车辆及车辆的控制方法

文档序号:3993785阅读:127来源:国知局
专利名称:车辆及车辆的控制方法
技术领域
本发明涉及车辆及车辆的控制方法,特别是涉及搭载于车辆上的蓄电装置的充电的控制。
背景技术
混合动力汽车、电动汽车及燃料电池汽车等车辆具备用于蓄积电力的蓄电装置和电动机。电动机通过从蓄电装置供给的电力而产生车辆的驱动力。车辆制动时,电动机进行再生发电。通过再生发电生成的电力向蓄电装置供给。因此,上述车辆行驶中,控制蓄电装置的充电及放电,以使表示蓄电装置的充电状态的指标值(SOC)在适当的范围内。SOC被定义为当前蓄电量相对于满蓄电状态的蓄电量的比率。满蓄电状态的蓄电装置的SOC为100(%),完全没有蓄电的状态下的蓄电装置的SOC为0 (%)。例如,日本特开2004 - 56867号公报(专利文献I)公开了能够按照行驶区间调节蓄电装置的SOC的管理幅度而构成的混合动力车辆的控制系统。该控制系统具备道路信息获取部,其获取车辆的行驶预定路径的道路信息;管理幅度及行驶方法决定处理部,其改变蓄电单元的SOC的管理幅度,同时决定车辆的行驶方法;控制执行处理部,其按照决定的行驶方法执行车辆的行驶控制。管理幅度及行驶方法决定处理部在车辆的行驶预定路径的规定区间算出蓄电单元(蓄电池)的S0C,并且基于该S0C,改变SOC的管理幅度。另外,管理幅度及行驶方法决定处理部以其规定区间的终点的SOC处于其管理幅度内的方式决定混合动力车辆的行驶方法。例如,日本特开2005 - 65352号公报(专利文献2)公开了用于控制蓄电池的充电及放电的控制装置。该控制装置通过改变蓄电池的SOC的管理幅度,防止蓄电池的过放电,同时,能够避免记忆效应对蓄电池的充电及放电的影响。具体而言,上述控制装置在发生记忆效应的情况下,使SOC的管理幅度的上限值及下限值均上升。在先技术文献专利文献I :日本特开2004 - 56867号公报专利文献2 日本特开2005 - 65352号公报

发明内容
优选上述车辆的续航距离尽量长。在本说明书中,“续航距离”是指车辆利用蓄电装置蓄积的电力能够行驶的距离。用于延长续航距离的一个解决策略是增加蓄电装置的个数或构成蓄电装置的单电池的个数。但是,由于蓄电装置的个数或单电池的个数增加,不仅蓄电装置的体积、重量增加,蓄电装置的成本也上升。由于蓄电装置的重量增加,实际续航距离可能比基于蓄电装置的电容算出的距离短。专利文献I公开的控制装置为了将充足的再生电流回收到蓄电池中,而在混合动力车辆行驶中改变SOC的管理幅度。由此,能够降低混合动力车辆的燃料消耗量。但是,专、利文献I仅公开了用于在任意时期进行的车辆行驶中降低燃料消耗量的技术。在反复进行混合动力车辆的行驶中,蓄电装置渐渐老化。由于蓄电装置老化,蓄电装置的电容降低。因此,随着混合动力车辆的使用年数变长,可能不能够充分地得到降低燃料消耗量的效果。专利文献I没有说明用于抑制蓄电装置的电容降低的具体方法。专利文献2说明用于防止记忆效应引起的蓄电池的电容降低的方法。但是,专利文献2没有说明反复进行车辆的行驶引起的蓄电池的老化。换言之,专利文献2没有公开考虑蓄电池老化的蓄电池的控制。本发明的目的在于提供一种能够实现抑制蓄电装置老化和确保续航距离这两者的车辆。按照本发明的某一形态的车辆具备蓄电装置,构成为能够再充电;电动机,构成为通过利用蓄积于蓄电装置的电力产生车辆的驱动力;充电机构,构成为将从车辆的外部 的电源输出的电力向蓄电装置供给;控制装置,构成为控制对蓄电装置充电时的蓄电装置的充电状态。控制装置包括状态推定部,构成为算出表示充电状态的指标值;设定部,构成为在与蓄电装置的老化有关的规定条件成立时使指标值的上限值上升。优选设定部以上限值低于规定值的方式设定上限值的变化量。优选设定部能够切换将规定值设定为上限值的第一模式和能够调整上限值的第二模式,且在第二模式下设定变化量。优选设定部在第二模式下,以车辆的可行驶距离为目标距离以上且上限值低于规定值的方式设定变化量。优选车辆还具备指令生成部。指令生成部构成为通过手动操作切换生成用于延长蓄电装置的使用期间的指令和停止指令的生成。在指令生成部生成了指令的情况下,设定部从第一及第二模式中选择第二模式,另一方面,在指令生成部停止了指令的生成的情况下,设定部从第一及第二模式中选择第一模式。优选规定条件是基于车辆的使用期间预先确定的条件。优选规定条件是基于车辆的行驶距离预先确定的条件。优选控制装置还包括距离计算部。距离计算部构成为基于通过设定部设定的上限值推定车辆的可行驶距离。车辆还具备显示装置,该显示装置构成为能够显示通过距离计算部推定的可行驶距离。优选可行驶距离包括第一可行驶距离,是在变更上限值之前车辆能够行驶的距离;第二可行驶距离,是在变更上限值之后车辆能够行驶的距离。距离计算部推定第一及第二可行驶距离。显示装置构成为能够显示通过距离计算部推定的第一及第二可行驶距离。本发明其它方面为一种车辆的控制方法。车辆具备蓄电装置,构成为能够再充电;电动机,构成为通过利用蓄积于蓄电装置的电力产生车辆的驱动力;充电机构,构成为将从车辆的外部的电源输出的电力向蓄电装置供给;控制装置,构成为控制对蓄电装置充电时的蓄电装置的充电状态。控制方法包括算出表示充电状态的指标值的步骤;在与蓄电装置的老化有关的规定条件成立时使指标值的上限值上升的步骤。优选使上限值上升的步骤以上限值低于规定值的方式设定上限值的变化量。优选车辆的控制方法还包括如下步骤选择将规定值设定为上限值的第一模式和能够调整上限值的第二模式中的任一模式。使上限值上升的步骤在选择了第二模式时设定变化量。优选使上限值上升的步骤在第二模式下,以车辆的可行驶距离为目标距离以上且上限值低于规定值的方式设定变化量优选车辆还具备指令生成部。指令生成部构成为通过手动操作切换生成用于延长蓄电装置的使用期间的指令和停止指令的生成。在指令生成部生成了指令的情况下,进行选择的步骤从第一及第二模式中选择第二模式,另一方面,在指令生成部停止了指令的生成的情况下,进行选择的步骤从第一及第二模式中选择第一模式。优选规定条件是基于车辆的使用期间预先确定的条件。优选规定条件是基于车辆的行驶距离预先确定的条件。优选车辆还具备显示装置。控制方法还包括基于上限值推定车辆的可行驶距离的步骤;向显示装置输出可行驶距离以在显示装置显示可行驶距离的步骤。优选可行驶距离包括第一可行驶距离,是在变更上限值之前车辆能够行驶的距离;第二可行驶距离,是在变更上限值之后车辆能够行驶的距离。进行推定的步骤算出第一及第二可行驶距离。根据本发明,能够抑制搭载于车辆上的蓄电装置的老化,同时,能够确保该车辆的续航距离。


图I是本发明实施方式I的车辆的整体框图;图2是表示图I所示的监视单元的结构例的图;图3是图I所示的充电E⑶的功能框图;图4是用于说明普通模式下的SOC的控制范围及节电模式下的SOC的控制范围的图;图5是用于说明通过图I所示的充电ECU执行的蓄电池的充电的控制的流程图;图6是用于说明通过蓄积于锂离子电池的电力行驶的车辆的使用年数与该锂离子电池的电容维持率之间的相关关系的图;图7是用于说明节电模式下的续航距离和普通模式下的续航距离的图;图8是说明通过按照实施方式I的控制能够实现的续航距离的图;图9是用于说明基于蓄电池的使用年数的控制范围的上限值的控制的图;图10是用于说明基于车辆的行驶距离的控制范围的上限值的控制的图;图11是用于说明根据图9所示的映射执行的控制的流程图;图12是用于说明根据图10所示的映射执行的控制的流程图;图13是基于本发明实施方式2的车辆的整体框图;图14是用于说明图13所示的显示装置的显示例的图;图15是图13所示的充电E⑶的功能框图;图16是用于说明存储于图15所示的存储部的表的第一例的图;图17是用于说明存储于图15所示的存储部的表的第二例的图;图18是用于说明通过图15所示的充电E⑶执行的显示处理的流程图;图19是表示作为本发明实施方式的车辆的一例的混合动力车辆的结构的图。
具体实施例方式下面,参照附图详细说明本发明实施方式。另外,图中,对于相同或相当的部分标注同一标号,不重复其说明。[实施方式I]图I是本发明实施方式I的车辆的整体框图。参照图1,本发明实施方式I的车辆I具备蓄电池10、系统主继电器(下面,也称为“SMR”。)12、逆变器16、电动发电机(下面,也称为 “MG”。)20、驱动轮 22、MG — ECU (Electronic Control Unit) 30。车辆 I 还具备充电接口 42、传感器43、充电器44、继电器46、充电ECU48、开关49、电流传感器50、监视单元54、空调70。蓄电池10是构成为能够再充电的蓄电装置。蓄电池10由串联有多个单电池11的电池组构成。在本实施方式中,蓄电池10是锂离子电池。在车辆I行驶时,蓄电池10将用于驱动MG20的电力向逆变器16供给。通过将蓄积于蓄电池10的电力向MG20供给,MG20产生车辆I的驱动力。车辆I制动时,通过MG20的再生发电生成的电力向蓄电池10供给。在从设置于车辆I的外部的电源60向车辆I供给电力的情况下,充电器44向蓄电池10供给电力。通过向蓄电池10供给电力,对蓄电池10充电。电源60例如是交流电源。SMRl2设于蓄电池10和逆变器16之间。SMR12通过正极线13P及负极线13N与蓄电池10连接。SMR12通过正极线15P及负极线15N与逆变器16连接。车辆I行驶时,SMR12处于接通状态。另一方面,通过充电器44对蓄电池10充电时,SMR12处于断开状态。另外,SMRl2也可以配置于蓄电池10和继电器46之间。逆变器16基于来自MG — E⑶30的控制信号PWIl驱动MG20。虽然未图示,但是逆变器16由例如具备U相支路、V相支路及W相支路的三相桥接电路构成。逆变器16将从蓄电池10输出的直流电转换成交流电,同时将该交流电向MG20供给。逆变器16将通过MG20生成的交流电转换成直流电,同时将该直流电向蓄电池10供给。另外,为了进行蓄电 池的直流电压和逆变器的直流电压的转换,也可以在蓄电池10和逆变器16之间设置电压转换器(DC/DC转换器)。MG20是交流旋转电机,由例如具有埋设有永磁体的转子的三相交流同步电动机构成。MG20的旋转轴与驱动轮22连结。MG — E⑶30生成用于驱动MG20的控制信号PWI1,同时将该控制信号PWIl向逆变器16输出。连接器62设置于车辆I的外部,且与电源60连接。充电接口 42构成为与充电器44的输入侧连接且能够与连接器62连接。充电接口 42与连接器62连接,由此将来自电源60的交流电输入充电接口 42。传感器43检测充电接口 42与连接器62的连接,同时,输出表示能够开始蓄电池10的充电的信号STR。连接器62从充电接口 42拆下时,传感器43停止信号STR的输出。充电器44通过继电器46与正极线13P及负极线13N连接,同时,将从电源60输出的电力向蓄电池10供给。充电器44由例如将交流电转换成直流电的AC/DC转换器构成。充电器44基于来自充电ECU48的控制信号PWD,将从电源60供给的交流电转换成直流电。从充电器44输出的直流电通过继电器46、正极线13P及负极线13N,向蓄电池10供给。充电器44对蓄电池10充电期间,继电器46保持接通状态。另外,充电器44也可以设置于车辆I的外部。这种情况下,充电接口 42接收从充电器44输出的直流电。输入充电接口 42的电力经由继电器46、正极线13P及负极线13N,向蓄电池10供给。总而言之,充电接口 42及继电器46将从电源60输出的电力向蓄电池10供给。充电E⑶48基于来自传感器43的信号STR,开始充电器44的控制。详细而言,充电E⑶48基于从监视单元54发送的电流、电压及温度的检测值,生成用于驱动充电器44的控制信号PWD,同时,将该控制信号PWD向充电器44发送。充电器44基于控制信号PWDJf从电源60供给的交流电转换成直流电。充电E⑶48基于表示蓄电池10的充电状态的指标值(SOC)控制充电器44。蓄电池10的SOC达到控制范围的上限值时,充电E⑶48停止控制信号PWD的输出。充电E⑶48停止控制信号PWD的输出,从而充电器44停止。充电器44停止,由此蓄电池10的充电结束。SOC定义为当前蓄电池10的蓄电量相对于满蓄电状态的蓄电池10的蓄电量的比率。开关49作为由用户操作的开关搭载于车辆I上。通过手动操作,开关49将其状态在接通状态和断开状态之间切换。开关49处于接通状态时,开关49生成用于设定蓄电池10的充电模式以抑制蓄电池10的老化的指令(信号SLF)。通过抑制蓄电池10的老化,能够延长蓄电池10的使用期间。S卩,信号SLF是用于延长蓄电池10的使用期间的指令。在下面的说明中,将用于抑制蓄电池10的老化的充电模式称为“节电模式”。通过用户断开开关49,开关49停止信号SLF的生成。由此,解除节电模式的设定,同时,车辆I的充电模式从节电模式切换到普通模式。即,用户能够通过操作开关49,来从节电模式及普通模式中选择车辆I的充电模式。充电E⑶48为了对蓄电池10充电而设定SOC的控制范围。节电模式下的控制范围比普通模式下的控制范围窄。具体而言,节电模式下的控制范围的上限值比普通模式下的控制范围的上限值小。节电模式下的控制范围的下限值为普通模式下的控制范围的下限值以上。即,充电E⑶48控制蓄电池10充电时的蓄电池10的充电状态。另外,在下面的说明中,有时也将“控制范围的上限值”称为“S0C的上限值”或只称为“上限值”。电流传感器50检测对蓄电池10输入的电流及从蓄电池10输出的电流,同时,将根据该电流大小而变化的模拟信号向监视单元54输出。监视单元54将从电流传感器50输出的模拟信号转换成表示电流值的数字信号。监视单元54将该数字信号(电流值)向充电E⑶48输出。另外,监视单元54以由规定个数的单电池11构成的电池块为单位检测温度及电压。监视单元54将表示各块的温度及电压的数字信号向充电ECU48输出。正极线13P及负极线13N与通过从蓄电池10供给的电力而动作的辅机连接。在图I中,作为辅机的代表例,例示了空调70。图2是表示图I所示的监视单元的结构例的图。参照图2,蓄电池10包括串联的多个单电池11。多个单电池11分割成多个电池块BB (I) BB (n) (11:自然数)。监视单元54包括传感器组56 (I) 56 (n),其分别与电池块BB (I) BB (n)对应配置;模拟一数字转换器(A/D) 58,其与电流传感器50对应配置。、
各个传感器组56 (I) 56 (n)检测对应的块的温度及电压。传感器组56 (I) 56 (n)分别检测温度Tb (I) Tb (n)。另外,传感器组56 (I) 56 (n)分别检测电压Vb (I) Vb (n)。各传感器组56 (I) 56 (n)的检测值向充电ECU48输出。模拟一数字转换器58将来自电流传感器50的模拟信号转换成数字信号。数字信号表不电流Ib的值。电流Ib是输入蓄电池10的电流及从蓄电池10输出的电流。另外,除了图2所示的传感器组56 (I) 56 (n)及模拟一数字转换器(A/D) 58以外,也可以在每个单电池11上设置用于监视单电池11的电压的监视器。各监视器在例如对应的单电池11的电压在正常范围外的情况下,使表示单电池11异常的标志为接通。通过使标志为接通,从而充电ECU48能够检测蓄电池10的异常。图3是图I所示的充电E⑶的功能框图。参照图3,充电E⑶48包括SOC推定部101、控制范围设定部111、判定部112、信号生成部113。 SOC推定部101从监视单元54接收电流Ib、电压Vb (I) Vb (n)及温度Tb
(I) Tb (n)的各检测值。SOC推定部101基于各检测值算出蓄电池10的整体S0C。详细而言,SOC推定部101基于各块的检测值算出该块的S0C,同时,基于各块的SOC算出整体SOC0在本实施方式中,可以使用用于算出锂离子电池的SOC的公知方法作为用于算出各块的SOC的方法。例如,可以基于电流Ib的累计值算出各块的S0C。或着,也可以基于开路电压(OCV)和SOC之间的相关关系及通过监视单元54检测出的电压值,按一定周期算出各块的S0C。用于由各块的SOC算出整体SOC的方法没有特别限定,例如,整体SOC可以是各块的SOC的平均值。控制范围设定部111设定SOC的控制范围。开关49为断开状态时,开关49停止信号SLF的生成。这种情况下,控制范围设定部111将SOC的控制范围设定为第一范围,同时输出第一范围的上限值UL1。另一方面,用户接通开关49的情况下,开关49生成信号SLF。这种情况下,控制范围设定部111将SOC的控制范围设定为第二范围,同时输出第二范围的上限值UL2。第一范围是普通模式下的SOC的控制范围。第二范围是节电模式下的SOC的控制范围。判定部112从SOC推定部101接收S0C,同时从控制范围设定部111接收上限值ULl及UL2中的任一个。判定部112判定SOC是否达到上限值(ULl或UL2)。判定部112将该判定结果向信号生成部113输出。信号生成部113基于来自传感器43的信号STR生成控制信号PWD。信号生成部113将该控制信号PWD向充电器44输出。判定部112判定为SOC已到达上限值的情况下,信号生成部113基于判定部112的判定结果,停止控制信号PWD的生成。通过控制信号PWD的生成停止,充电器44停止。通过充电器44停止,蓄电池10的充电结束。图4是用于说明普通模式下的SOC的控制范围及节电模式下的SOC的控制范围的图。参照图4,第一范围Rl是普通模式下的SOC的控制范围。第二范围R2是节电模式下的SOC的控制范围。ULl是第一范围Rl的上限值,UL2是第二范围R2的上限值。另外,ULl是预先确定的值。第一范围Rl的下限值及第二范围R2的下限值均为LL。需要说明的是,第二范围R2的下限值也可以比第一范围Rl的下限值大。上限值UL2比上限值ULl小。因此,第二范围R2比第一范围Rl窄。为了防止蓄电池10的过充电,上限值ULl、UL2均比100 (%)小。为了防止蓄电池10的过放电,下限值LL比0 (%)大。图5是用于说明通过图I所示的充电ECU执行的蓄电池的充电的控制的流程图。该流程图的处理每隔一定时间或每当规定的条件成立时执行。参照图5,在步骤SI中,充电E⑶48判定是否生成了信号STR。信号生成部113接收到信号STR时,信号生成部113判定为信号STR已生成。这种情况下(在步骤SI中为“是”),处理进入步骤S2。另一方面,信号生成部113未接收到信号STR的情况下,信号生成部113判定为信号STR未生成。这种情况下(在步骤SI中为“否”),处理返回主程序。在步骤S2中,充电E⑶48判定是否生成了信号SLF。控制范围设定部111未接收到信号SLF的情况下,控制范围设定部111判定为信号SLF未生成。这种情况下(在步骤S2中为“否”),处理进入步骤S3。另一方面,控制范围设定部111接收到信号SLF时,控制范围设定部111判定为信号SLF已生成。这种情况下(在步骤S2中为“是”),处理进入步骤S4。
在步骤S3中,充电E⑶48 (控制范围设定部111)将SOC的控制范围的上限值设定为UL1。由此,充电模式被设定为普通模式。在步骤S4中,充电ECU48 (控制范围设定部111)将SOC的控制范围的上限值设定为UL2。由此,充电模式被设定为节电模式。通过控制范围设定部111设定的上限值(ULl或UL2)从控制范围设定部111向判定部112发送。执行步骤S3或S4的处理后,执行步骤S5的处理。在步骤S5中,充电E⑶48 (信号生成部113)生成控制信号PWD。充电器44基于该控制信号PWD,将从电源60供给的交流电转换成直流电。通过从充电器44向蓄电池10供给直流电,来对蓄电池10充电。在步骤S6中,充电E⑶48算出蓄电池10的S0C。详细而言,SOC推定部101基于从监视单元54发送的电流值Ib、电压值Vb (I) Vb (n)及温度Tb (I) Tb (n),算出蓄电池10的整体S0C。在步骤S7中,充电E⑶48判定SOC是否达到上限值(ULl或UL2)。具体而言,在步骤S7中,判定部112将通过SOC推定部101算出的SOC和上限值作比较。基于该比较结果,判定部112判定SOC是否达到上限值。判定为SOC达到上限值的情况下(在步骤S7中为“是”),处理进入步骤S8。另一方面,判定为SOC未达到上限值的情况下(在步骤S7中为“否”),处理返回步骤S5。为了对蓄电池10充电,反复执行步骤S5 S7的处理,直到SOC达到上限值。在步骤S8中,充电E⑶48停止控制信号PWD的生成。详细而言,通过判定部112判定为SOC达到上限值时,信号生成部113基于判定部112的判定结果,停止控制信号PWD的生成。由此,蓄电池10的充电结束。步骤S8的处理结束时,整个处理返回主程序。图I所示的车辆I通过蓄积于蓄电池10的电力行驶。为了延长车辆I的续航距离,需要从蓄电池10取出尽可能多的电量。在增加了蓄电池10的电容的情况下,能够增加从蓄电池10取出的电量。但是,由于蓄电池10的电容增加,可能带来蓄电池10的重量及体积的增加。在本实施方式中,最大限度提高蓄电池10充电时的SOC的上限值。具体而言,以SOC达到上限值时蓄电池10不会成为过充电状态的方式预定上限值。另一方面,将SOC的下限值(LL)预定为用于防止蓄电池10的过放电的值。由此,能够从蓄电池10取出较多的电量。因此,能够延长车辆I的续航距离。而且,在本实施方式中,使用锂离子电池作为蓄电池10。锂离子电池具有能量密度高的特征。通过将锂离子电池搭载于车辆I上,能够从蓄电池10取出较多的电量,同时能够实现蓄电池10的小型化及轻量化。但是,锂离子电池直接以高SOC状态(例如,满充电状态)长时间保存的情况下,产生锂离子电池特性的劣化。例如,锂离子电池的电容降低。通过将锂离子电池以低SOC状态保存,能够抑制锂离子电池特性的老化。图6是用于说明通过蓄积于锂离子电池的电力而行驶的车辆的使用年数与该锂离子电池的电容维持率之间的相关关系的图。参照图6,定义锂离子电池为新品时的电容维持率是100 (%)。由于反复进行车辆的行驶,锂离子电池渐渐老化。车辆的使用年数越长,电容维持率越小。S卩,锂离子电池 的电容降低。锂离子电池充电结束时的SOC越高,电容维持率相对于使用年数的降低的程度越大。从蓄电池10充电结束到开始车辆I的行驶的期间可因用户而异。因此,蓄电池10可能以高SOC状态长时间保存。由于蓄电池10以高SOC状态长时间保存,蓄电池10的电容可能降低。在本实施方式中,车辆I具有用于延长蓄电池10的使用期间的节电模式。通过设定节电模式,SOC的控制范围变窄。具体而言,控制范围的上限值降低。通过SOC的控制范围变窄,能够降低蓄电池10充电结束时的S0C。因此,能够抑制蓄电池10的电容的降低。通过抑制蓄电池10的电容的降低,能够抑制车辆I的续航距离的降低。其结果,能够确保车辆I的续航距离。例如,经过了目标使用年数时,车辆能够行驶目标距离。图7是用于说明节电模式下的续航距离和普通模式下的续航距离的图。参照图7,蓄电池10的老化程度小时,蓄电池10能够蓄积较多的电量。因此,车辆I的使用年数短的情况下,普通模式下的续航距离比节电模式下的续航距离长。但是,在对蓄电池10充电直到蓄电池10变成接近满充电状态的状态的情况下,促进了蓄电池10的老化。特别是,蓄电池10为新品时,提高蓄电池10的SOC会促进蓄电池10的老化。通过在普通模式下对蓄电池10充电,蓄电池10的电容的降低的程度变大。另一方面,通过在节电模式下对蓄电池10充电,能够抑制蓄电池10的老化。因此,在节电模式下对蓄电池10充电的情况下,能够抑制蓄电池10的电容降低。如图7所示,车辆I的使用年数长的情况下,能够使节电模式下的续航距离比普通模式下的续航距离长。即,通过在节电模式下对蓄电池10充电,能够抑制蓄电池10的老化,同时能够确保车辆I的续航距离。另外,根据本实施方式,车辆I具备由用户操作的开关49。用户操作开关49,从而从普通模式及节电模式中选择蓄电池10的充电模式。选择了节电模式的情况下,能够抑制蓄电池10的老化,因此即使车辆的使用年数变长也能够确保续航距离。另一方面,蓄电池10的能力充裕的情况下(使用年数短的情况下),通过选择普通模式,能够增加蓄电池10的充电量。因此,能够提高车辆I的行驶性能。例如,车辆I能够行驶比正常的续航距离长的续航距离。根据本实施方式,用户能够从普通模式及节电模式中选择充电模式,因此能够提高用户的便利性。另外,行驶时的SOC的控制范围与蓄电池10充电时的控制范围独立地设定。例如,车辆I制动时,由于MG20的再生发电,对蓄电池10充电的结果是SOC上升。其结果是,SOC可能比蓄电池10充电时的上限值高。但是,通过继续车辆I的行驶,SOC再次降低。S卩,车辆I行驶中,长时间以高SOC状态保存蓄电池10的可能性很低。因此,能够与节电模式下的控制范围及普通模式下的控制范围独立地设定行驶时的SOC的控制范围。
但是,在选择了节电模式作为充电模式的情况下,伴随蓄电池10的使用年数延长,蓄电池10也老化。因此,伴随车辆I的使用年数延长,续航距离降低。因此,在本实施方式中,在选择节电模式作为充电模式且满足与蓄电池10的老化有关的规定条件的情况下,使SOC的控制范围的上限值(UL2)上升。图8是说明能够通过根据本实施方式的控制实现的续航距离的图。参照图8,在基于蓄电池的老化状态的规定的时机,SOC的控制范围的上限值上升。在上限值被固定的情况下,一方面续航距离降低(参照虚线201)。另一方面,通过使上限值上升,可以使蓄电池10的充电量增加(参照实线202)。因此,可延长续航距离。因蓄电池10的老化而蓄电池10的电容降低。SOC的控制范围的上限值被固定的情况下,伴随使用年数延长,可以从蓄电池10取出的电量减少。因此,如虚线所示,使用年数越长,续航距离越低。根据本实施方式,通过在适当的时机使控制范围的上限值上升,能够延长续航距离。因此,在经过了目标的使用年数时,能够确保目标的续航距离。蓄电池10老化的主要因素包括蓄电池10的使用年数及车辆I的行驶距离。因此,本实施方式中,基于蓄电池10的使用年数及车辆I的行驶距离的至少一方变更控制范围的上限值。下面,对基于蓄电池10的使用年数的上限值的控制、及基于行驶距离的上限值的控制进行说明。图9是用于说明基于蓄电池的使用年数的控制范围的上限值的控制的图。参照图9,蓄电池10的使用年数每达到一定的年数(^),上限值UL2上升。例如,上限值UL2的变化量为一定。该变化量以车辆I的续航距离成为目标距离以上的方式预先确定。另外,上限值UL2低于普通模式下的控制范围的上限值UL1。即,以上限值UL2不超过规定值(ULl)的方式设定上限值UL2的变化量。图10是用于说明基于车辆的行驶距离的控制范围的上限值的控制的图。参照图10,车辆的行驶距离每达到一定的距离(Xtl),上限值UL2上升。例如,上限值UL2的变化量为一定。该情况下,也以车辆I的续航距离成为目标距离以上且上限值UL2不超出ULl (规定值)的方式设定上限值UL2的变化量。图9或图10所示的上限值UL2的控制模式作为映射存储于控制范围设定部111。控制范围设定部111根据该映射改变控制范围的上限值UL2。另外,图9及图10分别表示仅基于行驶距离和使用年数的任一方使上限值UL2上升的控制模式。在本实施方式中,也可以基于行驶距离和使用年数的两者使上限值UL2上升。即,也可以在蓄电池的使用年数达到一定值的情况及行驶距离达到一定值的情况的任一情况下,使SOC的控制范围的上限值UL2上升。但是,上限值UL2比上限值ULl小。控制范围设定部111基于由例如未图示的车速传感器检测到的车辆速度算出车辆的行驶距离。另外,控制范围设定部111测量例如车辆速度不为0的期间作为车辆的使用年数。上述的方法是用于测定车辆的行驶距离及使用年数的方法之一例。车辆的行驶距离及使用年数可利用公知的各种方法测定。图8 图10表示使上限值数次上升的控制模式。但是,使上限值上升的次数也可以是I次。基于车辆I的标准使用年数、蓄电池10的电容、目标续航距离等能够确定使上限值上升的次数。另外,在与蓄电池的老化有关的规定条件不成立的情况下,充电E⑶48抑制上限值的上升。具体而言,上限值被保持为一定。但是,在由于车辆I的行驶距离短因此SOC的变动范围小的情况下,充电ECU48也可以通过学习该范围而降低蓄电池10的上限值。在该情况下,充电E⑶48在与蓄电池10的老化有关的规定条件成立时也使上限值上升。另一方面,在与蓄电池10的老化有关的规定条件不成立的情况下,抑制上限值的上升。图11是用于说明根据图9所示的映射执行的控制的流程图。该流程的处理在设定了节电模式的情况下(图5中的步骤S4),每隔一定时间或每当规定条件成立时执行。参照图11,在步骤SlOl中,充电E⑶48判定蓄电池10的使用年数是否达到基准值(yo)。充电ECU48 (控制范围设定部111)测量例如车辆I的行驶年数。该测量值作为蓄电池10的使用年数使用。在测量值达到基准值(ytl)的情况下,充电E⑶48 (控制范围设定部111)判定为蓄电池10的使用年数达到基准值。在判定为蓄电池10的使用年数达到了基准值的情况下(步骤SlOl中为“是”),处理进入步骤S102。另一方面,在判定为蓄电池10的使用年数未达到基准值的情况下(步骤SlOl中为“否”),处理进入步骤S104。在步骤S102,充电E⑶48 (控制范围设定部111)使上限值UL2上升。上限值UL2的变化量例如为一定值。接着步骤S102的处理,执行步骤S103的处理。在步骤S103中,充电E⑶48 (控制范围设定部111)使车辆I的行驶年数的测量值恢复为O。步骤S103的处理一结束,整个处理返回主程序。在步骤S104中,充电E⑶48 (控制范围设定部111)抑制上限值UL2的上升。即,上限值UL2不发生变化。步骤S104的处理一结束,整个处理返回主程序。图12是用于说明根据图10所示的映射执行的控制的流程图。该流程图的处理在设定了节电模式的情况下(图5中的步骤S4),每隔一定时间或每当规定条件成立时执行。参照图12,在步骤SlOlA中,充电E⑶48 (控制范围设定部111)判定车辆I的行驶距离是否达到了基准值(Xo)。在判定为车辆I的行驶距离达到了基准值的情况下(步骤SlOlA中为“是”),处理进入步骤S102A。另一方面,在判定为车辆I的行驶距离未达到基准值的情况下(步骤SlOlA中为“否”),处理进入步骤S104A。在步骤S102A,充电E⑶48 (控制范围设定部111)使上限值UL2上升。上限值UL2的变化量例如为一定值。接着步骤S102A的处理,执行步骤S103A的处理。在步骤S103A中,充电E⑶48 (控制范围设定部111)使车辆I的行驶距离的测量值恢复为O。步骤S103A的处理一结束,整个处理返回主程序。在步骤S104A中,充电E⑶48 (控制范围设定部111)抑制上限值UL2的上升。即,上限值UL2未发生变化。步骤S104A的处理一结束,整个处理返回主程序。如上,根据实施方式1,充电ECU在与蓄电池的老化有关的规定条件成立时,使节电模式下的SOC的控制范围的上限值(UL2)上升。由此,可抑制续航距离的降低。另外,该上限值(UL2)比普通模式下对蓄电池10充电的情况下的上限值(ULl)小。由此,能够获取抑制蓄电池10的老化的效果。[实施方式2]、
图13是本发明实施方式2的车辆的整体框图。参照图13及图1,车辆IA在还具备显示装置72这一点及具备充电E⑶48A代替充电E⑶48这一点上与车辆I不同。充电E⑶48A将SOC的控制范围的上限值上升前的续航距离及上限值上升后的续航距离这两者在显示装置72显示。两种续航距离也可以利用用户的普通操作而在显示装置72显示。或者,这两种续航距离也可以在维护车辆IA时利用显示装置72的特别的操作而在显示装置72显示。图14是用于说明图13所示的显示装置的显示例的图。参照图14,原来的上限值ULa和与该上限值ULa对应的续航距离xa (km)在显示装置72的画面中显示。另外,由上限值ULa变更后的上限值ULb和与该上限值ULb对应的续航距离xb (km)在显示装置72的画面中显示。图15是图13所示的充电E⑶的功能框图。参照图15及图3,充电E⑶48A在还包括存储部124和续航距离计算部125这一点上与充电E⑶48不同。 存储部124存储原来的上限值(下面,称为“上限值(I)”)和由原来的上限值变更后的上限值(下面,称为“上限值(2)”)。存储部124还存储分别与这两个值对应的第一续航距离及第二续航距离。上限值(I)及上限值(2)、以及第一及第二续航距离通过表(也可以是映射)与使用年数或行驶距离建立对应。存储部124存储上述的表或映射。下面的说明中,存储部124设为存储表的存储部。控制范围设定部111使SOC的控制范围的上限值上升,同时将上限值(I)、上限值
(2)向续航距离计算部125输出。续航距离计算部125接收上限值(I)、上限值(2),同时参照存储于存储部124的表。续航距离计算部125基于上限值(I)及表获取第一续航距离。而且,续航距离计算部125基于上限值(2)及表获取第二续航距离。续航距离计算部125将上限值(I)及上限值(2)、以及第一续航距离及第二续航距离向显示装置72输出。显示装置72显示原来的上限值(上限值(l))ULa和与该上限值ULa对应的续航距离xa (参照图9)。而且,显示装置72还显示变更后的上限值(上限值(2))ULb和与该上限值ULb对应的续航距离xb (参照图9)。图16是用于说明存储于图15所示的存储部的表的第一例的图。参照图16,每隔规定的年数%预先确定上限值(I)、上限值(2)、第一续航距离(续航距离(I))、第二续航距离(续航距离(2))。在例如使用年数达到y(l年时,SOC的上限值从ULa上升为ULb。使用年数为I0年时的续航距离为xa。SOC的上限值从ULa向ULb上升,由此,续航距离从xa改变为 xb。xb > xa。从y(l年到2y(l年的期间,SOC的上限值保持在ULb。在使用年数达到2y(l年时,SOC的上限值从ULb上升为ULc。由此,续航距离从xm改变为xc。xc > xm。从2y(l年到3y(l年的期间,SOC的上限值保持在ULc。在使用年数达到3y(l年时,SOC的上限值从ULc上升为ULd。S卩,根据图16所示的表,每经过年,SOC的上限值就上升并且续航距离延长。图17是用于说明存储于图15所示的存储部的表的第二例的图。参照图17,车辆的行驶距离每达到一定的距离Xo,SOC的上限值就上升。通过SOC的上限值从ULa变更为ULb,续航距离从Xal延长为Xbl。另外,SOC的上限值从ULb变更为ULc,由此,续航距离从Xml延长为Xcl。
图18是用于说明通过图15所示的充电E⑶执行的显示处理的流程图。该处理在例如SOC的上限值的上升结束后执行。即,在控制范围设定部111执行图11或图12的流程图所示的控制后执行。参照图18,在步骤Slll中,续航距离计算部125获取上限值(I)及上限值(2)。在步骤SI 12中,续航距离计算部125通过参照存储于存储部124的表,获取续航距离(I)及续航距离(2)。在步骤S 113中,续航距离计算部125输出上限值(I)及上限值(2)、以及续航距离(I)及续航距离(2)。显示装置72显示这些上限值及续航距离。根据实施方式2,能够得到与实施方式I相同的效果。另外,根据实施方式2,续航距离在显示装置上显示。由此,例如,能够得到下述效果。根据实施方式2,SOC的上限值上升后的续航距离在显示装置上显示。由此,用户等可确认执行用于延长续航距离的控制。另外,根据实施方式2,SOC的控制范围的上限值上升前的续航距离和该上限值上升后的续航距离这两者在显示装置显示。在例如用户担心续航距离随着蓄电池的老化而降低的情况下,能够向用户提供续航距离的信息。[车辆的其它结构例]在实施方式I和2中,表示了作为产生驱动力的驱动源只具备电机的车辆。但是,本发明能够适用于具备蓄电装置、和利用该蓄电装置所蓄积的电力而产生驱动力的电动机的车辆。因此,本发明能够适用于例如具备内燃机和电动机作为驱动源的混合动力车辆。图19是表不作为本发明实施方式的车辆之一例的混合动力车辆的结构的图。参照图19及图1,车辆IB在还具备转换器(CONV) 14、逆变器18、MG24、动力分割装置26及发动机28这一点上,与车辆I不同。发动机28通过燃烧例如汽油等燃料而产生动力。转换器14基于从MG — E⑶30接收的控制信号PWC,将正极线13P及负极线13N之间的直流电压和正极线15P及负极线15N之间的直流电压相互转换。逆变器18具有与逆变器16相同的结构,例如由三相桥接电路构成。MG24为交流旋转电机,例如由具有埋设有永磁体的转子的三相交流同步电动机构成。逆变器18基于从MG - ECU30接收的控制信号PWI2驱动MG24。MG24的驱动轴与动力分割装置26连结。动力分割装置26具备由太阳齿轮、小齿轮、行星齿轮架及齿圈构成的行星齿轮机构。与MG24的旋转轴、发动机28的曲轴、及驱动轮22连结的驱动轴与动力分割装置26连接。动力分割装置26将从发动机28输出的动力分配给MG24及驱动轮22。因此,发动机28能够驱动车辆1B。根据图19所示的结构,能够通过设置于车辆IB的外部的电源60对蓄电池10充电。另外,通过MG20的驱动力,车辆IB能够在发动机28停止的状态下行驶。因此,本发明也能够适用于具有图41所示的结构的车辆1B。另外,车辆IB可以代替充电E⑶48而具备充电 ECU48A。
图19表示能够通过动力分割装置26将发动机28的动力传递到驱动轮22和MG20的串联/并联型混合动力车辆。本发明也能够适用于其它形式的混合动力汽车。若表示一例,则例如本发明也能够适用于只为了驱动MG24使用发动机28、只通过MG20产生车辆的驱动力的所谓的串联型混合动力车辆。
另外,本发明还能够适用于不仅具备蓄电池10还具备燃料电池作为直流电源的燃料电池汽车。在本发明实施方式中,作为用于向电动机供给电力的蓄电装置,适用锂离子电池。但是,本发明不限于仅能够适用于具有锂离子电池的车辆。只要车辆具备由于以高SOC状态保存可能导致老化发展的蓄电装置及通过该蓄电装置产生驱动力的电动机,本发明就能够适用于该车辆。另外,充电模式的切换也可以通过充电ECU自动地进行。例如,在充电模式设定为普通模式且行驶年数达到规定年数之前行驶距离超过基准值的情况下,充电ECU也可以将充电模式从普通模式切换为节电模 式。充电ECU用于切换充电模式的条件没有特别限定。另外,在本实施方式中,充电ECU构成为在普通模式及节电模式之间可切换充电模式。但是,本发明的车辆也可以只具有节电模式作为充电模式。在该情况下,在与蓄电池10的老化有关的规定条件成立时,充电ECU也使SOC的控制范围的上限值上升。因此,能够抑制续航距离的降低(确保目标距离以上的续航距离),并且能够抑制蓄电池10的老化。在充电模式只是节电模式的情况下,也能够以上限值低于规定值的方式设定上限值的变化量。该规定值是考虑例如蓄电池的过充电而规定的。在该情况下,虽然在对蓄电池充电时SOC达到上限值,但是该上限值没有超过规定值。因此,能够防止蓄电池成为过充电状态。应该理解这次公开的实施方式在所有方面都是示例,并不是用于限制本发明的。本发明的范围并不是由上述说明而是由权利要求书表示,意在包括在与权利要求书等同的意思及范围内的所有的变更。标号说明UlAUB 车辆;10 蓄电池;11 单电池;12 系统主继电器;13N、15N 负极线;13P、15P正极线;14转换器;16、18逆变器;20、24电机发电机;22驱动轮;26动力分割装置;28 发动机;42 充电接口;43 传感器;44 充电器;46 继电器;48、48A充电E⑶;49开关;50电流传感器;54监视单元;56 (I) 56 (n)传感器组;58模拟一数字转换器;60电源;62连接器;70空调;72显示装置;101 SOC推定部;111控制范围设定部;112判定部;113信号生成部;124存储部;125续航距离计算部;BB (I) BB (n)电池块。
权利要求
1.一种车辆,具备 蓄电装置(10),构成为能够再充电; 电动机(20),构成为通过利用蓄积于所述蓄电装置(10)的电力产生所述车辆的驱动力; 充电机构(44),构成为将从所述车辆的外部的电源(60)输出的电力向所述蓄电装置(10)供给; 控制装置(48、48A),构成为控制对所述蓄电装置(10)充电时的所述蓄电装置(10)的充电状态, 所述控制装置(48、48A)包括 状态推定部(101 ),构成为算出表示所述充电状态的指标值; 设定部(111),构成为在与所述蓄电装置(10)的老化有关的规定条件成立时使所述指标值的上限值上升。
2.如权利要求I所述的车辆,其中, 所述设定部(111)以所述上限值低于规定值的方式设定所述上限值的变化量。
3.如权利要求2所述的车辆,其中, 所述设定部(111)能够切换将所述规定值设定为所述上限值的第一模式和能够调整所述上限值的第二模式,且在所述第二模式下设定所述变化量。
4.如权利要求3所述的车辆,其中, 所述设定部(111)在所述第二模式下,以所述车辆的可行驶距离为目标距离以上且所述上限值低于所述规定值的方式设定所述变化量。
5.如权利要求4所述的车辆,其中, 所述车辆还具备指令生成部(49),该指令生成部(49)构成为通过手动操作切换生成用于延长所述蓄电装置(10)的使用期间的指令和停止所述指令的生成, 所述设定部(111),在所述指令生成部(49)生成了所述指令的情况下,从所述第一及第二模式中选择所述第二模式,另一方面,在所述指令生成部(49)停止了所述指令的生成的情况下,从所述第一及第二模式中选择所述第一模式。
6.如权利要求I所述的车辆,其中, 所述规定条件是基于所述车辆的使用期间预先确定的条件。
7.如权利要求I所述的车辆,其中, 所述规定条件是基于所述车辆的行驶距离预先确定的条件。
8.如权利要求I所述的车辆,其中, 所述控制装置(48A)还包括距离计算部(125),该距离计算部(125)构成为基于通过所述设定部(111)设定的所述上限值推定所述车辆的可行驶距离, 所述车辆还具备显示装置(72),该显示装置(72)构成为能够显示通过所述距离计算部(125)推定的所述可行驶距离。
9.如权利要求8所述的车辆,其中, 所述可行驶距离包括 第一可行驶距离,是在变更所述上限值之前所述车辆能够行驶的距离; 第二可行驶距离,是在变更所述上限值之后所述车辆能够行驶的距离,所述距离计算部(125)推定所述第一及第二可行驶距离, 所述显示装置(72)构成为能够显示通过所述距离计算部(125)推定的所述第一及第二可行驶距离。
10.一种车辆的控制方法, 所述车辆具备 蓄电装置(10),构成为能够再充电; 电动机(20),构成为通过利用蓄积于所述蓄电装置(10)的电力产生所述车辆的驱动力; 充电机构(44),构成为将从所述车辆的外部的电源(60)输出的电力向所述蓄电装置(10)供给; 控制装置(48、48A),构成为控制对所述蓄电装置(10)充电时的所述蓄电装置(10)的充电状态, 所述控制方法包括 算出表示所述充电状态的指标值的步骤(S6); 在与所述蓄电装置(10)的老化有关的规定条件成立时使所述指标值的上限值上升的步骤(S102、S102A)。
11.如权利要求10所述的车辆的控制方法,其中, 使所述上限值上升的步骤(S102、S102A)以所述上限值低于规定值的方式设定所述上限值的变化量。
12.如权利要求11所述的车辆的控制方法,其中, 还包括如下步骤(S3、S4):选择将所述规定值设定为所述上限值的第一模式和能够调整所述上限值的第二模式中的任一模式, 使所述上限值上升的步骤(S102、S102A)在选择了所述第二模式时设定所述变化量。
13.如权利要求12所述的车辆的控制方法,其中, 使所述上限值上升的步骤(S102、S102A)在所述第二模式下,以所述车辆的可行驶距离为目标距离以上且所述上限值低于所述规定值的方式设定所述变化量。
14.如权利要求13所述的车辆的控制方法,其中, 所述车辆还具备指令生成部(49),该指令生成部(49)构成为通过手动操作切换生成用于延长所述蓄电装置(10)的使用期间的指令和停止所述指令的生成, 所述进行选择的步骤(S3、S4),在所述指令生成部(49)生成了所述指令的情况下,从所述第一及第二模式中选择所述第二模式,另一方面,在所述指令生成部(49)停止了所述指令的生成的情况下,从所述第一及第二模式中选择所述第一模式。
15.如权利要求10所述的车辆的控制方法,其中, 所述规定条件是基于所述车辆的使用期间预先确定的条件。
16.如权利要求10所述的车辆的控制方法,其中, 所述规定条件是基于所述车辆的行驶距离预先确定的条件。
17.如权利要求10所述的车辆的控制方法,其中, 所述车辆还具备显示装置(72), 所述控制方法还包括基于所述上限值推定所述车辆的可行驶距离的步骤(S112 ); 向所述显示装置(72)输出所述可行驶距离以在所述显示装置(72)显示所述可行驶距离的步骤(SI 13)。
18.如权利要求17所述的车辆的控制方法,其中, 所述可行驶距离包括 第一可行驶距离,是在变更所述上限值之前所述车辆能够行驶的距离; 第二可行驶距离,是在变更所述上限值之后所述车辆能够行驶的距离, 所述进行推定的步骤(S112)算出所述第一及第二可行驶距离。
全文摘要
车辆(1)具备蓄电池(10);电动机(20),构成为通过利用蓄积于蓄电池(10)的电力产生车辆(1)的驱动力;充电器(44),构成为将从车辆的外部(1)的电源(60)输出的电力向蓄电池(10)供给;ECU(48),构成为控制对蓄电池(10)充电时的蓄电池(10)的充电状态。ECU(48)算出表示蓄电池(10)的充电状态的指标值,并且设定其控制范围。在与蓄电池(10)的老化有关的规定条件成立时,ECU(48)使指标值的上限值上升。
文档编号B60W20/00GK102648105SQ20098016249
公开日2012年8月22日 申请日期2009年11月17日 优先权日2009年11月17日
发明者久须美秀年, 社本纯和, 荒井一真 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1