控制飞轮式传动系统中的扭矩的制作方法

文档序号:3932673阅读:342来源:国知局
专利名称:控制飞轮式传动系统中的扭矩的制作方法
技术领域
本发明总体上涉及一种用于机动车辆的传动系统,更具体地说,涉及控制在飞轮和车辆车轮之间传递的扭矩。
背景技术
混合动力车辆的传动系统将包括内燃机和有级式自动变速器的传统推进系统与能量储存系统相结合,以提高传统车辆的传动系统的燃油经济性,使之超过传统车辆。用于再生并储存车辆的动能的各种技术包括电动系统,包括电动机和蓄电池;液压系统,将能量储存在加压的液压箱(pressurized hydraulic tank)中;飞轮系统,将能量储存在旋转的飞轮或盘中。飞轮系统存在的主要难题在于需要强劲且平稳地向车轮提供飞轮扭矩。已经提出了这样一种方法通过测量作为对传递到车轮的飞轮扭矩进行控制的输入的车轮滑转来确定车轮扭矩。由于这种测量非常严格且可能会随着环境条件而变化,导致需要具有非常精确的速比控制,所以可能难以进行这种测量。尤其是在低负载的情况下,在车辆中难以对车轮滑转进行测量,且车轮滑转具有高增益。这种测量中的小误差可能导致大的控制扰动。

发明内容
一种用于控制机动车辆的传动系统的方法,所述方法包括确定期望的飞轮扭矩; 参照期望的飞轮扭矩确定期望的离合器扭矩容量扭矩,通过离合器在飞轮和车辆车轮之间传递扭矩;操作离合器以产生期望的离合器扭矩容量;确定离合器上的滑转误差;将位于离合器和所述车轮之间的驱动路径中的无级变速器的速比改变至减小滑转误差的速比。本发明还设想一种用于传递传动系统中的动力的系统,所述系统包括飞轮;车辆车轮;离合器,通过离合器在飞轮和所述车轮之间传递扭矩;无级变速器,位于离合器和所述车轮之间的驱动路径中;最终传动机构,在所述无级变速器和所述车轮之间的驱动路径中与所述无级变速器串联地布置。在车辆加速的情况下,飞轮扭矩提供增加的正扭矩,以补充传递到车轮的传动系统扭矩。在车辆减速的情况下,飞轮向车轮提供负扭矩,从而代替车轮的摩擦制动扭矩,以使车辆的动能被回收并储存,用于以后推进车辆,而不是通过制动衬片上的摩擦而浪费。控制飞轮的输出扭矩,以向车轮提供精确扭矩,从而始终满足驾驶员需要的车轮扭矩。驾驶员的扭矩需求是基本传动系统的输出加上飞轮的扭矩输出的结合。所述方法使用容易测量的输入速度信号,而不是使用车轮滑转信号。飞轮输出扭矩的开环控制减少了车轮处扭矩的波动。离合器滑转的闭环控制导致输出扭矩仅有微小扰动。优选实施例的应用范围将从下面的详细描述、权利要求及附图中变得清楚。应该理解的是,虽然指出了本发明的优选实施例,但是仅仅通过说明的方式给出了描述和具体示例。对于本领域的技术人员来说,对描述的实施例和示例的各种改变和修改将会变得清林疋。


通过参照下面结合附图进行的描述,本发明将会更加易于理解,附图中图1是飞轮式混合动力传动系统的示意图;图2是示出传动系统中的固定速比齿轮装置和无级变速器的示意图;图3是用于控制图1和图2的传动系统中的扭矩的方法的框图。
具体实施例方式现在,参照附图,图1示意性地示出了用于机动车辆的混合动力传动系统10。前车轮12和13通过变速器16 (优选地,多速有级式变速器)和前差速机构18可驱动地连接到诸如内燃机(ICE)的动力源14。后车轮20和21通过变速器24 (优选地,无级变速器 (CVT))、驱动轴沈以及后差速机构28可驱动地连接到诸如飞轮组件22的混合动力源。CVT 24产生输入速度到输出速度无级、连续可变的速比。带驱动机构和牵引驱动机构用于通过 CVT M传递动力。在这种混合动力传动系统10中,车轮制动能量机械地再生并储存在飞轮22中。 CVT 24的速比在CVT的操作范围内变化,以允许旋转能量储存在飞轮22中或者从飞轮释放并传递到车轮20和21。图2示出了对于给定应用的可能速比的示例。飞轮组件22包括飞轮四,飞轮四连接到简单行星齿轮组32的中心齿轮30,行星齿轮组32还包括被固定而不旋转的环形齿轮34、齿轮架36、支撑在齿轮架上且与中心齿轮和环形齿轮啮合的行星小齿轮36。优选地, 由齿轮组32产生的速比为大约5. 07。行星齿轮组32被称为齿轮3。齿轮架36连接到与小齿轮40啮合的齿轮38。优选地,齿轮38旋转得比小齿轮 40快大约2. 6倍。小齿轮40和齿轮38被共同地称为齿轮2。飞轮扭矩是在轴41上传递的扭矩。带轮42和44通过驱动带46可驱动地连接,驱动带46在带轮上的径向位置变化。 CVT速比在2. 54和0. 42之间的优选范围内变化。离合器48可驱动地连接带轮42和小齿轮40。带轮44连接到与小齿轮52啮合的齿轮50。优选地,齿轮50旋转得比小齿轮52 快大约1. 59. 6倍。小齿轮52和齿轮50被共同地称为齿轮1。包括两个等速(CV)万向节M和56的驱动轴沈通过小齿轮60可驱动地连接到后差速机构28的环形齿轮58。后差速机构28产生大约3. 58的最终传动比。离合器扭矩容量是在离合器的操作条件(即,滑转、部分接合或者完全接合)中的任一操作条件下传递到离合器的扭矩的变化幅度。假设离合器的摩擦表面上的压力均勻,则Torque = Nsurfaces*Fclutch*mu* (D。uter~3_Dimer~3)/3* (D。uter~2_Dinner~2) (1)其中,Torque是离合器扭矩容量,Feluteh是正常施加到离合器的每个摩擦表面的力的幅值,mu是摩擦系数,N是离合器摩擦表面的数量,Douter是摩擦表面的外直径,Dinner是摩擦表面的内直径。
使离合器动作的伺服活塞上的力是施加到活塞的液压的函数,Fpiston = Pressure^Pi* (Douter pist。n"2_Dimer piston"2) /4 (2)其中,Fpiston是伺服活塞上的力,D。utCT piston是活塞表面的外直径,Dinner piston是活塞表面的内直径。因此,离合器48的扭矩容量是在动作的伺服活塞上的变化的压强的函数。压强(Pressure)指的是伺服上的净压强,即,实际压强减去克服伺服回位弹簧所需的压强。根据图2,传递到车轮20和21的输出扭矩是离合器扭矩的函数,Toutput = Tclutch^CVT 速比 * 齿轮 1 速比 *FD 速比 (3)可以基于活塞和离合器的几何学来建立离合器压力-离合器扭矩的关系。为了控制飞轮扭矩,控制离合器压强来提供期望的输出扭矩。除了输出扭矩之外,还控制离合器48上的滑转。通过控制离合器滑转,飞轮四将收集能量或者释放能量。能量流动的方向取决于离合器滑转的方向。当离合器观的齿轮 2侧旋转得比离合器的CVT侧快时,出现正离合器滑转。随着飞轮的速度降低,正滑转将导致能量从飞轮四传递到车轮20和21。当离合器28的CVT侧旋转得比离合器的齿轮2侧快时,产生负离合器滑转。随着飞轮的速度增加,负滑转将导致旋转能量储存在飞轮四中。图3示出了控制方法的步骤的框图,该控制方法取消了需要使用车轮滑转作为输入变量来控制至车轮的飞轮扭矩。相反,通过离合器滑转的闭环控制来调节CVT速比,以保持离合器滑转。驾驶员需求64用作参照,以从扭矩分配变量70确定期望的飞轮输出扭矩72,驾驶员需求64由加速踏板66的位移程度或者发动机节气门68的位移程度来表示。在步骤74处,期望的飞轮输出扭矩72除以车轮和CVT带轮44之间的动力路径中的传动系统部件的速比和CVT速比,即,除以产品的(齿轮1速比*FD速比),以确定离合器 48的期望的扭矩容量78。在步骤80处,离合器48的期望的扭矩容量78除以离合器的增益(每压强单位上的离合器扭矩),以确定压强82的幅值,利用该压强82使离合器动作并产生期望的离合器扭矩容量78。存储在电子存储器中的函数84产生代表与当前操作条件对应的期望的离合器滑转86的信号作为输出。优选地,期望的离合器滑转86具有低的幅值,这是因为滑转表示使离合器48的摩擦表面加热的能量损失。在求和点90处确定测量的或者实际的离合器滑转88和期望的离合器滑转86之间的差异,求和点90的输出是滑转误差92,滑转误差92乘以CVT 24的增益94 (每离合器滑转单位上的CVT速比),以确定CVT速比误差96。闭环控制器98 (优选地,PID控制器)接收CVT速比误差96作为输入并产生指令信号100作为输出,指令信号100表示将使滑转误差90最小化的CVT速比变化。响应于指令信号100,在驱动带46与CVT 24的带轮42和44的接合处,半径发生变化,从而通过CVT 速比改变CVT速比100中才旨定变化的幅值(magnitude of commanded change) 根据专利法规的规定,已经描述了优选实施例。然而,应该注意到,除了具体地示出和描述之外,还可以实施替代实施例。
权利要求
1.一种用于控制机动车辆的传动系统的方法,所述方法包括以下步骤(a)在离合器中产生期望的扭矩容量,通过离合器在飞轮和车辆车轮之间传递扭矩;(b)通过调节位于离合器和所述车轮之间的驱动路径中的无级变速器的速比来减小离合器上的滑转误差。
2.根据权利要求1所述的方法,其中,步骤(a)还包括 利用驾驶员需要的车轮扭矩来确定期望的飞轮扭矩; 利用期望的飞轮扭矩来确定期望的离合器扭矩容量。
3.根据权利要求2所述的方法,其中,步骤(a)还包括利用加速踏板和发动机节气门中的一个的位移来确定期望的飞轮扭矩。
4.根据权利要求1所述的方法,其中,步骤(a)还包括利用由无级变速器产生的当前速比以及期望的飞轮输出扭矩来确定期望的离合器扭矩容量。
5.根据权利要求1所述的方法,其中,步骤(a)还包括 使离合器扭矩容量改变至期望的离合器扭矩容量;通过离合器传递扭矩。
6.根据权利要求1所述的方法,其中,步骤(b)还包括 确定期望的离合器滑转;确定当前的离合器滑转;将离合器上的滑转误差确定为期望的离合器滑转和当前的离合器滑转之间的差。
7.根据权利要求1所述的方法,其中,步骤(b)还包括利用控制器从滑转误差确定由无级变速器产生的减小滑转误差的速比变化。
8.一种用于控制机动车辆的传动系统的方法,所述方法包括以下步骤(a)在离合器中产生与期望的飞轮扭矩对应幅值的期望的扭矩容量,通过离合器在飞轮和车辆车轮之间传递扭矩;(b)确定离合器上的滑转误差;(c)利用位于离合器和所述车轮之间的驱动路径中的无级变速器来减小滑转误差。
9.根据权利要求8所述的方法,其中,步骤(a)还包括利用驾驶员需要的车轮扭矩来确定期望的飞轮扭矩。
10.根据权利要求8所述的方法,其中,步骤(a)还包括利用由无级变速器产生的当前速比以及期望的飞轮输出扭矩来确定期望的离合器扭矩容量。
11.根据权利要求8所述的方法,其中,步骤(a)还包括 使离合器扭矩容量改变至期望的离合器扭矩容量;通过离合器传递扭矩。
12.根据权利要求8所述的方法,其中,步骤(b)还包括 确定期望的离合器滑转;确定当前的离合器滑转;将离合器上的滑转误差确定为期望的离合器滑转和当前的离合器滑转之间的差异。
13.根据权利要求8所述的方法,其中,步骤(c)还包括 利用控制器从滑转误差确定由无级变速器产生的速比变化。
14.一种用于传递机动车辆的传动系统中的动力的系统,所述系统包括飞轮; 车辆车轮;离合器,通过离合器在飞轮和所述车轮之间传递扭矩; 无级变速器,位于离合器和所述车轮之间的驱动路径中;最终传动机构,在所述无级变速器和所述车轮之间的驱动路径中与所述无级变速器串联地布置。
15.根据权利要求14所述的系统,所述系统还包括 第一齿轮,可驱动地连接到所述无级变速器;第一小齿轮,与第一齿轮啮合,且可驱动地连接到最终传动机构。
16.根据权利要求14所述的系统,所述系统还包括行星齿轮组,包括中心齿轮、环形齿轮、齿轮架、行星小齿轮,其中,中心齿轮固定到飞轮,环形齿轮被固定而不旋转,行星小齿轮支撑在齿轮架上且与中心齿轮和环形齿轮啮合, 齿轮架可驱动地连接到离合器。
17.根据权利要求16所述的系统,所述系统还包括 第二齿轮,可驱动地连接到齿轮架;第二小齿轮,与第二齿轮啮合,且可驱动地连接到离合器。
全文摘要
本发明公开了一种用于控制机动车辆的传动系统的方法,所述方法包括确定期望的飞轮扭矩;参照期望的飞轮扭矩确定期望的离合器扭矩容量扭矩,通过离合器在飞轮和车辆车轮之间传递扭矩;操作离合器以产生期望的离合器扭矩容量;确定离合器上的滑转误差;将位于离合器和所述车轮之间的驱动路径中的无级变速器的速比改变至减小滑转误差的速比。
文档编号B60W10/02GK102481921SQ201080040053
公开日2012年5月30日 申请日期2010年7月13日 优先权日2009年9月18日
发明者沃尔特·J·奥特曼 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1