混合动力传动系及其控制方法与流程

文档序号:11920359阅读:403来源:国知局
混合动力传动系及其控制方法与流程

本公开涉及混合动力传动系,并且更具体地,涉及这样一种混合动力传动系及其控制方法:基于车辆的行驶状态有效实施电动车辆(EV:electric vehicle)模式、动力分割模式和并行模式的转换。



背景技术:

混合动力车辆是通过有效结合两类动力源所驱动的一类车辆,即由通过燃烧燃料(例如,化石燃料诸如汽油)获得转矩的发动机和通过电池电源获得转矩的电动机所驱动的车辆。混合动力车辆是环境友好型车辆,其采用发动机和作为辅助动力的电动机以减少废气并提高燃烧效率,并且一直在积极进行有关提高燃烧效率并开发环境友好型产品的混合动力车辆的研究。

混合动力车辆通常使用发动机和电动机(例如,电动发电机(motor/generator))并且使用在低转速具有改进的低慢转矩特性的电动机发电机作为主动力源,以及使用在高速具有相对高速转矩特性的发动机作为主动力源。因此,在低速段,混合动力车辆停止使用化石燃料的发动机的操作而使用电机/发电机,且因此显示提高的燃烧效率和减少了的废气。

进一步地,为了驱动车辆,混合动力传动系(hybrid powertrain)以各种驱动模式驱动,诸如电动车辆(EV:electric vehicle)模式,该模式是使用电动机转矩的纯电动车辆模式;和混合电动车辆(HEV:hybrid electric vehicle)模式,该模式使用电动机的转矩作为辅助动力同时使用发动机的转矩作为主动力。具体地,发动机启动以执行从EV模式到HEV模式的模式转换。最近,一直在进行通过将HEV模式细分成动力分割模式(power split mode)和并行模式(parallel mode),用于在动力分割模式和并行模式之间实施模式转换以增加动力传递效率的技术开发。



技术实现要素:

本公开提供混合动力传动系及其控制方法,该方法根据行驶条件通过有效执行多模式诸如EV模式、动力分割模式和并行模式的转换,以有效实施最佳驱动同时提高动力传递效率、驱动性能、排放性能等。

根据本公开的示例性实施例,混合动力传动系可包括:输入轴,其配置成被连接到发动机;第一和第二电动发电机,其配置成被安装在变速器壳内;行星齿轮组,其配置成被安装在输入轴上并且包括恒星齿轮、行星架和环形齿轮的组合;第一输出齿轮,其配置成被连接到第二电动发电机;第二输出齿轮,其配置成被连接到行星齿轮组的行星架;至少一个旋转约束机构,其配置成有选择地约束输入轴的旋转;过驱动制动器,其配置成被连接到行星齿轮组的恒星齿轮和第一电动发电机中的至少一个;以及输出轴,其配置成经由第一和第二输出齿轮被供给动力。

旋转约束机构可以由单向离合器、双向离合器和制动器中的任一个构成。配置成使动力减速并将减速的动力传递到输出轴的减速单元可被布置在第一与第二输出齿轮和输出轴之间。

具体地,减速单元可包括:第一和第二中心轴,其被布置成与输入轴和输出轴平行;第一中心齿轮,其被布置在第一中心轴上以与第一输出齿轮啮合(例如,连锁、对应等);所配置的第二中心齿轮,其被布置在第二中心轴上以与第二输出齿轮啮合;以及动力合成机构,其配置成被安装以将第一和第二中心轴连接到输出轴。动力合成机构可包括:第一合成齿轮,其被布置在第一中心轴的一端;第二合成齿轮,其被布置在第二中心轴的一端以与第一合成齿轮啮合;以及所配置的第三合成齿轮,其被布置在输出轴的中间以与第二合成齿轮啮合。

根据本公开的另一个示例性实施例,混合动力传动系可包括:输入轴,其被连接到发动机;输出轴,其配置成经由输入轴被供给旋转动力;行星齿轮组,其配置成被安装在输入轴上并且具有至少三个旋转元件;第一电动发电机,其配置成被连接到行星齿轮组的旋转元件中的 任一个;第二电动发电机,其配置成将旋转动力传递到输出轴;过驱动制动器,其配置成调整第一电动发电机的旋转动力,所述旋转动力被传递到行星齿轮组;以及至少一个旋转约束机构,其配置成有选择地约束输入轴的旋转,其中过驱动制动器可配置成基于第一电动发电机的每分钟转数(RPM:revolutions per minute)是否接近0执行接合和解除接合操作。

行星齿轮组可具有恒星齿轮、行星架和环形齿轮,且第一电动发电机可被连接到行星齿轮组的恒星齿轮,且第二电动发电机被连接到第一输出齿轮,且行星齿轮组的行星架可被连接到第二输出齿轮。旋转约束机构可以由单向离合器、双向离合器和制动器中的任一个构成。配置成使动力减速并将减速的动力传递到输出轴的减速单元可被布置在第一与第二输出齿轮和输出轴之间。

减速单元可包括:第一和第二中心轴,其被布置成与输入轴和输出轴平行;第一中心齿轮,其被布置在第一中心轴上以与第一输出齿轮啮合;第二中心齿轮,其被布置在第二中心轴上以与第二输出齿轮啮合;以及动力合成机构,其配置成被安装以将第一和第二中心轴连接到输出轴。动力合成机构可包括:第一合成齿轮,其被布置在第一中心轴的一端;第二合成齿轮,其被布置在第二中心轴的一端以与第一合成齿轮啮合;以及第三合成齿轮,其被布置在输出轴中间以与第二合成齿轮啮合。

根据本公开的另一个示例性实施例,一种用于控制混合动力传动系的方法,所述混合动力传动系包括配置成被安装在输入轴上的行星齿轮组、第一和第二电动发电机、配置成将第一电动发电机的旋转动力传递到行星齿轮组的过驱动制动器,以及配置成有选择地限制输入轴旋转的至少一个旋转约束机构,所述方法可包括以下步骤:基于模式图(mode map)选择车辆的模式,所述模式图基于要求转矩和车速集被分类成动力分割模式和并行模式;当车辆的模式是并行模式时,基于过驱动制动器的接合操作执行并行模式,同时当车辆模式是并行模式时,将第一电动发电机的RPM调整为0;以及当在选择模式中所选择的车辆的模式是动力分割模式时,通过确定第一电动发电机的RPM是否接近0,将车辆的模式转换成并行模式。

并行模式转换过程可包括:首先确定第一电动发电机的RPM是否接近0,并且其次响应于确定第一电动发电机的RPM接近0确定第一电动发电机的目标RPM是否接近0,以及当第一电动发电机的RPM和目标RPM接近0时,车辆的模式可被转换成并行模式。

并行模式转换过程还可包括:当第一电动发电机的RPM或目标RPM不接近0时,确定要求转矩是否是等于或小于0;且响应于确定要求转矩等于或小于0,确定发动机是否停止,且响应于确定发动机没有停止,车辆的模式可被转换成并行模式,以及响应于确定发动机停止,发动机停止。另外,响应于确定该要求转矩等于或大于0,可执行动力分割模式。

附图说明

本公开的上述和其它目标、特征和优点从下面结合附图的具体实施方式中将变得更明显。

图1是根据本公开的示例性实施例示出混合动力传动系的示例性构造图;

图2是根据本公开的示例性实施例示出在混合动力传动系的EV模式中动力传递系统的示例性图;

图3是根据本公开的示例性实施例示出在混合动力传动系的动力分割模式中动力传递系统的示例性图;

图4是根据本公开的示例性实施例示出在混合动力传动系的并行模式中动力传递系统的示例性图;

图5是根据本公开的示例性实施例示出在用于控制混合动力传动系的方法中所使用的模式图的示例性图;以及

图6是根据本公开的示例性实施例示出控制混合动力传动系的方法的示例性流程图。

附图标记说明

1:发动机

20:减速单元

H:变速器壳

IS:输入轴

MG1:第一电动发电机

MG2:第二电动发电机

OG1:第一输出齿轮

OG2:第二输出齿轮

具体实施方式

可以理解,术语“车辆”或“车辆的”或如这里所用的其它类似的术语一般包括机动车辆,诸如包括运动型多功能车(SUV)的乘用车、公共汽车、卡车、各种商用车、包括各种船舶的水运工具、航空器等,并且包括混合动力车辆、电动车辆、充电式混合电动车辆、氢动力汽车和其它替代燃料车辆(例如,来自非石油资源的衍生燃料)。如这里提到的,混合动力车辆是具有两种或更多种动力源的车辆,例如同时有汽油为动力和电力为动力的车辆。

虽然示例性实施例被描述为使用多个单元执行示例性过程,但是可以理解示例性过程也可由一个或多个模块执行。此外,可以理解术语控制器/控制单元是指包括存储器和处理器的硬件装置。在下文进一步描述,存储器配置成存储该模块且处理器经具体配置执行该模块以完成一个或多个过程。

而且,在包含由处理器、控制器/控制单元等执行的可执行程序指令的计算机可读介质上,本发明的控制逻辑可被实施为非临时性计算机可读介质。计算机可读介质的示例包括但不限于ROM、RAM、光盘(CD)-ROM、磁带、软盘、闪存、智能卡和光学数据存储装置。计算机可读记录介质也可分布到网络联结的计算机系统中以使计算机可读介质以分布方式例如在远程信息服务器或控制器局域网(CAN)中存储和执行。

这里使用的术语仅用于描述特定的实施例,而不是为了限制本发明。如这里所用,单数形式“一个”、“一”和“该”是为了包括复数形式,除非上下文另外明确指出不同。应该进一步理解,当术语“包括”和/或“包含”用于本说明书时,规定所述特征、整数、步骤、操作、元件、和/或组件的存在,但不排除一个或多个其它特征、整数、步骤、操作、元件、组件、和/或其中的成员组的存在或添加。如这里 所用,术语“和/或”包括一个或多个关联的列出项的任何和所有的组合。

除非特别规定或从上下文显而易见,如这里所用,在本领域中术语“大约”应理解为在一系列标准公差之内,例如在2的平均值标准差之内。“大约”可以理解为在规定值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%、或0.01%之内。除非从上下文另外明确指出,这里提供的所有数字值由术语“大约”修饰。

下面,本公开的示例性实施例将参考附图详细描述。作为参考,在用于描述本公开的示例性实施例所参考的附图中示出的组件的尺寸、线条粗细等为了理解方便可能稍微夸张。进一步地,用于描述本公开的术语是考虑到在本公开中的功能来定义的,且因此可基于用户、操作员的意图、实践等而改变。因此,术语的定义应该基于贯穿说明书的内容来解释。

图1是根据本公开的示例性实施例示出混合动力传动系的配置图。如图1所示,在根据本公开的示例性实施例的混合动力传动系中,第一和第二电动发电机MG1与MG2、行星齿轮组PG、旋转约束机构C、过驱动制动器B、第一和第二输出齿轮OG1与OG2可沿着被安装在变速器壳H内的输入轴IS排列,以基于车辆的行驶状态传递发动机1的旋转动力和第一与第二电动发电机MG1与MG2的旋转动力,并且通过第一与第二输出齿轮OG1与OG2输出发动机1的旋转动力和第一与第二电动发电机的旋转动力。

输入轴IS可被纵长地(lengthwise)安装在变速器壳H内,并且输入轴IS的一端可连接到发动机1以接收发动机1的旋转动力。第一电动发电机MG1可直接被连接到行星齿轮组PG的旋转元件中的任一个,并且可操作作为用于驱动发动机的启动电动机和通过经由旋转元件被供给发动机1的旋转动力而旋转以发电的发电机。第一电动发电机MG1可包括被固定到变速器壳H的定子和被连接到行星齿轮组PG的旋转元件的转子。

第二电动发电机MG2可操作作为直接被连接到第一输出齿轮OG1以供给旋转动力的电动机。第二电动发电机MG2可包括被固定到变速器壳H的定子和被连接到第一输出齿轮OG1的转子。行星齿 轮组PG作为单个小齿轮行星齿轮组被安装在输入轴IS上可被配置为多个旋转元件。行星齿轮组PG可包括恒星齿轮S、可旋转地支撑与恒星齿轮S外啮合的小齿轮P的行星架PC,和与小齿轮P内啮合的环形齿轮R。

恒星齿轮S可经由过驱动制动器(overdrive brake)B被连接到变速器壳H或可直接被固定到变速器壳H。行星架PC可被连接到输入轴IS并且环形齿轮R可被连接到第二输出齿轮OG2以充当输出元件。第一输出齿轮OG1可被连接到第二电动发电机MG2以被供给第二电动发电机MG2的旋转动力。第二输出齿轮OG2可被连接到行星齿轮组PG的一端,即环形齿轮R,以被供给发动机1的旋转动力(见图3和图4的实线)和通过环形齿轮R供给的第一电动发电机MG1的旋转动力(见图3的虚线)。

进一步地,旋转约束机构C可被安装在变速器壳H和输入轴IS之间以有选择地约束输入轴IS的旋转。旋转约束机构C可以由单向离合器、双向离合器和制动器中的任一个构成,以有选择地约束输入轴IS的旋转。过驱动制动器B可靠近(例如邻近于)变速器壳H的一端即输入端安装,并且可被连接到行星齿轮组PG的恒星齿轮S和第一电动发电机MG1中的至少任一个。通过接合和解除接合过驱动制动器B可有效地执行动力分割模式和并行模式的转换。

输出轴OS可配置成经由第一和第二输出齿轮OG1和OG2被供给动力。进一步地,配置成使动力减速(例如,减少或降低)并将减速的动力传递到输出轴OS的减速单元20可被布置在第一和第二输出齿轮OG1与OG2与输出轴OS之间。

特别地,减速单元20可包括:第一和第二中心轴CS1和CS2,其被布置成与输入轴IS和输出轴OS平行;第一中心齿轮CG1,其被布置在第一中心轴CS1的大致中间以与第一输出齿轮OG1啮合;第二中心齿轮CG2,其被布置在第二中心轴CS2的大致中间以与第二输出齿轮OG2啮合;以及动力合成机构(PS),其经安装将第一和第二中心轴CS1和CS2连接到输出轴OS。

同时,动力合成机构PS可操作作为动力合成部,其配置成合成通过减速单元20传递来的发动机1的旋转动力与第一电动发电机MG1 的旋转动力、第二电动发电机MG2的旋转动力等,并将合成的输出传递到输出轴OS。于是,动力合成机构PS可配置成包括:第一合成齿轮SG1,其被布置在第一中心轴CS1的一端(例如,第一端);第二合成齿轮SG2,其被布置在第二中心轴CS2的一端(例如,第一端)以与第一合成齿轮SG1外啮合;以及第三合成齿轮SG3,其被布置在输出轴OS的大致中间以与第二合成齿轮SG2啮合。

图2至图4是根据本公开的示例性实施例示出混合动力传动系在EV模式、动力分割模式和并行模式时的动力传递系统。如图2所示,在EV模式中,通过旋转约束机构C的接合操作可停止输入轴IS的旋转,且因此当发动机1的旋转动力和第一电动发电机MG1的旋转动力不被传递时,只有第二电动发电机MG2的旋转动力经由第一输出齿轮OG1、第一中心齿轮CG1、减速单元20和动力合成机构PS传递到输出轴OS(见图2的箭头方向K1)。

如图3所示,在动力分割模式中,发动机1可经驱动将旋转动力传递到输出轴OS,并且第一电动发电机MG的旋转动力和第二电动发电机MG2的旋转动力可被传递到输出轴OS。具体地,发动机1的旋转动力可经由输入轴IS、行星架PC和环形齿轮R被传递到第二输出齿轮OG2,且然后经由第二输出齿轮OG2和第二中心齿轮CS2可被传递到动力合成机构PS(见图3的方向K2)。

进一步地,第一电动发电机MG1的旋转动力经由行星齿轮组PG的恒星齿轮S、小齿轮P和环形齿轮R可被传递到第二输出齿轮OG2,且然后经由第二输出齿轮OG2和第二中心齿轮CS2可被传递到动力合成机构PS(见图3的方向K3)。第二电动发电机MG2的旋转动力经由第一输出齿轮OG1和第一中心齿轮CS1可被传递到动力合成机构PS(见图3的方向K1)。因此,动力合成机构PS可配置成合成发动机1的旋转动力、第一电动发电机MG1的旋转动力和第二电动发电机MG2的旋转动力,并且将合成的动力传递到输出轴OS。

如图4所示,在并行模式中,由于过驱动制动器B可被接合到旋转约束机构C,当第一电动发电机MG1的旋转动力被禁止传递到行星齿轮组PG的恒星齿轮S时,发动机1的旋转动力和第二电动发电机的旋转动力可在动力合成机构PS中被合成并可被传递到输出轴OS。 (见图4的箭头方向K1和K2)。

根据本公开的示例性实施例,在两个电动发电机MG1与MG2、过驱动制动器B和旋转约束机构C被排列在输入轴IS上的结构中,通过适当接合和解除接合过驱动制动器B和旋转约束机构C,基于行驶条件通过更有效地执行多模式诸如EV模式、动力分割模式和并行模式的转换,能更有效地实施最佳驱动同时提高动力传递效率、驱动性能、排放性能等。

具体地,基于车辆的行驶速度和驾驶者要求转矩,通过适当地操作连接到行星齿轮组PG恒星齿轮S或第一电动发电机MG1的过驱动制动器B,能更有效地实施从动力分割模式到并行模式的转换。

图5和图6是根据本公开的示例性实施例示出用于控制混合动力传动系的方法的附图。如图6所示,根据本公开的示例性实施例用于控制混合动力传动系的方法可包括模式选择过程(S1)、并行模式进行过程(S2)和并行模式转换过程(S3)。需要指出,如本文下面所述的过程可由具有处理器和存储器的控制器来执行。

模式选择过程S1可包括使用模式图选择动力分割模式和并行模式的步骤。具体地,模式图可包括基于如图5所示那样设定的要求转矩和车速分类的动力分割模式和并行模式。因为在预定的RPM以下,不能驱动发动机,所以不能在预定的车速以下不能以并行模式驱动发动机。同时,因为在并行模式中发动机的RPM可被固定为车速,所以驾驶者要求转矩可被维持在小于发动机的最大转矩。因此,在模式图中,可在预定的车速以上和预定的要求转矩以下,选择并行模式,并且可用相反的条件选择动力分割模式。基于驱动性能、排放性能等可对模式图进行各种改变。

在并行模式进行过程(S2)中,当在模式选择过程(S1)中所选择的车辆的模式是并行模式时,在第一电动发电机MG1的RPM调整到约为0时,通过过驱动制动器B的接合操作可执行并行模式。在并行模式转换过程(S3)中,当在模式选择过程(S1)中所选择的车辆的模式是动力分割模式时,可确定第一电动发电机MG1的RPM是否接近0,然后该模式可被转换到并行模式。虽然通过模式图可选择动力分割模式,但是基于行驶条件当第一电动发电机MG1的RPM接近 0时可操作混合动力传动系,且因此可在并行模式中被执行以提高效率。

具体地,并行模式转换过程(S3)可包括:确定第一电动发电机MG1的测量RPM是否接近0的步骤(S3-1),并且响应于确定第一电动发电机MG1的测量RPM接近0,确定第一电动发电机MG1的目标RPM是否接近0的步骤(S3-2)。确定第一电动发电机MG1的测量RPM是否接近0的标准可理解为确定第一电动发电机MG1的绝对值是否等于或小于预定的量。

另外,可确定第一电动发电机MG1的目标RPM是否接近0,因为即使第一电动发电机MG1的RPM接近0,但当第一电动发电机MG1的目标RPM不接近0时,可能仍然不执行向并行模式的转换。例如,当第一电动发电机MG1的当前RPM约为5000并且第一电动发电机MG1的目标RPM约为-5000时,可生成第一电动发电机MG1的RPM缓慢减少且然后接近0的行驶段。然而,因为第一电动发电机MG1的目标RPM可约为-5000,所以在并行模式行驶期间可能并不满足目标RPM。

进一步地,当第一电动发电机MG1的目标RPM接近0时,可执行(例如,可转换到)并行模式(S2)。当第一电动发电机MG1的RPM和目标RPM不接近0时,可确定要求转矩是否是等于或小于0,并且当要求转矩等于或小于0时,可确定发动机是否可停止。响应于确定要求转矩等于或大于0,可执行(例如,可转换到)动力分割模式(S4),并且响应于确定发动机可停止,可停止发动机1(S5)。

同时,当驾驶者要求转矩等于或小于0时,发动机1可被停止以提高效率。此外,当车速明显高(例如,大于预定的速度)时,如果发动机1停止且然后重新启动,那么第一电动发电机MG1的转矩也许不足,且因此经常不能执行重新启动。具体地,在燃料切断不停止发动机1的状态下,往往通过第一电动发电机MG1(例如,以预定的频率)驱动发动机1,并且可消耗电能且因此降低效率。

因此,基于车速、在发动机1停止期间第一电动发电机MG1的RPM、对应于RPM的转矩等,通过确定第一电动发电机MG1转矩足以重新启动发动机1,可确定发动机1是否停止。进一步地,响应于 确定驾驶者要求转矩是否是等于或小于0,可防止发动机1停止(例如,不能停止发动机),可执行并行模式(S2),并且在燃料切断状态下驱动发动机1在效率上是有利的。

如上所述,根据本公开的示例性实施例,能够通过基于确定第一电动发电机的RPM是否接近0来实施向并行模式的转换,基于车辆当前状态更有效执行模式转换并因此更平稳地维持最佳驱动状态。

根据本公开的示例性实施例,在两个电动发电机、过驱动制动器和旋转约束机构被排列在输入轴上的结构中,通过在过驱动制动器和旋转约束机构之间适当地接合和解除接合,根据行驶条件通过更有效地执行多模式诸如EV模式、动力分割模式和并行模式的转换,能更有效地实施最佳驱动同时提高动力传递效率、驱动性能、排放性能等。

特别地,基于车辆的行驶速度和驾驶者要求转矩,通过适当地操作连接到行星齿轮组的恒星齿轮或第一电动发电机的过驱动制动器,能更有效地实施从动力分割模式到并行模式的转换。进一步地,根据本公开的示例性实施例,能够通过基于确定第一电动发电机的RPM是否接近0来实施向并行模式的转换,基于车辆当前状态更有效实施到并行模式的转换并因此更平稳地维持最佳驱动状态。

在上文,虽然描述本公开的具体示例性实施例,但是本公开不限于所公开的示例性实施例和附图,且在不脱离本公开的实质和范围内可进行各种改变。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1