专利名称:研磨方法
技术领域
本发明涉及一种研磨无机微粒材料的水性悬浮液的方法以及由此得到的产品。
背景技术
含有无机微粒材料,例如碱土金属(如钙)的碳酸盐或高岭土的水性悬浮液,被广泛用于多种用途。这些用途包括,例如,制造含有用于造纸或者纸张涂层的组合物的颜料或者填料、以及制造用于油漆和塑料等的填充组合物。
无机微粒材料通常具有已知的粒径分布(psd),其取决于在本领域所熟知的方面中预计的最终用途。通常,所需的粒径分布通过包括在水性悬浮液中研磨无机微粒材料的方法得到。悬浮液可以含有高含量(例如大于约50重量%)或者低含量(例如小于约50重量%)的无机微粒固体。
当水性悬浮液具有高固体含量时,使用有效量的分散或者抗絮凝物质(分散剂)来分散无机微粒材料是必要的。高固体含量研磨通常产生相对较高比例的超细微粒(例如具有小于约2.5μm的当量球径)。为了使悬浮液维持可以接受的低粘度,或者需要使用相对较高用量的普通分散剂,或者需要使用较低用量的专用、因此也相对昂贵的分散剂。
当水性悬浮液具有低固体含量时,可以避免使用分散剂。这使得可以对悬浮液进行节省成本地脱水,但是当后来将分散剂混入悬浮液中时会遇到问题。
人们通常需要生产具有“陡”粒径分布的产品,即大部分颗粒处于窄的粒径范围内的产品,这里所使用的“陡”粒径分布是指陡度因子大于约35,尤其是大于约40,陡度因子的定义为d30当量球径(30重量%的颗粒比此粒径的颗粒更细)与d70当量球径(70重量%的颗粒比此粒径的颗粒更细)的比率乘以100。
为了获得所需陡度,目前实践中是研磨低固体含量的水性悬浮液以使超细微粒的形成最小化。还需要在不存在任何分散剂的情况下进行研磨过程以维持絮凝或聚集状态,并因此促进后续的絮凝脱水。在某些情况下,将有效量的专用分散剂加入到经脱水的、较高固体含量的悬浮液中,以使絮凝最小化并为该阶段的处理提供可接受的粘度。对在脱水阶段所除去的水进行再循环以用于稀释新鲜进料也是常用的手段。然而,大量的问题将会产生。例如,由于来自系统的管道和设备的腐蚀产物(例如,铁类腐蚀产物),会导致亮度的显著损失(褪色)。通常亮度值会减少约2~3个ISO单位,同时黄色值会升高1~2个ISO单位。由于再循环的水变得相对高地充气,因此这种褪色在低固体法中可能被加剧。此外,在高固体阶段难以引入有效量的分散剂。另外,专用分散剂的使用会导致材料在混合物中与包括例如聚丙烯酸盐等常规分散剂的材料不相容。
本发明旨在对克服上述问题方面至少发挥一些作用,或者至少提供一种可接受的供选择的研磨无机微粒材料的水性悬浮液的方法。

发明内容
本发明是基于这样的发现,即通过在含有极少量的分散剂的水性悬浮液中对无机微粒材料进行研磨能够减轻与上述相关的问题。
根据本发明的第一方面,本发明提供一种在水性悬浮液中研磨无机微粒材料的方法,其中所述水性悬浮液含有次有效量的用于无机微粒材料的分散剂。术语“次有效量”表示分散剂以有限量存在,但是该量不足以引起无机微粒材料的抗絮凝作用,所以悬浮液的絮凝特性与完全不含有任何分散剂时的絮凝特性实质相同。基于无机微粒的干重,该分散剂的量通常可达约0.25重量%,例如可达约0.15重量%,例如可达约0.1重量%。
根据本发明的第二方面,本发明提供一种研磨无机微粒材料的水性悬浮液的方法,以得到粒径减小且陡度增加的无机微粒材料,其中所述研磨是在水性悬浮液中存在有次有效量的用于无机微粒材料的分散剂的条件下进行。
该方法可以,例如,用于悬浮液中低固体含量无机微粒材料的研磨,例如,基于悬浮液的总重量,无机微粒固体的量低于约50重量%。
该方法优选还包括在这样的条件下对无机微粒材料进行研磨例如将无机微粒材料的陡度提高至陡度因子为高于约35,尤其是高于约40,例如高于约45。
该方法优选还包括使水性悬浮液脱水以提高其固体含量,更优选基于悬浮液的总重量,无机微粒材料的含量高于约50重量%。
根据本发明的第三方面,本发明提供经研磨的微粒无机材料的水性悬浮液,其中含有次有效量的用于无机微粒材料的分散剂。水性悬浮液可以通过如本发明第一方面或第二方面所述的研磨方法适当地制备。微粒无机材料适合具有高于约35的陡度因子,尤其是高于约40,例如高于约45。基于无机微粒的干重,存在于在水性悬浮液中的分散剂的适当含量可达约0.25重量%,例如可达约0.15重量%,例如可达约0.1重量%。水性悬浮液可以具有高固体含量也可以具有低固体含量。
根据本发明的第四方面,本发明提供经研磨的无机微粒材料的水性悬浮液,其中含有用于无机微粒材料的有效分散剂量的分散剂,所述悬浮液通过如本发明第一方面或第二方面所述的方法制备,并且所述方法包括在研磨后向水性悬浮液中加入一定量的分散剂。
根据本发明的第五方面,本发明提供干燥的经研磨的无机微粒材料,其中含有一定量的用于无机微粒材料的分散剂,该材料是如本发明第三方面或第四方面所述的水性悬浮液的干燥残留物。
根据本发明的第六方面,本发明提供次有效量的分散剂在无机微粒材料的低固体水性悬浮液中作为抗腐蚀剂的用途。
具体实施例方式
无机微粒材料无机微粒材料可以是例如,诸如碳酸钙等碱土金属碳酸盐、诸如高岭土或球粘土等水合高岭石组粘土、诸如偏高岭土或充分煅烧高岭土等无水(煅烧)高岭石组粘土、钙硅石(wollanstonite)、铝土矿、滑石、云母、二氧化钛、二氧化硅或碳。
本发明所使用的无机微粒材料优选是碳酸钙。
在研磨后无机微粒材料适当的粒径分布(psd)为,至少约80重量%的碳酸钙微粒具有低于2μm的当量球径、至少约50重量%的所述微粒具有低于1μm的当量球径、至少约20重量%的所述微粒具有低于0.5μm的当量球径、以及少于约20重量%的所述微粒具有低于0.25μm的当量球径。例如,至少约92重量%的微粒适当地具有低于2μm的当量球径、至少约70重量%的微粒具有低于1μm的当量球径、至少约30重量%的微粒具有低于0.5μm的当量球径、以及低于约15重量%的微粒具有低于0.25μm的当量球径。微粒可以适当地是碳酸钙。在研磨后微粒碳酸钙的平均当量粒径d50可以适当地在约0.4μm~约1.2μm的范围内,例如在约0.4μm~约1.0μm的范围内。
这里所涉及的用于无机微粒材料的平均当量粒径(d50值)和其他粒径特性是通过在水性介质中在充分分散的条件下用MicromeriticsSedigraph 5100单元对微粒材料进行沉降测得。平均当量粒径d50是用这样的粒径分布法测得的值,其中有50重量%的微粒具有小于d50值的当量球径。
分散剂分散剂是一种化学添加剂,按照正常工艺的需要,在高于本发明用量的足够量使用时,所述化学添加剂能够作用于无机材料微粒以防止或有效地限制微粒的絮凝或聚集至所需的程度。然而,在本发明的用量,分散剂在此方面不是有效的,尽管它在协助缓解与现有技术相关的问题上,特别是下述问题的一种或多种,提供了有益的和预料不到的结果微粒材料的褪色的减少;有效量的分散剂在高固体阶段引入的改善;微粒材料在混合物中与包括诸如聚丙烯酸盐等常规分散剂的其他微粒材料的相容性。
分散剂可以例如选自在无机微粒材料的处理和研磨中通常使用的常规分散剂材料。这些分散剂可以被本领域技术人员很好地识别。分散剂通常是能够提供阴离子物质的水溶性盐,有效量的所述阴离子物质能够吸附在无机微粒的表面从而抑制微粒的聚集。未溶剂化的盐适当地包括诸如钠等碱金属阳离子。在某些情况下可以通过使水性悬浮液微具碱性来辅助实现溶剂化。合适的分散剂的实例包括水溶性缩合磷酸盐,例如,诸如偏磷酸四钠或者所谓的“六偏磷酸钠”(格来汉氏盐,Graham’s盐)等聚偏磷酸盐[钠盐的一般形式(NaPO3)x];水溶性聚多硅酸盐;聚合电解质;丙烯酸或甲基丙烯酸的均聚物或共聚物的盐或丙烯酸的其他衍生物的聚合物的盐,适当的重均分子量为小于约20,000。六偏磷酸钠和聚丙烯酸钠是特别优选的,所述聚丙烯酸钠适当地具有约1500~约10,000的重均分子量。
水性悬浮液本发明的方法优选在含有可达35重量%的无机微粒材料的水性悬浮液中实施,通常约为20重量%~30重量%。
在本方法中所使用的分散剂的量,基于无机微粒的干重,优选为低于约0.25重量%,更优选低于0.15重量%,典型地低于约0.1重量%。然而,本领域的技术人员可以很容易地改变准确用量,以达到本发明提供的效果。
正如本领域技术人员所充分认识和理解的那样,水性悬浮液可能适当地通过常规的混合技术制备,并且可以适当地包括选择性的附加成分。
研磨方法研磨以常规方法适当地实施。研磨可以是在微粒研磨介质存在下的磨碎过程,或者可以是自磨过程,即不存在研磨介质的过程。
微粒研磨介质,当存在时可以是天然或者合成材料。研磨介质可以,例如,包括任何硬矿物、陶瓷或金属材料的球、珠或颗粒,该材料可以包括,例如,氧化铝、氧化锆、锆、硅酸盐、硅酸铝或者通过在约1300℃~约1800℃的温度范围煅烧高岭石粘土制得的富莫来石材料。替代性地,可以使用具有合适粒径的天然砂颗粒。
通常,所选择的用于本发明的研磨介质的类型和粒径可取决于待研磨的无机材料的进料悬浮液的性质,例如粒径和化学组成。优选微粒研磨介质所含有的颗粒具有约0.1mm~约6.0mm的平均直径,更优选约0.2mm至约4.0mm。研磨介质(或介质)的量可以占进料的约40体积%~约70体积%,且更优选为进料的约50体积%~约60体积%。
研磨可以在一步或多步中进行。例如,进料悬浮液可以在第一磨碎机中进行部分研磨,然后将经部分研磨的无机微粒材料的悬浮液供应给第二磨碎机以进行进一步研磨,随后可将经研磨的材料的悬浮液供应给一个或多个后续磨碎机。
研磨过程可以例如在相对较低的温度下进行,例如,低于约30℃。据认为较低的温度有助于防止或者限制由于铁类腐蚀产物进入水性悬浮液而导致的白色无机微粒的褪色。
在已进行研磨之后,可以将悬浮液脱水成高固体悬浮液,并除去所有的研磨介质。随后可对经研磨的产物进行干燥。
通过所述脱水形成的高固体悬浮液可以适当地具有约70重量%的固体含量,并可以用分散剂形成,例如用上述分散剂中的一种分散剂形成。所使用的分散剂与研磨步骤所使用的分散剂可以相同也可以不同。然而,在研磨后阶段所使用的分散剂需要用于限制在高固体悬浮液中微粒无机材料的絮凝,因此必须以分散剂有效量存在,典型地至少为无机微粒干重的约0.3重量%,更优选至少约0.4重量%,例如至少约0.5重量%。
不作为对本发明范围的限制,理论上认为,根据本发明使用极小量的分散剂就足以“预涂”无机微粒材料,并可以使后来加入的更大量的分散剂更均匀的分布以获得高固体浆料。另外,据信所使用的少量分散剂在研磨过程中作为抗腐蚀剂。
经研磨的微粒材料的用途用本发明的方法所获得的经研磨的微粒材料可以用于广泛的用途,这对于本领域的技术人员来说是显而易见的。通常,无机微粒材料被用作涂层或填料;或者涂层或填料组合物的一部分。其用途包括例如下列产品的制备纸(该术语包括在其范围内的各种形式的纸、卡片、厚纸板、纸板等等,包括但不限于打印纸和书写纸);聚合物和橡胶,例如塑料(可以是薄膜的形式);油漆;密封剂或胶粘剂;陶瓷;以及随后被加工以获得上述任何产品的组合物。


现在将参考实施例和附图对本发明进行更详尽但非限定性的描述。在图中图1显示了用实施例2的实验中的分散剂在T=0所得到的浆料的粘度;图2显示了用实施例2的实验中的分散剂在T=24小时所得到的浆料的粘度;图3显示了用实施例2的实验中的分散剂在低压下活塞挤压脱水所得到的浆料的渗透性。
实施例1在本实验中,测定了六偏磷酸钠分散剂的各种限量(非常低)用量对经研磨的碳酸钙的浆料特性的影响。
经研磨的碳酸钙由粗碳酸钙原料在250kWh/t、低固体含量(25重量%)条件下通过实验室浆料砂磨制备。制备三批经砂磨的材料,其中分别含有占干碳酸钙的0.1重量%、0.2重量%和0.3重量%的分散剂。然后通过在250psi对所述三批材料进行低压活塞挤压脱水,以得到饼状物。在每块饼的挤压过程中使用如下所述的检测方法对饼状物的渗透性和阻力进行测定。然后将各块饼状物分成两个样品,并将饼状物样品用0.5%和0.6%的部分中和(60%中和)的聚丙烯酸钠分散剂溶液悬浮,以得到含72重量%~73重量%固体的高固体浆料(制备完成(makedown)浆料)。然后在T(制备完成后的时间)=0、1、24和168(小时)时对浆液的布氏100rpm粘度进行测定。另外,在挤压后对每个样品的粒径分布(psd)、d50和陡度进行测定。
六个样品(1号至6号)和相应对照(未用分散剂)的结果如下表1所示。
表5

表6

3-2关于包含油墨树脂的树脂组合物(水溶性胶版印刷油墨)的实施例实施例16-19和对比例19-22按照如下配方5将实施例1、5-7中制得的各个二氧化钛颜料(样品A、E-G)加入体积为130cc的玻璃容器中,随后,使用涂料调节器(Red Devil公司制造)分散30分钟以制备分散液。然后,根据下述配方6,制得基于1重量份的树脂组分包含6.3重量份的二氧化钛颜料且固体体积浓度为54.5%的本发明树脂组合物(水溶性胶版油墨组合物)。这些树脂组合物被称为实施例16-19的样品(样品s-v)。此外,使用对比例1、6-8的二氧化钛颜料(样品H、M-O)类似地制备水溶性胶印油墨组合物。这些组合物被称为对比例19-22的样品(样品w-z)。
表7
渗透性检测方法在标准检测程序下对滤饼的渗透性进行测定,表1中以数字表示的渗透性等于15℃时在每平方英寸1镑力(6.895kPa)的压差下在面积为1平方英寸(1平方英寸=6.451×10-4平方米)、厚度为1英寸(1英寸=2.54cm)的滤饼上每小时透过的水的流量(以立方英寸表示,1立方英寸=1.638×10-5立方米)。
阻力检测方法在标准检测程序下对滤饼阻力(α)进行测定,阻力在表1中作为穿过累积滤饼的压降的常规函数以镑力/平方英尺(1镑力/平方英尺=47.90Pa)来表示。
讨论和结论样品1、2、3和4在脱水时提供了最佳的渗透性/阻力,表明在研磨阶段分散剂的用量高于0.2%对产品的脱水特性有害。注意高渗透性意味着更快的过滤速度。
样品1、3和5显示了最少的结构形式(structure formation),表明在制备完成阶段0.5%的部分中和的分散剂是最佳的。
数据表明分散剂的研磨前最佳用量为0.1%~0.2%的分散剂;研磨后用量为0.5%的60%部分中和的分散剂。
实施例2在本实验中,测定了分散剂六偏磷酸钠(NaHex)、聚丙烯酸钠DP2695(购自Ciba Chemicals)及它们的组合物的各种限量(非常低)研磨前用量对经研磨的碳酸钙的浆料特性的影响。
如图1至3所示,除了使用不同的分散剂,并且所加入的分散剂的总量等于0.6%以外,所用方法基本上如实施例1中所述。
讨论和结论图1和图2说明了在制备完成后所得到的72%固体浆料在T=0和T=24(小时)时布氏100rpm粘度的测量结果。表3显示了在25重量%固体含量时低压活塞挤压饼状物的渗透性测量结果。
图1的结果显示出0.1%和0.15%的聚丙烯酸钠研磨前用量提供了良好的T=0粘度。然而,所有用限量用量分散剂处理的浆料均优于对照。聚丙烯酸钠和六偏磷酸钠的组合研磨前用量,及0.15%的聚丙烯酸钠研磨前用量提供了最佳的T=0粘度结果。
图2的结果显示出0.15%的BTC2研磨前用量与对照相比提供了更好的T=24小时粘度。BTC2和六偏磷酸钠的组合研磨前用量,和0.15%的聚丙烯酸钠研磨前用量提供了最佳的T=24小时粘度结果。
图3的结果显示出所有样品的渗透性均高于对照。0.1%的聚丙烯酸钠研磨前用量,及六偏磷酸钠与0.1%聚丙烯酸钠的组合研磨前用量提供了最佳的渗透性结果。
实施例3在本实验中,测定了加入六偏磷酸钠对经研磨的碳酸钙浆料的亮度的影响。
实验使用两个分别具有如下粒径分布的经研磨的碳酸钙样品A和BA-99重量%小于2μm,90重量%小于1μm,70重量%小于0.5μm,35重量%小于0.25μm;B-95重量%小于2μm,75重量%小于1μm,40重量%小于0.5μm,15重量%小于0.25μm。将各个碳酸盐样品分成两部分,对各部分进行稀释以提供碳酸盐A和B的约含30重量%和20重量%固体的悬浮液(浆料)。向每一个悬浮液样品中加入200ppm的铁粉,并向其中选定的样品中加入0.1%的六偏磷酸钠(见表2)。在22℃和50℃对选定的样品以约10升/分钟的速度向每个样品通入30分钟氧气。在处理后,用氯化钙对样品进行絮凝,过滤,并干燥以进行亮度测定。通过ISO的方法对亮度和黄色在处理后(T=0小时)立刻测定和在1周(T=168小时)后测定。结果如下表2所示。表2的第一部分显示了T=0小时的结果,表2的第二部分显示了T=168小时的结果。
表2(第一部分)T=0时的数据

表2(第二部分)T=168时的数据

讨论和结论结果显示初始添加的铁粉使亮度降低了约1个ISO单位。黄色值未受到显著的影响。通过ISO检测方法测得的L(白度)、A(蓝/绿)和B(黄/橙)值显示出从蓝/绿向黄色的轻微迁移。对于材料A在22℃施加氧气使亮度值降低了约0.3至0.5个单位。样品B未改变。在50℃材料A和B的亮度和黄色均受到了显著的影响。亮度值降低了大约1.5~2.5个单位,同时黄色值增加了大约1个单位。LAB值显示出从蓝/绿向红/黄的迁移。
对于在50℃制备的样品,在添加氧之前加入0.1%的六偏磷酸钠对亮度具有重大影响。与未使用六偏磷酸钠所制备的材料的结果相比,亮度提高了约2个单位,同时相应地降低了黄色因子。
这些结果表明六偏磷酸钠的添加可以抑制腐蚀,所述腐蚀可以影响浆料的亮度。温度似乎对有色物质的形成具有显著影响,从而在50℃所制备的样品比在22℃所制备的样品的亮度低得多。放置了1个星期(T=168小时)的样品显示出类似趋势,说明温度的影响比时间(对于该较短时期)更大。用六偏磷酸钠处理的样品显示出与未处理样品相似的亮度/黄色值。
上面对本发明进行了广泛地但非限制性的描述。对于本领域技术人员来说显而易见的改变和修正均包括在本申请及由其所得到的专利的范围之内。
权利要求
1.一种在水性悬浮液中研磨无机微粒材料的方法,其中所述水性悬浮液含有用于无机微粒材料的次有效量的分散剂。
2.如权利要求1所述的方法,其中所述无机微粒材料是碳酸钙。
3.如权利要求1所述的方法,其中所述无机微粒材料是水合高岭石组粘土。
4.如权利要求3所述的方法,其中所述水合高岭石组粘土是高岭土。
5.如上述任一项权利要求所述的方法,其中所述水性悬浮液含有最高约50重量%的无机微粒材料。
6.如上述任一项权利要求所述的方法,其中所述水性悬浮液含有基于无机微粒材料的干重最高为约0.25重量%的分散剂。
7.如权利要求6所述的方法,其中所述水性悬浮液含有基于所述无机微粒材料的干重最高为约0.15重量%的分散剂。
8.如权利要求6所述的方法,其中所述水性悬浮液含有基于所述无机微粒材料的干重最高为约0.1重量%的分散剂。
9.如权利要求6所述的方法,其中所述水性悬浮液含有基于所述无机微粒材料的干重小于约0.05重量%的分散剂。
10.如上述任一项权利要求所述的方法,其中所述分散剂包含聚丙烯酸盐。
11.如权利要求1~9任一项所述的方法,其中所述分散剂包含聚偏磷酸盐。
12.如权利要求11所述的方法,其中所述聚偏磷酸盐是六偏磷酸钠或偏磷酸四钠。
13.如上述任一项权利要求所述的方法,其中在研磨后向所述水性悬浮液中加入附加量的分散剂。
14.如上述任一项权利要求所述的方法,其中在研磨后从所述水性悬浮液中除去一定量的水。
15.如上述任一项权利要求所述的方法,其中在研磨后调整所述水性悬浮液的固体含量,以提供含有固体含量大于约50重量%的无机微粒材料和分散剂的悬浮液。
16.如上述任一项权利要求所述的方法,其中所述无机微粒材料的研磨在将所述无机微粒材料的陡度提高至陡度因子大于约35的研磨条件下进行。
17.如权利要求16所述的方法,其中所述研磨条件是将所述无机微粒材料的陡度提高至陡度因子大于约40。
18.如权利要求16所述的方法,其中所述研磨条件是将所述无机微粒材料的陡度提高至陡度因子大于约45。
19.如上述任一项权利要求所述的方法,该方法用于在所述水性悬浮液中研磨所述无机微粒材料以得到粒径降低且陡度升高的无机微粒材料,其中所述水性悬浮液含有用于无机微粒材料的次有效量的分散剂。
20.如权利要求19所述的方法,其中将所述水性悬浮液在研磨后脱水,以将其固体含量提高至所述无机微粒材料的含量高于约50重量%。
21.如上述任一项权利要求所述的方法,其中所得到的经研磨的无机微粒材料在处理后被干燥。
22.如前述任一项权利要求所述的方法,其中将所得到的经研磨的无机微粒材料加入到纸或者纸浆中由此提供涂层或者填料,或者加入到随后被加工以得到纸的组合物中。
23.如权利要求1~21任一项所述的方法,其中将所得到的经研磨的无机微粒材料加入到聚合物或者橡胶中,或者加入到随后被加工以得到聚合物或橡胶的组合物中。
24.如权利要求23所述的方法,其中所述聚合物是塑料材料。
25.如权利要求23所述的方法,其中将所得到的聚合物形成为膜。
26.如权利要求1~21任一项所述的方法,其中将所得到的经研磨的无机微粒材料加入到油漆中,或者加入到随后被加工以得到油漆的组合物中。
27.如权利要求1~21任一项所述的方法,其中将所得到的经研磨的无机微粒材料加入到密封剂或胶粘剂中,或者加入到随后被加工以得到密封剂或胶粘剂的组合物中。
28.如权利要求1~21任一项所述的方法,其中将所得到的经研磨的无机微粒材料加入到陶瓷中,或者加入到随后被加工以得到陶瓷的组合物中。
29.一种经研磨的无机微粒材料的水性悬浮液,该水性悬浮液含有次有效量的用于无机微粒材料的分散剂。
30.如权利要求29所述的水性悬浮液,所述水性悬浮液由如权利要求1~20任一项所述的方法制备。
31.一种经研磨的无机微粒材料的水性悬浮液,该水性悬浮液含有分散剂有效量的用于无机微粒材料的分散剂,所述水性悬浮液由如权利要求1~18任一项所述的方法制备,并且所述方法包括在研磨后向所述水性悬浮液中加入一定量的分散剂。
32.一种干燥的经研磨的无机微粒材料,该无机微粒材料含有一定量的用于无机微粒材料的分散剂,所述材料是如权利要求29~31任一项所述的水性悬浮液的干燥残余物。
33.一种纸或纸浆,该纸或纸浆由如权利要求22所述的方法制备。
34.一种聚合物或橡胶,该聚合物或橡胶由如权利要求23~25任一项所述的方法制备。
35.一种油漆,该油漆由如权利要求26所述的方法制备。
36.一种密封剂或胶粘剂,该密封剂或胶粘剂由如权利要求27所述的方法制备。
37.一种陶瓷,该陶瓷由如权利要求28所述的方法制备。
38.用于无机微粒材料的次有效量的分散剂在无机微粒材料的低固体水性悬浮液中作为抗腐蚀剂的用途。
全文摘要
本发明提供一种在水性悬浮液中研磨例如碳酸钙或者高岭土等无机微粒材料的方法,优选在固体含量低于50重量%时进行研磨,其中所述水性悬浮液中含有次有效量的用于无机微粒材料的分散剂。
文档编号C09C3/00GK1681895SQ03822021
公开日2005年10月12日 申请日期2003年9月12日 优先权日2002年9月17日
发明者约翰·克劳德·赫斯本德, 奈杰尔·V·贾维斯, 德斯蒙德·查尔斯·佩顿, 戴维·罗伯特·斯丘斯 申请人:伊梅里斯矿物有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1