2~3次,50℃真空干燥24小时,得到ppy/go-ch2-ch=ch2。

1.4)合成pvi/ppy/go纳米片

取n-乙烯基咪唑(180mg)和偶氮二异丁腈(aibn,30mg)分散于20ml氯仿中,再向体系中加入制备的ppy/go-ch2-ch=ch2(36mg),超声分散5min。最后将混合液加热到70℃,在氮气持续保护下,冷凝回流4h。反应结束后,用蒸馏水和氯仿对产物进行多次洗涤,离心,所得产物在45℃真空干燥箱中干燥24h。得到pvi/ppy/go纳米片。

2)合成p(4vmib-pba)/ppy/go纳米片

将30mgpvi/ppy/go,0.05g4-溴甲基苯硼酸和0.055g氢氧化钾加入到15mldmf中,超声分散5min。然后在磁力搅拌条件下,将混合液加热到60℃,回流反应6h。反应结束后,用蒸馏水和乙醇对产物进行多次洗涤,离心,所的产物在45℃真空干燥箱中干燥24h,得到p(4vmib-pba)/ppy/go纳米片。

(二)检测结果

图1a为实施例1制备的复合纳米片p(4vmib-pba)/ppy/go的扫描电镜图,图中显示合成的p(4vmib-pba)/ppy/go纳米材料表面呈现出明显的褶皱和片状纹理;而图1b是p(4vmib-pba)/ppy/go的透射电镜图,图中展现出良好的电离层堆积的薄片,同时还可以在该复合纳米片的边缘观察到纳米卷的结构,表明材料都拥有较为宽阔的表面积,证明已经成功制备出p(4vmib-pba)/ppy/go纳米片。

图2是go,ppy/go,pvi/ppy/go,p(4vmib-pba)/ppy/go的tga曲线图。图2展示了(a)go,(b)ppy/go和(c)pvi/ppy/go,(d)p(4vmib-pba)/ppy/go四种材料的热重曲线,测试条件为在n2环境,升温范围为20-770℃,速率为10℃/min。曲线a是典型的go特征曲线。与go相比,ppy/go在700℃时的剩余重量更多,同时从曲线b可以观察到延迟分解的现象,说明py的存在极大的提高了材料的热稳定性。由于水分子从ppy/go去除,发生112℃以下的初始重量损失约为9.5%,但是pvi/ppy/go和p(4vmib-pba)/ppy/go在112℃的重量损失约为7.5%,表明它们吸收的水比ppy/go少。然而,pvi/ppy/go和p(4vmib-pba)/ppy/go在120-475℃的范围内表现出小而缓慢的体重减轻,表明三元和四元复合材料在此温度范围内更加稳定(图2c-d)。与go,ppy/go和pvi/ppy/go相比,p(4vmib-pba)/ppy/go热稳定性的提高可能是由于4-溴甲基苯硼酸具有良好的热稳定性(在451℃下出现了降解温度的最大速率(tmax))。然而,p(4vmib-pba)/ppy/go在475℃后表现出极快的重量损失(图2-d),这是由于在475℃后p(4vmib-pba)/ppy/go纳米材料表面结合的离子液体迅速分解。这些现象可以进一步证明在p(4vmib-pba)/ppy/go的表面上的离子液体和4-溴甲基苯硼酸的存在。

图3是在ph=8的含有4μmac,20μmda的pbs缓冲溶液中,裸电极、go、pvi/ppy/go、p(4vmib-pba)/ppy/go在扫速为50mv/s时的循环伏安曲线,通过电极比较,可以证明和裸电极、go、pvi/ppy/go纳米复合材料相比,p(4vmib-pba)/ppy/go复合纳米材料对多巴胺和对乙酰氨基酚具有很好的识别能力,并且多巴胺氧化电位为207mv,对乙酰氨基酚氧化电压为451mv,氧化峰电位相差244mv,这也进一步表明p(4vmib-pba)/ppy/go能实现对多巴胺和对乙酰氨基酚的高效灵敏的电化学识别和检测。

实施例2p(4vmib-pba)/ppy/go同时电化学识别和检测对乙酰氨基酚和多巴胺

(一)方法:

以实施例1制备的p(4vmib-pba)/ppy/go纳米复合材料用于同时电化学识别和检测对乙酰氨基酚和多巴胺。

取1mg干燥的p(4vmib-pba)/ppy/go纳米复合材料,加入到1ml乙醇溶液中,分散均匀,取2.5μl混合液滴涂到电极表面,作为修饰电极,放置30-60min后,进行电化学检测。

(二)测试结果

图4是p(4vmib-pba)/ppy/go修饰电极在ph=8的含有10μmda的pbs缓冲溶液中改变ac浓度时的dpv响应曲线,从dpv图中可以明显看出ac浓度在11-120μm的浓度范围内,随着ac浓度的逐渐增加:(a)11,(b)16,(c)20,(d)30,(e)40,(f)50,(g)60,(h)70,(i)80,(j)120μm;,ac氧化峰电流值也逐渐增大,但是da的氧化峰电位和电流却基本保持不变。

图5是ac浓度与ac氧化峰电流的关系曲线,从图中可以发现,在11-120μm的范围内,ac的浓度与ac氧化峰电流有较好的线性关系(r2=0.9956),斜率为-0.0203μa/μm。根据标准信噪比为3(s/n=3),并且p(4vmib-pba)/ppy/go修饰电极在检测ac时的检出限为275.6nm(n=8),灵敏度为0.0203μa/μm,标准偏差为1.86×10-9a,其性能优于许多现有的对乙酰氨基酚检测器。

图6是p(4vmib-pba)/ppy/go修饰电极在ph=8的含有2μmac的pbs缓冲溶液中改变da浓度时的dpv响应曲线,从dpv图中可以明显看出在da浓度在2.4-4.2μm的浓度范围内,随着da浓度的逐渐增加:(a)2.4,(b)2.6,(c)2.8,(d)3.0,(e)3.2,(f)3.4,(g)3.6,(h)3.8,(i)4.0,(j)4.2μm,da氧化峰电流值也逐渐增大,但是ac的氧化峰电位和电流却基本保持不变。

图7是da浓度与da氧化峰电流的关系曲线,从图中可以发现,在2.4-4.2μm的范围内,da的浓度与da氧化峰电流有较好的线性关系(r2=0.9956),斜率为-0.3425μa/μm。根据标准信噪比为3(s/n=3),并且p(4vmib-pba)/ppy/go修饰电极在检测ac时的检出限为68.9nm(n=8),灵敏度为0.3425μa/μm,标准偏差为7.87×10-9a,其性能相较于很多现有的多巴胺检测器具有较低的检出限和较高的灵敏度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1