车辆电路体的制作方法

文档序号:16809228发布日期:2019-02-10 13:25阅读:144来源:国知局
本发明涉及一种布设在车辆中的车辆电路体。
背景技术
::在车辆中,例如,需要将电源电力从作为主电源的交流发电机(发电机)或者电池适当地供给至大量的各种电气部件。还要求用于供给这样的电源电力的系统具有根据需要在电力的供给的接通与断开之间切换的功能,或者在过电流流经电气部件的情况下切断各个系统的电流的功能。在普通的车辆中,作为多条电线的集合体的线束布设在车辆上,并且主电源经由线束连接到各个部位处的电气部件,从而向其供给电力。通常地,接线块用于将电源电力分配到多个系统,继电器盒用于控制对各个系统的电力的供给的接通与断开,或者熔断器盒用于保护线束的各条电线或者负载。车辆设置有用于控制电气部件的多个控制单元,并且控制单元与电气部件经由线束彼此可通信地连接。例如,专利文献1中公开的线束包括网络传输路径以及用于提供电力、gnd和其它信号的电路。线束包括线束干线、子线束、可选子线束以及网络集线器设备。参考列表专利文献[专利文献1]jp-a-2005-78962技术实现要素:技术问题近年来,包括这样的电源系统或者通信系统的车辆系统已经由于所安装的电气部件的数量的增加、控制的复杂性等而得到发展。自动驾驶技术快速发展,并且为了应对自动驾驶,各种功能的安全需求也增加。与此同时,布设在车身上的线束的结构趋于复杂化。因此,例如,像在专利文献1中一样,通过组合线束干线、子线束和可选子线束形成整体具有复杂形状的线束,并且因此能够进行与设置在车身上的各种部位处的各种电气部件的连接。因为形成线束的各条电线的直径或者电线的数量由于安装在车辆上的电气部件的数量的增加而增大,所以存在整个线束的尺寸增大或者重量增大的趋势。由于安装有线束的车型之间的差异或者安装在车辆上的可选电气部件的类型的增加,导致要制造的线束的类型和部件数增多,因此难以使形成线束的部件标准化,并且部件成本或制造成本增加。在制造线束的操作过程中,为了实现预定布设形状的线束,将形成线束的多条电线的捆束沿着预先指定的路径长距离地拖拽,因此需要大量的操作时间。由于几乎所有的电线都集中在线束的干线部,所以被捆束电线的数量增多,从而其重量增大。例如,在初始设计中未预期的新的电气部件安装在车辆上的情况下,为了确保在该电气部件与另一电气部件之间传输特定信号的路径,或者为了向其供给电源电力,需要将新的电线添加到线束。然而,线束具有复杂的结构或形状,并且将来非常难以将其它电线添加到现有的线束。因此,需要设计具有不同类型或者部件编号的新的线束,以制造为独立的产品。已经考虑以上情况做出本发明,并且本发明的目的是提供一种车辆电路体,其中,各种电气部件与车辆上的电源之间的以及电气部件之间的电连接的结构,特别是干线部的构造简化,并且能够容易地添加新的电线。解决问题的方案为了实现上述目的,根据本发明的车辆电路体的特性在于以下(1)至(2)。(1)一种车辆电路体,包括:干线,该干线包括具有预定电流容量的电源线和具有预定通信容量的通信线,并且该干线布设在车身中;支线,该支线直接或间接地连接到配件;和多个控制盒,该多个控制盒以沿着所述干线散布的方式设置,该多个控制盒各自具有控制单元,该控制单元将来自所述通信线的信号和供给到所述干线的来自所述电源线的电力中的至少一者分配到与所述干线连接的所述支线。所述干线由布设材料形成,所述布设材料具有扁平导体、圆杆导体和绞合线之中的至少一种类型的导体。所述干线的所述通信线布设为使得所述多个控制盒以环状连接。利用该配置,能够通过使用如下部件而以简单结构提供车辆电路体:干线,该干线具有预定电流容量和预定通信容量,并且布设在车身中;以及支线,该支线经由多个控制盒将配件连接到干线,所述多个控制盒以沿着干线散布的方式设置。车辆电路体由干线和支线分开地形成,该干线通用于多个车型、等级或者选项,并且该支线依据多个车型、等级或可选配件而变化。因此,即使车型、等级或者可选配件的数量增多,也仅需要依据多个车型、等级或者可选配件而制备具有不同布线的支线,并因而能够有助于制造车辆电路体,并且有助于降低成本。干线的电源线要求大的截面面积,以确保预定的电流容量。因此,在电源线由具有截面形状是扁平带状的扁平导体的布设材料形成的情况下,有助于在厚度方向上的弯曲,因此有助于沿着预定布设路径的电源线的布设操作。在电源线由具有高通用性的圆杆导体或绞合线的布设材料形成的情况下,电源线能够容易地制造,并且在所有方向上自由弯曲。因此,提高了布设性能。并且,即使在将多个控制盒互相连接的任意通信线路中发生故障,也能够通过使用在与发生故障的部位相反的方向上的路径而继续进行通信。因此,能够提高车辆电路体的干线上的通信的可靠性。(2)一种车辆电路体,包括:干线,该干线包括具有预定电流容量的电源线和具有预定通信容量的通信线,并且该干线布设在车身中;支线,该支线直接或间接地连接到配件;和多个控制盒,该多个控制盒以沿着所述干线散布的方式设置,各自具有控制单元,该控制单元将来自所述通信线的信号和供给到所述干线的来自所述电源线的电力中的至少一者分配到与所述干线连接的所述支线。所述干线由布设材料形成,所述布设材料具有扁平导体、圆杆导体和绞合线之中的至少一种类型的导体。所述支线包括电源线和通信线。所述多个控制盒中的每个控制盒均包括多个支线连接部,所述支线的通信线能够装接到所述支线连接部并且从所述支线连接部脱离。所述多个支线连接部中的每个支线连接部均设置有锁定功能部,在所述支线未连接到所述支线连接部的情况下,该锁定功能部物理地或电气地进入锁定状态。利用该配置,能够通过使用如下部件而以简单结构提供车辆电路体:干线,该干线具有预定电流容量和预定通信容量,并且布设在车身中;以及支线,该支线经由多个控制盒将配件连接到干线,所述多个控制盒以沿着干线散布的方式设置。车辆电路体由干线和支线分开地形成,该干线通用于多个车型、等级或者选项,并且该支线依据多个车型、等级或可选配件而变化。因此,即使车型、等级或者可选配件的数量增多,也仅需要依据多个车型、等级或者可选配件而制备具有不同布线的支线,并因而能够有助于制造车辆电路体,并且有助于降低成本。干线的电源线要求大的截面面积,以确保预定的电流容量。因此,在电源线由具有截面形状是扁平带状的扁平导体的布设材料形成的情况下,有助于在厚度方向上的弯曲,因此有助于沿着预定布设路径的电源线的布设操作。在电源线由具有高通用性的圆杆导体或绞合线的布设材料形成的情况下,电源线能够容易地制造,并且在所有方向上自由弯曲。因此,提高了布设性能。并且,即使数量比当前连接的支线的数量多的支线连接部设置在控制盒中,使得支线未来能够附加地连接,也能够防止不应被连接的支线被连接到未与支线连接的支线连接部。因此,例如,能够防止程序重写装置被连接到未连接有支线的支线连接部,以恶意重写控制盒的控制单元的程序。发明的优势效果能够提供一种车辆电路体,其中,干线部的构造简化,并且能够容易地添加新的电线。如上所述,已经简要描述了本发明。通过参考附图阅读下文描述的用于实施本发明的实施方式(后文中,称为“实施例”),本发明的细节将更加清晰。附图说明图1是图示出在根据本发明第一实施例的车辆电路体布设在车身上的状态下,各个部分的布局和连接状态以及安装在车身上的各个模块的概要的分解立体图。图2是图示出图1所示的各个模块安装在车身上的状态的立体图。图3(a)是图示出图1所示的供给侧控制盒的立体图,并且图3(b)是沿着图3(a)的线a-a截取的截面图。图4(a)至4(c)是图示出图3所示的供给侧控制盒的组装步骤的立体图。图5(a)和(b)是用于说明根据本实施例的电路板的立体图。图6(a)是图示出图1所示的分支控制盒的立体图;图6(b)是图示出图1所示的控制盒的立体图;并且图6(c)是图示出图1所示的中间控制盒的立体图。图7是用于说明图2所示的仪表板模块的主要部分放大立体图。图8是用于说明根据本实施例的分支盒的示意性构造图。图9(a)至9(c)是用于说明图8所示的分支盒的结构的立体图。图10是图示出根据本实施例的布设材料的变形例的分解立体图。图11是图示出根据本实施例的扁平导体的变形例的主要部分立体图。图12是用于说明根据本实施例的扁平导体中设置的熔断器的立体图。图13(a)是用于说明由根据本实施例的扁平导体形成的电源线和地线连接到电池的实例的立体图,并且图13(b)是沿着图13(a)中的线b-b截取的截面图。图14是用于说明由根据本实施例的扁平导体形成的布设材料的连接结构实例的立体图。图15(a)至15(c)是用于说明根据本实施例的电源线的布置的立体图。图16(a)至16(d)是用于说明根据本实施例的布设材料的布置的截面图。图17(a)至17(e)是用于说明根据本实施例的布设材料的布置的截面图。图18(a)和18(b)是用于说明根据本实施例的布设材料的布置的截面图。图19(a)和19(b)是用于说明根据本实施例的圆杆导体的板连接结构的截面图。图20是用于说明根据本实施例的通过使用绞合线而形成端子的结构的立体图。图21(a)至21(d)是用于说明根据本实施例的电源线的端子结构实例的主要部分放大图。图22是用于说明形成根据本实施例的圆杆导体的实例的立体图。图23是现有技术的线束的被覆截面面积与根据本实施例的布设材料的被覆截面面积比较的说明图。图24(a)和24(b)是用于说明根据本实施例的圆杆导体的端子连接结构的主要部分的立体图和截面图。图25(a)和25(b)是用于说明根据本实施例的圆杆导体的控制盒连接结构的主要部分的立体图和截面图。图26(a)和26(b)是用于说明根据本实施例的圆杆导体的变形例的主要部分的立体图。图27是用于说明根据本实施例的布设材料的变形例的截面图。图28是用于说明根据本实施例的布设材料的变形例的截面图。图29(a)是用于说明根据本实施例的布设材料的变形例的纵截面图,并且图29(b)是沿着图29(a)中的线c-c截取的截面图。图30(a)至30(d)是用于说明根据本实施例的布设材料的变形例的截面图。图31(a)是用于说明根据本实施例的布设材料的变形例的纵截面图,并且图31(b)是沿着图31(a)中的线d-d截取的截面图。图32是用于说明根据本实施例的布设材料的变形例的平面图。图33(a)至33(c)是用于说明根据本实施例的布设材料的布设形态实例的局部立体图和截面图。图34是用于说明根据本实施例的车辆电路体的变形例的局部截面立体图。图35是用于说明根据本实施例的布设材料的接合形态实例的主要部分的立体图。图36是用于说明根据本实施例的布设材料的接合形态实例的主要部分的立体图。图37(a)和37(b)是用于说明根据本实施例的控制盒的变形例的主要部分的分解立体图。图38(a)和38(b)是用于说明根据本实施例的布设材料的变形例的局部截面立体图。图39(a)和39(b)是用于说明根据本实施例的布设材料的布设形态实例的立体图。图40是用于说明根据本实施例的车辆电路体的变形例的示意性平面图。图41(a)至41(e)是用于说明根据本实施例的车辆电路体的变形例的示意性平面图。图42是用于说明根据本实施例的车辆电路体的变形例的示意性配置图。图43是用于说明根据本实施例的车辆电路体的变形例的示意性配置图。图44是用于说明根据本实施例的车辆电路体的变形例的示意性配置图。图45是图示出在根据本实施例的变形例的车辆电路体布设在车身上的状态下,各个部分的布局和连接状态的示意性立体图。图46是用于说明图45所示的干线的前围板贯通结构的主要部分的截面图。图47是图示出在根据本发明第二实施例的车辆电路体布设在车身上的状态下,各个部分的布局和连接状态的示意性平面图。图48是图示出包括本发明第三实施例中的车辆电路体的车载设备的主要部分的配置实例的立体图。图49是图示出车载系统的配置实例的方框图。图50(a)和50(b)是图示出骨干干线的配置实例的电路图。图51是图示出控制盒内的电路的配置实例的方框图。图52是图示出控制盒的功能的配置实例的方框图。图53是图示出车载系统中的通信系统的配置实例的方框图。图54是图示出包括网关的车载系统中的通信系统的配置实例的方框图。图55(a)、55(b)和55(c)是分别图示出用于物理地保护控制盒的连接部中的未使用连接器的配置实例的立体图。图56是图示出通过控制保护未使用连接器的处理的实例的流程图。图57是图示出控制盒内的通信系统的配置实例的方框图。图58是图示出用于将电力供给到控制盒内的各通信系统的电路配置实例的电路图。图59是图示出通过将印刷电路板与电线组合而获得的线束的配置实例的分解图。图60是图示出具有usb口的控制盒的外部的实例的立体图。图61(a)、61(b)和61(c)是图示出内置于控制盒等中的电路板的三个配置实例的平面图。图62是图示出形成干线的布设部件的连接部位的配置实例的立体图。图63是图示出干线上的控制盒与支线子线束之间的连接实例的平面图。图64是图示出干线上的控制盒与支线子线束之间的连接实例的平面图。图65(a)和65(b)是图示出干线与支线子线束之间的连接实例的平面图。图66是图示出干线上的控制盒与支线子线束之间的连接实例的立体图。图67是图示出布设在车身上的干线和多个支线子线束的布置实例的立体图。图68(a)和68(b)是图示出多个控制盒以及将控制盒互相连接的通信干线的方框图。图69是图示出具有恢复功能的控制盒的配置实例的电路图。图70(a)和70(b)是图示出线束与负载之间的连接实例的方框图。图71是图示出车身上的各种构成元件的布置和连接的具体实例的立体图。图72(a)、72(b)和72(c)是图示出干线、控制盒、电池等的连接状态的具体实例的方框图。图73(a)、73(b)、73(c)、73(d)和73(e)是图示出干线与一个以上的电池的连接状态的具体实例的方框图。图74是图示出干线与多个电池的连接状态的具体实例的方框图。图75是图示出车载系统中的电源系统的配置实例的电路图。图76(a)是图示出车载系统的配置实例的方框图,并且图76(b)是图示出该车载系统的外观的实例的立体图。图77(a)和77(b)是分别图示出不同的骨干干线的配置实例的纵截面图。图78是图示出在进行特定的电源控制的情况下,电源电流与电源电压之间的对应关系的实例的时序图。图79(a)、79(b)和79(c)是分别图示出不同的骨干干线的配置实例的纵截面图。图80是图示出车载系统中的电源系统的配置实例的电路图。图81是图示出通信电缆的配置实例的纵截面图。图82是图示出车载系统中的通信系统的配置实例的方框图。图83是图示出在其中通信系统是以环型连接的车载系统中的通信系统的配置实例的方框图。图84是图示出在其中通信系统是以星型连接的车载系统中的通信系统的配置实例的方框图。图85(a)、85(b)和85(c)图示出在不同情况下的设备之间的通信连接状态,其中,图85(a)是立体图,并且图85(b)和85(c)是方框图。图86是图示出车载系统中的电源系统的配置实例的电路图。图87是图示出车载系统中的电源系统的配置实例的电路图。图88是图示出备用电源电路的配置实例的电路图。图89是图示出用于电力负载的电源电路的配置实例的电路图。图90是图示出车载系统的配置实例的方框图。图91是图示出能够在多个通信协议之间切换的控制盒的配置实例的方框图。图92是图示出控制盒的配置实例的方框图。图93(a)和93(b)是图示出车载系统的配置实例的方框图。图94是图示出驾驶座门板中设置的电路模块的配置实例的方框图。图95是图示出副驾驶座门板中设置的电路模块的配置实例的方框图。图96是图示出后座门板中设置的电路模块的配置实例的方框图。图97是图示出车顶中设置的电路模块的配置实例的方框图。图98是图示出智能连接连接器的配置实例的方框图。图99(a)和99(b)是分别图示出不同的车载系统中的通信系统的配置实例的方框图。图100是图示出车载系统中的通信系统的配置实例的方框图。图101是图示出车载系统中的通信系统的配置实例的方框图。图102是图示出通信干线bb_lc的配置实例的纵截面图。图103是图示出对其进行波分复用和时分复用的光信号的配置实例的时序图。图104是图示出进行光复用通信的车载系统中的通信系统的配置实例的方框图。图105是图示出控制盒内的配置实例的方框图。图106是图示出在供电故障期间显示的屏幕的具体实例的正面图。图107是图示出在供电故障期间用户选择要使用的设备的处理的实例的流程图。图108(a)、108(b)和108(c)是分别图示出对应于不同等级的三个骨干干线的配置的方框图。图109(a)和109(b)是分别图示出不同的车载系统的配置实例的方框图。图110是图示出车载系统的配置实例的方框图。图111是图示出骨干干线中包括的电源线的配置以及各个设备的连接状态的实例的方框图。图112是图示出车载系统的配置实例的方框图。图113是图示出根据本发明第四实施例的车辆电路体的骨干干线部的布局的示意性平面图。图114(a)是图示出图113所示的骨干干线部的仪表板骨干干线部的主要部分的立体图,并且图114(b)是图示出图113所示的骨干干线部的地板骨干干线部的主要部分的立体图。图115(a)至115(c)分别是图示出图114(a)所示的供给侧控制盒的主视图、仰视图和左侧视图。图116(a)至116(b)是图示出图114(a)所示的分支控制盒的从底侧观看的立体图和仰视图。图117是用于说明图116所示的分支控制盒中的仪表板骨干干线部与地板骨干干线部之间的连接结构实例的主要部分分解立体图。图118(a)是沿着图117中的线f-f截取的截面图,并且图118(b)是沿着图117的线g-g截取的截面图。图119(a)和119(b)是图114(a)所示的多连接器的立体图和主视图。图120(a)是沿着图116中的线e-e截取的截面图,并且图120(b)是沿着图120(a)的线h-h截取的截面图。图121是图示出多连接器连接到图120(a)所示的分支控制盒的状态的截面图。图122(a)和122(b)是图114(a)所示的控制盒的从底侧观看的立体图和仰视图。图123是图示出图114(b)所示的中间控制盒的上壳打开的状态的立体图。图124是用于说明图123所示的中间控制盒中的电路板与地板骨干干线部之间的连接结构实例的主要部分的分解立体图。图125是沿着图124中的线j-j截取的截面图。图126(a)和126(b)是沿着图123中的线i-i截取的截面图,图示出电路板的分离状态和组装状态。图127是图示出骨干控制盒的另一个实施例及其邻近物的平面图。图128是图示出包括车辆电路体的车载设备的主要部分的配置实例的平面图。参考标记列表10车辆电路体15骨干干线部(干线)21电源线21a、21b、21c和21d薄板状布设材料27地线29通信线31仪表板支线子线束(支线)51供给侧控制盒53分支控制盒57中间控制盒55控制盒59控制盒63前门支线子线束(支线)65后门支线子线束(支线)66中控台支线子线束(支线)67前座支线子线束(支线)68后座支线子线束(支线)69行李舱支线子线束(支线)100扁平导体2021、2022和2023骨干干线部2031、2032和2033骨干控制盒2101电源控制单元2102通信控制单元2111网关控制电路2112电源电路2113电压监控电路2114电池反向连接保护电路2115控制电路监控器2116电源输出电路部2200显示屏2201目标设备列表显示部2202光标显示部2203操作限制显示部2204操作引导显示部2205剩余电池容量显示部2211电源异常检测单元2212控制信号2213主电源部2214普通负载2215备用负载2221至2226通信终端2231至2233具有中继功能的通信终端2241行李ae配件alt交流发电机mb主电池bb_lm骨干干线cb控制盒ls支线子线束cnx连接部l1、l2和l2b电源线l3地线l4、l5和lx通信线dt诊断工具cba微计算机cbb开关电路cbc桥接电路bb_lc通信干线ar1、ar2和ar3区域cbd电路板kc1和kc2上锁的盖kk解锁钥匙ks密封用密封件gw网关cb01电源电路cb02网关控制电路cb03、cb04、cb05和cb06phy电路cb07和cb08网络开关cb09和cb10收发器cb11切换电路cp11和cp12电源连接器cp13至cp20通信端口连接器cp1至cp8通信端口连接器lpp1和lpp2通信线fbc1和fbc2光纤电缆fb11和fb12光纤具体实施方式将参考各个附图描述关于本发明的具体实施例。<本发明及潜在权利要求的公开>[形态-1](1)一种车辆电路体,包括:干线,该干线包括具有预定电流容量的电源线和具有预定通信容量的通信线,并且该干线布设在车身中;支线,该支线直接或间接连接到配件;以及多个控制盒,该多个控制盒以沿着所述干线散布的方式设置,并且包括控制单元,该控制单元将供给到所述干线的来自所述电源线的电力和来自所述通信线的信号中的至少一者分配到与所述干线连接的所述支线,其中,所述干线由布设材料形成,所述布设材料具有扁平导体、圆杆导体和绞合线之中的至少一种类型的导体。根据具有以上(1)的配置的车辆电路体,能够通过使用如下部件而以简单结构提供车辆电路体:干线,该干线具有预定电流容量和预定通信容量,并且布设在车身中;以及支线,该支线经由多个控制盒将配件连接到干线,所述多个控制盒以沿着干线散布的方式设置。车辆电路体由干线和支线分开地形成,该干线通用于多个车型、等级或者选项,并且该支线依据多个车型、等级或可选配件而变化。因此,即使车型、等级或者可选配件的数量增多,也仅需要依据多个车型、等级或者可选配件而制备具有不同布线的支线,并因而能够有助于制造车辆电路体,并且有助于降低成本。干线的电源线要求大的截面面积,以确保预定的电流容量。因此,在电源线由具有截面形状是扁平带状的扁平导体的布设材料形成的情况下,有助于在厚度方向上的弯曲,因此有助于沿着预定布设路径的电源线的布设操作。在电源线由具有高通用性的圆杆导体或绞合线的布设材料形成的情况下,电源线能够容易地制造,并且在所有方向上自由弯曲。因此,提高了布设性能。(2)在根据以上(1)的车辆电路体中,所述布设材料由互相组合的多种导体形成。根据具有上述(2)的配置的车辆电路体,布设材料由适当组合的扁平导体、圆杆导体和绞合线形成,从而能够提供一种干线,该干线具有沿着车辆的布设路径的良好的布设性能,并且容易制造。(3)在根据以上(1)或(2)的车辆电路体中,在所述多个控制盒之间的所述干线由具有不同种类的导体的布设材料形成。根据具有以上(3)的配置的车辆电路体,对于多个控制盒之间的每个干线,能够使用具有适用于车辆的布设路径的导体的布设材料。(4)在根据以上(1)至(3)的任意一项所述的车辆电路体中,所述干线包括分支部,该分支部将所述电源线和所述通信线中的至少一者分支为单独的线。根据具有以上(4)的配置的车辆电路体,由于干线在分支部中分支为多个干线,所以以在各干线中散布的方式设置的控制盒能够设置在车辆的各个部位处。因此,能够经由连接到控制盒的支线将电力容易地供给到设置在车辆的各部位处的配件,或者能够将通信数据(信号)容易地发送到所述配件且能够容易地从所述配件接收所述通信数据。(5)在根据以上(1)至(4)的任意一项所述的车辆电路体中,所述干线连接到与电源线的所述主电源不同的副电源。根据具有以上(5)的配置的车辆电路体,主电源和副电源以在干线的电源线中散布的方式设置。因此,能够通过从各个电源供给电流而减小在各个配件中要求的电力高的情况下的电压波动。在由于车辆碰撞而导致停止从一个电源供给电力的情况下,能够从另一个电源供给电力,并因而能够配置不断开的电源线。由于以散布方式设置在车辆中的主电源和副电源经由干线的电源线互相连接,所以能够在电动汽车或者混合动力汽车中容易地回收再生能量,因而能够提高能量回收率。由于设置有多个电源,所以能够进行电源备用处理,并因而能够减小当电源异常时的影响。(6)在根据以上(1)至(5)的任意一项的车辆电路体中,所述干线还包括具有预定电流容量的地线。根据具有以上(6)的配置的车辆电路体,干线中的地线与电源线平行地延伸,并且因此能够防止电源噪声潜入通信线。由具有扁平导体的布设材料形成的电源线和地线以堆叠的方式设置为使得彼此面对的表面的表面积增大,并且减小其间的间隙,使得能够进一步提高抗噪性能。[电源-1]在车辆中,例如,需要应对自动驾驶技术,因此需要提高线束的电源系统的可靠性。例如,即使在由于交通事故而导致的车辆碰撞期间,优选地,不停止向重要车载设备的电力供给,并且能够仅通过车辆自身解决该问题。在诸如线束这样的车辆电路体中,存在通过简化配置而降低部件成本或制造成本的需求,或者通过使用通用于各种类型的车辆的部件而减少部件数量的需求。因此,车辆电路体被配置为以下(1)至(7)所述。(1)一种设置在车辆中的车辆电路体,包括:干线,该干线至少在所述车辆的前后方向上延伸;以及多个控制盒,该多个控制盒设置在所述干线中,其中,所述干线包括通信线以及两个系统的电源线。利用该配置,由于两个系统的电源线形成在控制盒之间,一条电源线用于备用,从而降低电力的供给可能停止的可能性,或者能够通过根据需要增大一个系统的电压而稳定地供给电力。(2)在根据以上(1)的车辆电路体中,所述两个系统的电源线传输相同电压的电力。利用该配置,根据情况,能够一起使用两个系统的电源线,或者能够将一条电源线用于备用。(3)在根据以上(1)的车辆电路体中,所述两个系统的电源线传输不同电压的电力。利用该配置,在连接具有大的电力消耗的负载的情况下,大的电源电流流动,因此供给线路中的电压降增大。从而,能够通过选择较高的电源电压而防止电力损耗的增加。(4)根据以上(1)至(3)的车辆电路体,所述多个控制盒包括第一控制盒和第二控制盒,该第二控制盒相对于电源位于比所述第一控制盒更靠下游侧的位置处,并且其中,通过使用所述两个系统的电源线中的仅一条电源线,所述第一控制盒将电力传输到所述第二控制盒。利用该配置,两个系统的电源线中的一条电源线被确保为备用电源系统,并且在使用中的电源线中发生异常的情况下,能够进行到备用电源系统的切换。(5)在根据以上(1)至(4)的任意一项的车辆电路体中,所述车辆电路体还包括支线,该支线连接到所述车辆中设置的配件。利用该配置,能够将电力从电源集中地供给到干线,并且能够将来自干线的电力分配到各个配件。(6)在根据以上(5)的车辆电路体中,支线的一端连接到控制盒。利用该配置,能够从控制盒分配要供给到配件的电力。(7)在根据以上(1)至(6)的车辆电路体中,所述两个系统的电源线设置为平行地延伸。利用该配置,通过经由单个干线将控制盒互相连接,能够将两个系统的电源线设置在一起。[电源-2]在车辆中,由于车辆的差异、等级的差异、目的地的差异以及可选设备的差异,连接用于各车辆的不同数量或不同种类的电气部件(配件)。如果电气部件的数量或种类变化,则可以改变线束的配置。在车辆的设计期间未预期的新的种类的电气部件未来可能添加到车辆。在该情况下,优选地,添加的电气部件能够通过仅连接到已经安装在车辆中的现有的线束等而被使用。优选地,各个电气部件的连接位置能够根据需要变化。优选地,即使车辆的种类、要连接的电气部件的数量或种类变化,也能够通过通用部件而配置线束等。因此,车辆电路体被配置为以下(1)至(2)所述。(1)一种设置在车辆中的车辆电路体,包括:干线,该干线至少在所述车辆的前后方向上延伸;多个控制盒,该多个控制盒设置在所述干线中;以及支线,该支线将所述控制盒连接到配件。所述干线和所述支线均包括电源线和通信线。所述多个控制盒中的每个控制盒都包括:支线连接部,其连接到所述支线;以及支线控制单元,其通过根据控制程序控制所述支线连接部,将来自所述干线的电力分配到所述支线。所述控制程序能够根据连接到所述支线的配件而从外部进行改变。利用该配置,能够通过改变控制程序,将适当的电力从干线经由支线供给到配件,而与连接到支线的配件的种类无关。(2)在根据以上(1)的车辆电路体中,所述支线连接部包括连接到所述支线的端部的多个连接器,该多个连接器具有相同的形状。利用该配置,不要求连接到支线的连接器依据配件而变化,因此能够容易地增加配件的数量或者容易地改变配件。[通信-1]在车辆中,例如,需要处理自动驾驶技术,因此需要提高例如线束的通信系统的可靠性。例如,即使在由于交通事故而导致的车辆碰撞期间,优选地,也能够将用于控制重要的车载设备的通信系统维持为可通信状态,并且在车辆控制状态下不发生异常。在诸如线束这样的用作通信路径的车辆电路体中,存在通过简化配置而降低部件成本或制造成本的需求,以及通过使用通用于各种类型的车辆的部件而减少部件数量的需求。因此,车辆电路体被配置为以下(1)所述。(1)一种设置在车辆中的车辆电路体,包括:干线,该干线至少在所述车辆的前后方向上延伸;以及多个控制盒,该多个控制盒设置在所述干线中。所述干线包括电源线和通信线。所述通信线被布设为使得所述多个控制盒以环状形状连接。利用该配置,即使在将多个控制盒互相连接的任意通信线路中发生故障,也能够通过使用在与发生故障的部位相反的方向上的路径而继续进行通信。因此,能够提高车辆电路体的干线上的通信的可靠性。[通信-2]各种电气部件可以连接到车辆的线束。优选地使用通用部件,或者能够自由改变电气部件的连接器等的连接位置。从而,可以期望采用通用的通信标准,或者在车辆的线束上制备具有常规形状的多个连接器等。然而,例如,从安全角度考虑,存在除非给予特殊允许,否则要求一些连接器不能被车辆的使用者或第三方自由使用的情况。然而,在采用基于标准的通信方法的情况下,或者采用基于标准的连接器的情况下,用户等可以自由地使用空状态下的连接器,并且因此发生诸如安全这样的问题。因此,车辆电路体被配置为以下(1)至(5)所述。(1)一种设置在车辆中的车辆电路体,包括:多个控制盒;干线,该干线将所述多个控制盒互相连接;以及支线,该支线将控制盒直接或间接连接到配件。所述干线和所述支线均包括电源线和通信线。每个所述控制盒均包括多个支线连接部,所述支线的通信线能够装接到该支线连接部并且能够从该支线连接部脱离。所述多个支线连接部设置有锁定功能部,在所述支线未连接到所述支线连接部的情况下,该锁定功能部物理地或者电气地进入锁定状态。利用该配置,即使数量比当前连接的支线的数量大的支线连接部设置在控制盒中,使得支线未来能够附加地连接,也能够防止不应被连接的支线被连接到未与支线连接的支线连接部。因此,例如,能够防止程序重写装置被连接到未连接有支线的支线连接部,以恶意重写控制盒的控制单元的程序。(2)在根据(1)的车辆电路体中,所述多个支线连接部中的每个支线连接部都包括连接器,所述通信线的端部能够装接到该连接器并且能够从该连接器脱离,并且其中,所述锁定功能部包括:盖部件,该盖部件共同地覆盖多个连接器的开口;以及上锁部,其防止在锁定状态下所述盖部件从所述连接器脱离。利用该配置,在当前不要求支线连接到任何支线连接部的情况下,支线连接部的所有的连接器都被盖部件共同覆盖,并且由于上锁部,盖部件不能够脱离。从而,能够防止支线错误或恶意地连接到连接器。(3)在根据以上(1)的车辆电路体中,所述多个支线连接部每一者均包括连接器,通信线的端部能够装接到该连接器并从该连接器脱离。所述锁定功能部包括:盖部件,其覆盖任意一个连接器的开口的至少一部分;以及上锁部,其防止在锁定状态下所述盖部件从所述连接器脱离。利用该配置,盖部件能够仅装接到多个连接器中的必需连接器,并且不脱离。因此,在支线未连接到多个连接器中的若干连接器的情况下,盖部件装接到连接器,并且因此能够防止支线错误或恶意地连接到连接器。(4)在根据以上(1)的车辆电路体中,所述多个支线连接部中的每个支线连接部都包括连接器,通信线的端部能够装接到该连接器并且能够从该连接器脱离,并且其中,所述锁定功能部是密封部件,其覆盖至少一个连接器的开口,并且所述密封部件包括识别未密封的未密封显示装置。利用该配置,由于密封部件具有未密封显示装置,所以能够防止人员恶意地将支线连接到连接器。在支线非法连接到连接器的情况下,易于使经销商等发现该情况。(5)在根据以上(1)的车辆电路体中,所述多个支线连接部中的每个支线连接部都将信号发送到连接的目标对象,并且基于对来自所述目标对象的信号的响应而判定是否允许将信号发送到所述目标对象或者从所述目标对象接收信号。利用该配置,即使不应连接到支线连接部的支线连接到支线连接部,也不能够与连接到支线的目标对象进行通信,因此能够防止通过非法通信对连接到支线的控制盒或各配件的功能施加不良影响。[通信-3]关于车辆上的通信,可以使用基于诸如can、cxpi和以太网(注册商标)这样的多个标准的接口。连接的电气部件可以对每种类型的车辆、每种等级的车辆或者车身上的每个区域采用不同的通信标准。由于分开地准备诸如特殊通信电缆、连接器或者通信接口这样的装置以将基于不同标准的通信设备互相连接,所以线束的配置可能是复杂的,并且连接操作可能是麻烦的。因此,车辆电路体被配置为以下(1)至(2)所述。(1)一种设置在车辆中的车辆电路体,包括:干线,该干线至少在所述车辆的前后方向上延伸;多个控制盒,该多个控制盒设置在所述干线中;以及支线,该支线将所述控制盒直接或间接连接到配件。所述干线和所述支线均包括电源线和通信线。所述车辆分为多个区域。至少两个所述控制盒设置在互相不同的区域中,每个控制盒都包括网关,该网关将用于所述支线的通信线和所述干线的通信线的通信方法转换。多个网关能够经由所述干线的通信线而进行互相通信。利用该配置,由于将用于干线的通信线和支线的通信线的通信方法转换的网关设置在车辆的各个区域中,所以设置在一区域中的配件经由支线连接到设置在该区域中的控制盒,因此能够在配件与干线之间进行信号的发送和接收。(2)在根据以上(1)的车辆电路体中,网关改变通信方法,以对应于经由所述支线连接到所述网关的配件中所使用的通信方法。利用该配置,各种类型的配件能够连接到在与设置有该配件的区域相同的区域中设置的控制盒,而与通信方法无关。[通信-4]在车辆上,例如,期望将发送诸如由各种照相机拍摄的视频信号这样的大量数据的多种设备互相连接。在这样的环境中,可以采用光通信,使得能够以高速进行大容量的通信。然而,如果通过使用光通信网络而连接整个车载系统,则该系统不可避免地非常昂贵。因此,车辆电路体被配置为以下(1)至(2)所述。(1)一种设置在车辆中的车辆电路体,包括:干线,该干线至少在所述车辆的前后方向上延伸;多个控制盒,该多个控制盒设置在所述干线中;以及支线,该支线将所述控制盒直接或间接连接到配件。所述干线包括电源线和通信线。所述支线包括电源线和通信线中的至少一者。所述干线的通信线具有用于光信号的传输路径,并且所述支线的通信线具有用于电信号的传输路径。利用该配置,由于将控制盒互相连接的干线具有用于光信号的传输路径,所以能够增大控制盒之间的传输容量。由于使用光信号,所以难以受干线的电源线中或外部设备中产生的电磁噪声影响,因此能够增强通信的可靠性。(2)在根据以上(1)的车辆电路体中,所述干线的至少一个通信线将所述多个控制盒中的两个控制盒直接地互相连接。利用该配置,两个控制盒经由用于光信号的传输路径而直接互相连接,因此能够以高速进行信号的发送和接收。<实施例的说明>后文中,将参考附图描述本发明的车辆电路体的具体实施例。<第一实施例>(车辆电路体)首先,将描述车辆电路体的基本配置。图1图示出在根据本发明第一实施例的车辆电路体10布设在车身上的状态下各个部分的布局和连接状态以及安装在车身上的各个模块的概要。本发明的车辆电路体用于将电力从诸如车载电池这样的主电源供给到在车身各个部位处的配件(电气部件),或者用作在电气部件之间发送和接收信号所需的传输路径(参考图1)。换言之,第一实施例的车辆电路体的功能与安装在车辆中的普通线束的功能相同,然而所述车辆电路体的形状或结构与普通线束的形状或结构有很大不同。具体地,为了简化结构,干线由具有诸如骨干这样的简单形状的布设材料20形成,该干线包括具有预定电流容量的电源线、具有预定通信容量的通信线以及地线。“预定电流容量”是例如当能够安装在装接目标车辆上的所有电气部件都被安装并且使用时所需要的足够的电流容量,并且“预定通信容量”是例如当能够安装在装接目标车辆上的所有电气部件都被安装并且使用时所需要的足够的通信容量。各种配件(电气部件)能够经由支线连接,该支线连接到以沿着该干线散布的方式设置的多个控制盒。图1和2所示的根据第一实施例的车辆电路体10包括作为基本构成元件的:干线(骨干干线部15),其布设在车身1中,并且具有电源线21和通信线29;支线(仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68和行李舱支线子线束69),其连接到在车身各部位处的电气部件;以及多个控制盒(供给侧控制盒51、分支控制盒53、中间控制盒57和控制盒55和59),该多个控制盒以沿着干线散布的方式设置,并且该多个控制盒具有控制单元,该控制单元将供给到干线的来自电源线21的电力以及来自通信线29的信号分配到连接至干线的支线。根据第一实施例的车辆电路体10的骨干干线部15被大体地分为仪表板骨干干线部11和地板骨干干线部13。仪表板骨干干线部11在沿着前围板50的表面的部位处直线状地设置在左右方向上,从而在加强部上方的位置处与加强部(未示出)基本平行。仪表板骨干干线部11可以固定到加强部。地板骨干干线部13设置为在车身1的左右方向上的大致中央处沿着车辆内部地板在车身1的前后方向上延伸,并且在沿着前围板50的表面的部位处在上下方向上直线状地延伸,使得地板骨干干线部13的先头端连接到仪表板骨干干线部11的中间部。仪表板骨干干线部11与地板骨干干线部13的连接部处于能够经由稍后描述的分支控制盒53的分支部而互相电连接的状态。换言之,骨干干线部15通过仪表板骨干干线部11和地板骨干干线部13被构造为类似t形的形状。仪表板骨干干线部11经由供给侧控制盒51连接到发动机舱子线束61,该供给侧控制盒51设置在作为骨干干线部15的上游侧的车身1的左侧。发动机舱子线束61具有主电源电缆81,该主电源电缆81将作为设置在发动机室(发动机舱)41中的主电源的主电池5与交流发电机3互相电连接。此处,前围板50设置在发动机室41与车辆内部43之间的分界处,并且要求完好地密封电连接部件贯通该前围板50的部位。换言之,要求前围板50具有隔绝发动机室41的振动、降低来自悬挂的振动或噪声以及阻隔热、噪声和气味的功能,以维持车辆内部43舒适。还要求充分考虑到电连接部件的贯通部位,以防止所述功能受损。如上所述,根据第一实施例的车辆电路体10的主要构成元件,即,仪表板骨干干线部11、地板骨干干线部13、供给侧控制盒51、分支控制盒53、中间控制盒57以及控制盒55和59都设置在车辆内部43侧的空间中。与设置在仪表板骨干干线部11的左端处的供给侧控制盒51连接的主电源电缆81布设为穿过配合到前围板50的贯通孔内的索环85,从而连接到发动机室41内的发动机舱子线束61。因此,来自主电源的电力能够供给到供给侧控制盒51。由于易弯曲的材料能够用于主电源电缆81,该主电源电缆81的截面形状可以为圆形,或者其截面面积可以比仪表板骨干干线部11的截面面积小,所以能够有助于使用索环85的密封,从而能够防止当进行布设操作时的可操作性降低。在发动机室41中的各种电气部件要连接到车辆内部43中的仪表板骨干干线部11的情况下,例如,连接到供给侧控制盒51的子线束71设置为穿过前围板50,或者连接到控制盒55的子线束73设置为穿过前围板50,从而能够实现期望的电连接路径。在该情况下,由于子线束71和73具有小的截面面积并且容易弯曲,所以能够容易地密封子线束穿过前围板50的部位。仪表板骨干干线部11经由供给侧控制盒51和控制盒55连接到仪表板支线子线束(支线)31和前门支线子线束(支线)63。各个仪表板支线子线束31经由模块连接器c电连接到仪表板线束30a的模块驱动器30b,所述仪表板线束30a电连接到安装在仪表板模块30上的诸如仪表盘或者空调这样的电气部件的控制单元。各个前门支线子线束63优选地连接到前门线束33a的模块驱动器33b,所述前门线束33a电连接到安装在前门33上的诸如门锁或者电动车窗这样的电气部件的控制单元,使得能够进行非接触供电和近场无线通信。地板骨干干线部13经由中间控制盒57连接到后门支线子线束(支线)65、中控台支线子线束(支线)66、前座支线子线束(支线)67、后座支线子线束(支线)68以及副电池7。各个后门支线子线束65优选地连接到后门子线束35a的模块驱动器35b,所述后门子线束35a电连接到安装在后门35上的诸如门锁或者电动车窗这样的电气部件的控制单元,使得能够进行非接触供电和近场无线通信。中控台支线子线束66经由模块连接器c电连接到中控台线束39a的模块驱动器39b,所述中控台线束39a电连接到安装在中控台39上的诸如空调或者音频的操作面板这样的电气部件的控制单元。各个前座支线子线束67经由模块连接器c电连接到前座线束37a的模块驱动器37b,所述前座线束37a电连接到安装在前座37中的诸如电动倾角调节器或者座椅加热器这样的电气部件的控制单元。各个后座支线子线束68经由模块连接器c电连接到后座线束38a的模块驱动器38b,所述后座线束38a电连接到安装在后座38中的诸如电动倾角调节器或者座椅加热器这样的电气部件的控制单元。地板骨干干线部13经由控制盒59连接到行李舱支线子线束(支线)69,该控制盒59设置在作为该干线的下游侧的车身1的后侧处。行李舱支线子线束69经由模块连接器c电连接到与行李室中的各种电气部件的控制单元电连接的行李舱线束的模块驱动器(未示出)。模块连接器c能够将电源和地共同地连接到控制盒,从而将电力和信号有效地传输到骨干干线部15和各配件。(布设材料)根据第一实施例的车辆电路体10的骨干干线部15具有电源线21、通信线29和地线27,所述电源线21、通信线29和地线27均由包括扁平导体100的布设材料20形成。在图1所示的配置中,假定存在副电池(副电源)7的情况,从而车辆电路体10的骨干干线部15包括作为电源线21的主电源系统(电源线)23和副电源系统(电源线)25。对于骨干干线部15的电源线21、地线27和通信线29,根据第一实施例的布设材料20采用由截面形状为扁平条状的金属材料(例如,铜合金或铝)制成的扁平导体100,并且通过在厚度方向上堆叠外周由绝缘被覆110覆盖的该扁平导体100而形成(见图1)。换言之,主电源系统23堆叠在形成电源线21的副电源系统25上,并且例如,并排布置有一对扁平导体的通信线29堆叠于在主电源系统23上堆叠的地线27上。因此,布设材料20允许大电流通过,并且比较有助于在厚度方向上的弯曲加工。布设材料20能够被布设为电源线21与地线27平行地彼此邻接地延伸的状态,并且由于地线27堆叠在通信线29与电源线21之间,所以能够防止电源噪声的潜行。骨干干线部15的电源线21要求大的截面面积,以确保预定的电流容量,而本实施例的电源线21由具有成扁平条状的截面形状的扁平导体100的布设材料20形成,使得有助于在厚度方向上的弯曲,因而有助于沿着预定布设路径布设电源线21的操作。(控制盒)根据第一实施例的车辆电路体10设置有五个控制盒,即,供给侧控制盒51,其设置在骨干干线部15的上游端(仪表板骨干干线部11的左端);分支控制盒53,其设置在骨干干线部15的中间处的分支部(仪表板骨干干线部11与地板骨干干线部13之间的连接部)中;中间控制盒57,其设置在骨干干线部15的中间(地板骨干干线部13的中间部)处;以及控制盒55和59,其设置在骨干干线部15的下游端(仪表板骨干干线部11的右端和地板骨干干线部13的后端)。如图3(a)所示,供给侧控制盒51设置有:主电源连接部120,其将主电源电缆81连接到仪表板骨干干线部11;以及支线连接部121,其将前门支线子线束63或者子线束71连接到仪表板骨干干线部11。供给侧控制盒51能够在主电源电缆81、仪表板骨干干线部11、前门支线子线束63与子线束71之间,将各个的电路的电源系统、地系统和通信系统互相连接。如图3(b)所示,供给侧控制盒51将电路板125容纳在由下壳122和上壳124形成的外壳中。与副电源系统25、主电源系统23和地线27的各自的扁平导体100电连接的阳端子130配合到在电路板125上安装的三个阴端子127。仪表板骨干干线部11中的副电源系统25、主电源系统23、地线27和通信线29经由形成在基板上的电路或者汇流条电气地分支连接到设置在电路板125的一端缘处的多个板连接器131,以形成支线连接部121。主电源连接部120包括:电源连接部133,其连接到主电源电缆81的电源线82;和地连接部135,其连接到主电源电缆81的地线84。如图4(a)所示,主电源系统23的扁平导体100连接到嵌入下壳122中的电源连接部133的双头螺栓(电力输入端子)141。地线27的扁平导体100连接到嵌入下壳122中的地连接部135的双头螺栓(电力输入端子)143。通信线29经由例如板连接器(未示出)连接到电路板125。如图4(b)所示,电路板125固定到下壳122,使得各阴端子127配合到分别与扁平导体100电连接的阳端子130。电路板125安装有控制单元151,该控制单元151将来自电源线21的电力和来自通信线29的信号分配至发动机舱子线束61、前门支线子线束63或者子线束71。电路板125安装有多个电气部件(配件)以及切换电路153,该切换电路153分别包括现场可编程门阵列(fpga)装置和电路模块,作为在电气部件的连接状态之间进行切换所需的构成元件。如图4(c)所示,在电源连接部133中,压接到主电源电缆81的电源线82的端部的端子86螺母紧固到主电源系统23的扁平导体100。在地连接部135中,压接到主电源电缆81的地线84的端部的端子86螺母紧固到地线27的扁平导体100。以上述方式,主电源电缆81能够连接并固定到仪表板骨干干线部11。支线连接部121的板连接器131连接器连接到仪表板支线子线束31、前门直线子线束63和与子线束71的端部连接的模块连接器c。模块连接器c能够将来自电源线21和地线27的电力以及来自通信线29的信号传输至各电气部件。如图6(a)所示,分支控制盒53设置在骨干干线部15的中间处的分支部即仪表板骨干干线部11与地板骨干干线部13之间的连接部处,并且包括支线连接部121,该支线连接部121用于连接与电气部件(未示出)相连的子线束(支线)。分支控制盒53能够在仪表板骨干干线部11、地板骨干干线部13与子线束之间将各电路的电源系统、地系统和通信系统互相连接。以与供给侧控制盒51相同的方式,分支控制盒53将电路板125容纳在由下壳122和上壳124形成的外壳中。仪表板骨干干线部11中的副电源系统25、主电源系统23、地线27和通信线29经由形成在基板上的电路或者汇流条电气地分支连接到设置在电路板125的一端缘处的多个板连接器131。仪表板骨干干线部11和地板骨干干线部13中的副电源系统25、主电源系统23和地线27可以通过例如焊接或者螺栓紧固其扁平导体100(参见图14)而互相电连接并固定。仪表板骨干干线部11和地板骨干干线部13中的通信线29可以通过例如连接器连接而互相电连接并且固定。如图6(b)所示,控制盒55设置在骨干干线部15的下游端即仪表板骨干干线部11的右端处,并且包括支线连接部121,该支线连接部121用于连接到前门支线子线束63或者子线束73。控制盒55能够在仪表板骨干干线部11、前门支线子线束63与子线束73之间将各自的电路的电源系统、地系统和通信系统互相连接。以与供给侧控制盒51相同的方式,控制盒55将电路板125容纳在由下壳122和上壳124形成的外壳中。与副电源系统25、主电源系统23和地线27的各自的扁平导体100电连接的阳端子130配合到安装在电路板125上的三个阴端子127中(参见图3(b))。仪表板骨干干线部11中的副电源系统25、主电源系统23、地线27和通信线29经由形成在基板上的电路或者汇流条电气地分支连接到设置在电路板125的一端缘处的多个板连接器131,以形成支线连接部121。设置在地板骨干干线部13的后端处的控制盒59具有与控制盒55相同的配置。如图6(c)所示,中间控制盒57设置在骨干干线部15的中间即地板骨干干线部13的中间部处,并且包括支线连接部121,该支线连接部121用于连接到后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68和副电池7。中间控制盒57能够在地板骨干干线部13、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68与副电池7之间将各自的电路的电源系统、地系统和通信系统互相连接。以与供给侧控制盒51相同的方式,中间控制盒57将电路板125容纳在由下壳122和上壳124形成的外壳中。地板骨干干线部13中的副电源系统25、主电源系统23、地线27和通信线29经由形成在基板上的电路或者汇流条电气地分支连接到设置在电路板125的一端缘处的多个板连接器131。通过适当改变具有与装接目标车辆的等级或者目标规格对应的支线连接部121的多种类型的电路板125,上述各控制盒(供给侧控制盒51、分支控制盒53、中间控制盒57以及控制盒55和59)能够应对大多数车型,因而能够通过使用通用的部件而减少部件的数量。例如,图5(a)所示的电路板126包括形成支线连接部121、控制单元151和单个切换电路153的三个板连接器131。相比之下,图5(b)所示的电路板125包括形成支线连接部121、控制单元151和三个切换电路153的六个板连接器131。电路板126和电路板125能够被容纳在由下壳122和上壳124形成的共同的外壳中。(模块)在根据第一实施例的车辆电路体10中,作为支线与骨干干线部15连接的仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68等被配置为与仪表板模块30、前门33、后门35、中控台39、前座37、后座38等一体化的模块。换言之,仪表板支线子线束31连接到与安装在仪表板模块30上的电气部件的控制单元电连接的仪表板线束30a的模块驱动器30b,因此能够被配置为与仪表板模块30一体化的模块。各个前门支线子线束63连接到与安装在前门33上的电气部件的控制单元电连接的前门线束33a的模块驱动器33b,使得能够进行非接触供电和近场无线通信,因而能够被配置为与前门33一体化的模块。各个后门支线子线束65连接到与安装在后门35上的电气部件的控制单元电连接的后门子线束35a的模块驱动器35b,使得能够进行非接触供电和近场无线通信,因而能够被配置为与后门35一体化的模块。中控台支线子线束66电连接到与安装在中控台39上的电气部件的控制单元电连接的中控台线束39a的模块驱动器39b,因而能够被配置为与仪表板模块30一体化的模块。各个前座支线子线束67电连接到与安装在前座37上的电气部件的控制单元电连接的前座线束37a的模块驱动器37b,因而能够被配置为与前座37一体化的模块。各个后座支线子线束68电连接到与安装在后座38中的电气部件的控制单元电连接的后座线束38a的模块驱动器38b,因而能够被配置为与后座38一体化的模块。如图1所示,根据本实施例的仪表板模块30由诸如杂物箱32、中央仪表群34和方向盘36这样的多个仪表板子模块以及仪表板主体形成。如图7所示,设置在仪表板骨干干线部11的左侧处的供给侧控制盒51位于杂物箱32所装接到的仪表板模块30的车身1的左侧处。因此,在用于分配电力的机械继电器或者机械熔断器设置在经由主电源电缆81与主电池5电连接的供给侧控制盒51中时,能够通过拆卸杂物箱而容易地取放供给侧控制盒51中的机械继电器或者机械熔断器,因而有助于更换机械继电器或者机械熔断器的维修。(分支盒)根据本实施例的车辆电路体10可以在骨干干线部15的中间处(例如,在地板骨干干线部13的中间处)设置有分支盒161,如图8所示。分支盒161连接到例如副电池7。为了在地板骨干干线部13的中间处设置分支盒161,首先,如图9(a)所示,在副电源系统25、主电源系统23和地线27的预定部位处剥离绝缘被覆110,从而露出扁平导体100,并且将连接端子171、172和173通过焊接等分别连接到扁平导体100。接着,如图9(b)所示,堆叠副电源系统25、主电源系统23和地线27,使得连接端子171、172和173并排布置。如图9(c)所示,将地板骨干干线部13的绝缘被覆110被剥离的部分由拧合有三个双头螺栓167的外壳162覆盖,并且双头螺栓167分别装接到连接端子171、172和173,从而贯通连接端子171、172和173的通孔。如图8所示,使la端子166插通双头螺栓167,并且利用螺母而固定到双头螺栓167,其中该la端子166压接到与副电池7连接的电源电缆163、164和165的端部。因此,副电源系统25和主电源系统23经由电源电缆163和164连接到副电池7的正极,并且地线27经由电源电缆165连接到副电池7的负极。如上所述,分支盒161设置在地板骨干干线部13的中间处,使得副电池7能够可靠并且容易地连接到地板骨干干线部13。(车辆电路体的效果)如上所述,根据第一实施例的车辆电路体10,能够通过使用骨干干线部15和支线提供具有简单结构的车辆电路体,所述骨干干线部15具有预定的电流容量和预定的通信容量,并且被布设在车身1中;所述支线(仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68、行李舱支线子线束69等)经由五个控制盒(供给侧控制盒51、分支控制盒53、中间控制盒57以及控制盒55和59)将车身各部位处的电气部件连接到骨干干线部15,所述五个控制盒以沿着骨干干线部15散布的方式设置。换言之,变得更容易制造骨干干线部15,该骨干干线部15整体具有简单的结构,并且由以下部件形成:仪表板骨干干线部11,其在车身1的左右方向上延伸;和地板骨干干线部13,其在车身1的大致中央部处在车身1的前后方向上延伸。骨干干线部15具有能够在控制盒之间被划分为多个部分的分割结构,并且所述各部分能够经由控制盒互相连接。通过对车身的各个区域的细分而获得了与沿着骨干干线部15散布地设置的多个控制盒(供给侧控制盒51、分支控制盒53、中间控制盒57以及控制盒55和59)相连接的支线(仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68、行李舱支线子线束69等),并且由于各个区域的电路规格差异被分散,所以能够减小电线长度。因此,能够提高生产率,并且由于通过细分而获得小型化的分支线的包装率升高,所以还能够降低运输成本。车辆电路体10由骨干干线部15和支线分开地形成,骨干干线部15通用于多个车型、等级或者选项;支线(仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68、行李舱支线子线束69等)基于多个车型、等级或者可选配件而变化。因此,即使车型、等级或者可选配件的数量增多,也仅需要依据车型、等级或者可选配件而制备具有不同布线的支线,因而能够有助于制造车辆电路体10,并且有助于降低成本。根据第一实施例的骨干干线部15形成为t状,其中,电源线21和通信线29在设置了分支控制盒53并且作为仪表板骨干干线部11与地板骨干干线部13之间的连接部这样的分支部处分支。因此,由于骨干干线部15在分支部中分支为多个部分,所以以散布方式设置在仪表板骨干干线部11和地板骨干干线部13中的多个控制盒(供给侧控制盒51、分支控制盒53、中间控制盒57以及控制盒55和59)能够设置在车身1的各个部位处。因此,能够经由连接到控制盒的支线(仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68、行李舱支线子线束69等)将电力容易地供给到设置在车身1的各个部位处的配件,或者将通信数据(信号)容易地发送到配件或者容易地从配件接收通信数据(信号)。从而,能够缩短支线。本发明的干线不限于由仪表板骨干干线部11和地板骨干干线部13形成的t状,并且可以采用诸如i状或者h状这样的各种形态。根据第一实施例的车辆电路体10,主电池(主电源)5和副电池(副电源)7以散布方式设置在骨干干线部15的电源线21中。因此,能够通过从各个电源供给电流而减小在各个配件(电气部件)所需的电力高的情况下的电压波动。在由于车辆碰撞而导致停止从一个电源供给电力的情况下,电力能够从另一个电源供给,因而能够配置不断开的电源线21。由于以散布方式设置在车辆中的主电池5和副电池7经由骨干干线部15的电源线21互相连接,所以能够在电动汽车或者混合动力汽车中容易地恢复再生能量,因而能够提高能量恢复率。由于设置有多个电源,所以能够进行电源备用处理,因而能够减小当电源异常时的影响。(变形例)后文中,将对根据第一实施例的车辆电路体10的各配置的变形例进行详细说明。图10是图示出根据本实施例的布设材料的变形例的分解立体图。形成骨干干线部的布设材料180设置有由铝扁平导体形成的电源线181和地线183以及由柔性印刷电路(fpc)形成的通信线185。因此,布设材料180能够被布设为处于电源线181与地线183设置为平行地彼此邻接的状态,并且由于地线183堆叠在通信线185与电源线181之间,所以能够防止电源噪声的潜行。由于布设材料180中的电源线181和地线183由铝扁平导体形成,并且通信线185由fpc形成,所以能够提供轻量化并且轻薄的骨干干线部。图11是图示出根据本实施例的扁平导体的变形例的主要部分的立体图。如图11所示,用于形成电源线或者地线的扁平导体190具有薄板部191,该薄板部191适当地形成在扁平导体190的长度方向上的一部分处。因此,扁平导体190容易在薄板部191处在板厚方向上弯曲,因此当骨干干线部布设在车身1中时能够容易沿着车身的形状弯曲。从而,能够提高骨干干线部的布设性能。图12是用于说明根据本实施例的扁平导体中设置的熔断器的立体图。连接到电池的电源线193由扁平导体形成,并且供电池极柱配合到其中的装接孔197形成在该电源线193的先头端处。熔断器195一体地形成在装接孔197的基端侧。通过将由低熔点金属制成的可熔部件199设置在扁平导体的宽度减小的小径部中而得到熔断器195。熔断器195由具有透明盖194的熔断器壳体192覆盖。根据一体地具有熔断器195的电源线193,当电源线连接到电池时不需要另行地设置熔断器,并且能够防止部件的数量增多。图13示出用于说明由根据本实施例的扁平导体形成的电源线和地线连接到电池的实例的立体图和截面图。如图13所示,骨干干线部中的电线源201和地线203由扁平导体形成,并且具有形成在该扁平导体的先头端处的贯通孔。向内弯曲的l状汇流条217电连接并固定到电池210的阳端子213,并且向内弯曲的l状汇流条215电连接并固定到负端子211。分别形成在相交的汇流条215和217的先头端处的贯通孔同心地设置,使得螺栓221能够贯通所述贯通孔。电源线201与汇流条217的上表面重叠,并且地线203与汇流条215的下表面重叠,有孔的绝缘片219在汇流条215和217的先头端处夹置在该汇流条215与217之间,并且在该状态下,贯通该处的螺栓221由螺母223紧固并固定。结果,电源线201经由汇流条217连接到电池210的正端子213,并且地线203经由汇流条215连接到电池210的负端子211,而无需使用复杂的连接结构。根据该电池连接结构,由于由扁平导体形成的电源线201和地线203能够以平行布设的状态分开地连接到电池210,所以能够提高抗噪性。图14是用于说明由根据本实施例的扁平导体形成的布设材料的连接结构实例的立体图。在图14所示的连接结构中,例如,在图6(a)所示的分支控制盒53中,仪表板骨干干线部11和地板骨干干线部13中的副电源系统25、主电源系统23和地线27的扁平导体100通过螺栓紧固而互相电连接并固定。首先,将仪表板骨干干线部11中的副电源系统25、主电源系统23和地线27的绝缘被覆110的一部分剥离,从而露出扁平导体100,并且在所述一部分中形成贯通孔。将地板骨干干线部13中的副电源系统25、主电源系统23和地线27的绝缘被覆110的一部分剥离,从而露出扁平导体100,并且在所述一部分中形成贯通孔。接着,将地板骨干干线部13中的副电源系统25、主电源系统23和地线27的扁平导体100分别与仪表板骨干干线部11中的副电源系统25、主电源系统23和地线27的扁平导体100重叠。将有孔的绝缘板237夹置在重叠的副电源系统25与重叠的主电源系统23之间以及重叠的主电源系统23与重叠的地线27之间,并且在该状态下,将在该处贯通的绝缘螺栓238通过绝缘螺母239紧固并固定。绝缘螺栓238和绝缘螺母239优选地由电绝缘工程塑料或者陶瓷制成。结果,仪表板骨干干线部11和地板骨干干线部13中的副电源系统25、主电源系统23和地线27的扁平导体100能够通过螺栓而牢固地互相紧固。图15示出用于说明根据本实施例的电源线的布置的立体图。图15(a)所示的布设材料240包括:副电源系统241、主电源系统243、地线245和通信线247,其分别由具有绞合线的电线形成。布设材料240由具有高通用性的绞合线的电线形成,因而能够容易地制造并且在所有方向上自由弯曲。因此,提高了布设性能。假定布设材料240具有能够在诸如12v或者48v这样的骨干干线部中一起使用的充足的电流容量。因此,在正常运行期间12v的电压供给到骨干干线部并且配件的电力消耗大的情况下,被dc/dc转换器(高压/低压转换器)升压为48v的电压供给到骨干干线部。如上所述,骨干干线部在12v与48v之间进行切换的同时使用,因而能够容易地补偿配件的电源电压。图15(b)所示的布设材料250具有并排布置的12v的电源系统251、12v的地线255、48v的电源系统253、48v的地线257,其分别由具有绞合线的电线形成。因此,包括布设材料250的骨干干线部也在12v与48v之间进行切换的同时使用,因而能够容易地补偿配件的电源电压。图15(c)所示的布设材料260具有并排布置的12v的电源系统251、12v和48v共用的地线259以及48v的电源系统253,其分别由具有绞合线的电线形成。因此,由于使用包括布设材料260的骨干干线部,能够通过减少电线的数量来减小空间或重量。图16示出用于说明根据本实施例的布设材料的布置的立体图。图16(a)所示的布设材料270具有如下配置:主电源系统272和地线274的绞合线重叠在副电源系统271和地线273的绞合线上,并且通信线275和276的绞合线重叠在主电源系统272和地线274的绞合线上。因此,在布设材料270中,通过介由绞合抵消噪声而能够提高抗噪性能。图16(b)所示的布设材料280具有如下配置:地线283、主电源系统282、地线283和通信线285依次堆叠在由扁平导体形成的副电源系统281上。因此,在布设材料280中,能够通过以散布方式设置地线283而提高抗噪性能。图16(c)所示的布设材料290具有如下配置:其中,由扁平导体形成的副电源系统291和主电源系统292分别被其外周上的编织物293和294覆盖,而后该副电源系统291与该主电源系统292在板厚方向上互相重叠,并且通信线285堆叠置在其上。因此,在布设材料290中,编织物293和编织物294既实现了接地有实现了屏蔽,因而能够提高抗噪性能。在图16(d)所示的布设材料300中,地线303夹置在包含噪声的副电源系统301与通信线305之间,并且地线304夹置在主电源系统302与通信线305之间,使得屏蔽了通信线305。地线304和303设置在通信线305的上方和下方,从而提高了屏蔽性能。由于副电源系统301、主电源系统302以及地线303和304由扁平导体形成并且互相堆叠,所以电源系统与地线的面对面积大,并且其间的间隙小,使得提高了屏蔽性能。图17是用于说明根据本实施例的布设材料的布置的立体图。图17(a)至17(d)是图示出布设材料310、320、330和340的布设模式的截面图,所述布设材料分别包括:主电源系统311和副电源系统312,其由具有绞合线的电线形成;地线313,其由具有绞合线的电线形成;以及通信线314,其由塑料光纤形成。对布设材料310、320、330和340的各自的通信线314使用抵抗噪声的光通信,因而能够提高骨干干线部的布设模式的自由度。图17(e)所示的布设材料350具有如下配置:其中,由铝圆杆导体形成的主电源系统351和副电源系统352、由具有绞合线的电线形成的一对地线313以及由塑料光纤形成的通信线314捆束在一起。因此,防止了设置在由圆杆导体形成的副电源系统352与一对地线313之间的间隙中的通信线314损坏,并且该通信线易于布设在车身1中。图18是用于说明根据本实施例的布设材料的布置的截面图。如图18(a)所示,布设材料360具有如下配置:其中,交替地设置12v的主电源系统361和主地线362、12v的副电源系统365和副地线366、48v的主地线363和主电源系统364以及48v的副地线367和副电源系统368。因此,布设材料360具有提高的屏蔽性能,因而能够省略屏蔽部件以及进一步的静噪滤波器。如图18(b)所示,布设材料370具有如下配置:其中,主电源系统371和副电源系统373、地线375和377以及一对通信线376和378互相平行地设置,其中,所述主电源系统371和副电源系统373由具有绞合线的电线形成并且并排布置,所述地线375和377由覆盖主电源系统371和副电源系统373的外周表面的编织线形成,所述一对通信线376和378设置在并排布置的主电源系统371与副电源系统373之间的上下间隙中。因此,在布设材料370中,主电源系统371和副电源系统373的外周表面分别被地线375和377覆盖,因而能够降低噪声对通信线376和378的影响。由于实现了屏蔽和接地两者,并且通信线376和378设置在主电源系统371与副电源系统373二者之间的上下间隙中,所以能够节省空间。图19示出了用于说明根据本实施例的圆杆导体的板连接结构的截面图。如图19(a)所示,例如,当将具有圆杆导体403的布设材料401电连接到控制盒中的电路板411时,首先,剥离布设材料401的连接部位处的绝缘被覆404,使得圆杆导体403露出。由铜合金制成的压接端子405包括一对压接片407和一对引线409,将该对引线409插入到电路板411的通孔413内。将压接端子405的压接片407压接并固定到布设材料401的露出的圆杆导体403,而后,如图19(b)所示,将压接端子405的引线409插入到电路板411的通孔413内以焊接接合。结果,布设材料401的圆杆导体403电连接到电路板411的预定电路。因此,根据本实施例的圆杆导体403的板连接结构,不需要为了连接到电路板411而加工圆杆导体403,并且不需要诸如专用的冲压装置或者冲压模具这样的专用加工设备。从而,能够降低加工成本。换言之,在现有技术中,需要将连接部加工为扁平形态并且焊接或者螺栓紧固,以将圆杆导体连接到配对的端子或者电线,从而加工成本增大。由于通过剥离布设材料401的任意位置处的绝缘被覆404而露出圆杆导体403,所以能够在圆杆导体403的任意位置处装接压接端子405,因而能够提高布设材料401的布局的自由度。图20是用于说明根据本前实施例的通过使用绞合线而形成端子的结构的立体图。如图20所示,当将由具有例如铝合金制绞合线421的电线形成的布设材料420固定到诸如电池端子这样的双头螺栓时,将通过剥离绝缘被覆404而在布设材料420的端部处露出的绞合线421冲压加工为la端子形态,使得形成la端子部425。因此,不需要将la端子连接到布设材料420的端部,因而能够减少部件的数量。图21示出了用于说明根据本实施例的电源线的端子结构实例的主要部分放大图。作为在根据本实施例的骨干干线部中的电源线的连接端子,例如,使用具有称为“1.5端子”的端子尺寸的连接端子和具有称为“4.8端子”的端子尺寸的连接端子。如图21(a)所示,称为“4.8端子”的阳凸片端子430具有4.8mm的端子宽度w,并且使得配对的阴端子大型化。因此,端子连接部形成为具有如图21(b)所示的阳端子431一样的三维u状截面,因而能够提供通过增大表面面积(与配对端子的接触面积)而即使尺寸小也能应对大电流的结构。端子连接部形成为如图21(c)所示的阳端子433一样的三维矩形管状形状,因而能够提供通过增大表面面积而即使尺寸小也能够应对大电流的结构。端子连接部形成为如图21(d)所示的阳端子435一样的三维筒状形状,因而能够提供通过增大表面面积而即使尺寸小也能够应对大电流的结构。图22是用于说明形成根据本实施例的圆杆导体的实例的立体图。在图22所示的布设材料401中,通过使用当制造铝电线的芯线447时获得的二次中间体445形成铝圆杆导体403。换言之,例如通过由铝锭441形成圆柱状一次中间体443,然后通过使一次中间体443延长而形成长的二次中间体445,并且再将二次中间体445拉伸成具有小的直径,从而形成在公知的铝电线中的芯线447。因此,能够通过仅在用作圆杆导体403的二次中间体445的圆周上形成绝缘被覆404而形成布设材料401,因而与专门地加工和制造圆杆导体的情况相比,能够降低圆杆导体403的加工成本。图23是现有技术的线束的被覆截面面积与根据本实施例的布设材料的被覆截面面积比较的说明图。如图23中的左部所示,包括布设在车身中的电源线、地线和通信线的现有技术的线束w/h是由多条电线452形成的电线束,并且存在截面直径增大的趋势。相比之下,在图23中的右部所示的根据本实施例的布设材料450中,电源线451和地线453以及通信线456由夹具455一体地保持,其中,在所述电源线451和地线453中,绝缘被覆404形成在铝圆杆导体403的外周上;所述通信线456由塑料光纤454形成;且所述夹具455沿着长度方向以预定间隔成型。因此,当线束w/h中的绝缘被覆r和导体m的截面面积构造与布设材料450中的绝缘被覆r和导体m比较时,虽然导体m的截面面积彼此相同,但是线束w/h的绝缘被覆r的截面面积比布设材料450的绝缘被覆r的截面面积大。换言之,在现有技术的线束w/h中,多条电线452中的每条电线都具有绝缘被覆,而在布设材料450中,电线被统一为单个电源线451、单个地线453和单个通信线456,使得能够减小绝缘被覆r的截面面积,并且结果,能够使得布设材料450非常细。在一体地成型至布设材料450的夹具455中,卡合夹459在夹具本体457的两端处突出。因此,卡合夹459插入到车身面板等的贯通孔内并且与之卡合,因而能够将布设材料450容易地布设在车身中并固定到车身。图24示出了用于说明根据本实施例的圆杆导体的端子连接结构的主要部分的立体图和截面图。例如,当将具有圆杆导体403的布设材料401电连接到控制盒中的电路板时,首先,部分地剥离布设材料401的连接部位处的绝缘被覆404,使得圆杆导体403露出。由铜合金制成的连接端子461包括:固定部463,其具有与圆杆导体403的外表面接触的筒状内表面;以及凸片端子部465,其从固定部463向外突出。连接端子461的固定部463通过焊接或者通过使用超声波而固定到布设材料401的露出的圆杆导体403。凸片端子部465配合到设置在电路板上的配对端子,使得布设材料401的圆杆导体403电连接到电路板的预定电路。由于固定部463具有与圆杆导体403的外表面进行接触的筒状内表面,所以连接端子461确保了相对于圆杆导体403的充分的接触面积,从而能够确保连接可靠性。如图24(a)所示,在通过将多个布设材料401并排布置而构成的骨干干线部460中,各凸片端子部465以彼此平行地在布设材料401的直径方向上向外突出的状态配合到配对端子。因此,凸片端子部465能够相对于并排布置的多个布设材料401配合到配对端子,而无需改变布置间隔。图25示出了用于说明根据本实施例的圆杆导体的控制盒连接结构的主要部分的立体图和截面图。如图25(a)和25(b)所示,在形成骨干干线部的主电源系统、副电源系统和地线分别由铝圆杆导体473形成的情况下,具有小直径的端子连接部475形成在各圆杆导体473的先头端处,并且端子连接部475要配合到的铝合金制成的配对阴端子477设置在各个端子容纳室471内。如果圆杆导体473的先头端插入到作为阳端子的控制盒470的端子容纳室471中,则骨干干线部处于电连接到控制盒470的状态。因此,不需要另行地将连接端子装接到与控制盒470电连接的各圆杆导体473的先头端,因而能够减少部件的数量。图26示出了用于说明根据本实施例的圆杆导体的变形例的主要部分的立体图。形成图26(a)所示的布设材料480,其中,由铝圆杆导体形成的圆形截面部481、由厚铝扁平导体形成的板状部483与由薄铝扁平导体形成的薄板状部485互相连接,使得它们的形状沿着长度方向无缝地变化。板状部483容易在板厚方向上弯曲,并且薄板状部485更加容易弯曲。圆形截面部481比板状部483或者薄板状部485更难以弯曲,但是在所有方向上自由地弯曲。因此,由布设材料480形成的骨干干线部容易以与车身的布设路径对应的三维方式布设。形成图26(a)所示的布设材料490,其中,由厚铝扁平导体形成的板状部493与由铝圆杆导体形成的圆形截面部495互相连接,使得它们的形状沿着长度方向无缝地变化。板状部493具有比圆形截面部495的高度小的高度,并且使用在要求以减小的高度布设的部分处。因此,由于板状部493使用在要求以减小的高度布设的部分处,并且圆形截面部495使用在有助于三维路径布设的部分处,所以通过堆叠多个布设材料490而形成的骨干干线部容易以与车身的布设路径对应的三维方式布设。能够通过使用铝圆杆或者矩形杆形成布设材料480和490,而无需使用铝股线,从而能够降低制造成本。图27是用于说明根据本实施例的布设材料的变形例的截面图。图27所示的布设材料500是同轴电缆,包括:中心导体501;绝缘层505,其同轴地设置中心导体501的外侧;以及地线503,其由覆盖绝缘层505的外周表面的编织线形成。电流流经作为电源线的中心导体501,并且信号根据电力线通信(plc)技术流经所述中心导体501。因此,在布设材料500中,诸如中心导体501和地线503这样的两个构成元件能够应对诸如电源线、地线和信号线这样的三个功能,并且通过使用同轴结构而形成为粗同轴电缆,从而使得能够流经大电流。图28是用于说明根据本实施例的布设材料的变形例的截面图。图28所示的布设材料510包括:电源线515,其由多个绞合利兹线(电线)511形成;和地线513,其设置为包围电源线515的外侧的编织线。因此,布设材料510是抵抗噪声的紧凑的电线。图29示出了用于说明根据本实施例的布设材料的变形例的截面图。如图29所示,布设材料520具有如下配置:其中,由多条芯线524形成的电源线521和由多条芯线524形成的地线522以预定间隔平行设置,并且在该状态下被具有椭圆截面的绝缘被覆523覆盖。电源线521和地线522的两端分别连接到端子525,并且端子525容纳在连接器壳体527中。因此,在布设材料520中,电源线521和地线522能够由单个绝缘被覆523覆盖,从而与多个芯线中的每个芯线都由绝缘被覆覆盖的现有技术的线束相比,能够减小布设空间,使得能够降低制造成本。图30示出了用于说明根据本实施例的布设材料的变形例的截面图。图30(a)所示的布设材料530具有如下配置:其中,由多条利兹线(漆包线)533形成的电源线531和由多条利兹线(漆包线)533形成的地线532在彼此靠近的状态下被具有椭圆截面的绝缘被覆534覆盖。换言之,电源线531和地线532不具有被覆层,而是由利兹线533形成,因而即使这些线彼此靠近,也不彼此短路。不具有被覆层的电源线531和地线532在彼此靠近的状态下被绝缘被覆534覆盖,因此能够使得布设材料530紧凑。图30(b)所示的布设材料540具有如下配置:其中,由多条利兹线533形成的电源线531和由多条利兹线533形成的地线532在彼此靠近的状态下被具有圆形截面的绝缘被覆543覆盖。图30(c)所示的布设材料550具有如下配置:其中,由多条利兹线533形成的具有半圆形截面的电源线551和由多条利兹线533形成的具有半圆形截面的地线553在彼此组合以具有圆形截面的状态下被具有圆形截面的绝缘被覆554覆盖。图30(d)所示的布设材料560具有如下配置:其中,由多条利兹线533形成的副电源线561、由多条利兹线533形成的主电源线562和由多条利兹线533形成的地线563在彼此靠近的状态下被具有椭圆截面的绝缘被覆564覆盖。图31示出了用于说明根据本实施例的布设材料的变形例的截面图。如图31所示,布设材料570具有如下配置:其中,由多条利兹线533形成的电源线571和由多条利兹线533形成的地线573在绞合以提高噪声消除效果的状态下被具有椭圆截面的绝缘被覆574覆盖。电源线571和地线573的两端分别连接到端子578,并且端子578容纳在连接器壳体579中。因此,在布设材料570中,绞合的电源线571与地线573能够被单个绝缘被覆574覆盖,从而与多个芯线中的每个芯线都由绝缘被覆覆盖的现有技术的线束相比,能够减小布设空间。在布设材料570中,利兹线533能够彼此紧密接触,从而能够有效地降低噪声。在布设材料570中,能够在绞合电源线571与地线573的同时形成绝缘被覆574,因而能够在单个电线制造工序中制造,从而能够降低加工成本。图32是用于说明根据本实施例的布设材料的变形例的平面图。图32所示的布设材料580具有诸如编织线的如下配置:其中,由多条利兹线584形成的电源线581和由多条利兹线584形成的地线583互相编织。电源线581和地线583的两端分别通过焊接或者通过超声波连接到端子585。由于利兹线584彼此不导通,所以编织的电源线581与地线583能够维持独立的电路路径。因此,在布设材料580中,电源线581与地线583彼此编织,使得利兹线584互相紧密接触,因而能够有效地降低噪声。图33示出了用于说明根据本实施例的布设材料的布设形态实例的局部立体图和截面图。如图33(a)所示,布设材料590一体地布设为与具有半圆形截面形状的强化部597重叠,在该布设材料590中,电源线591、地线593和通信线595被具有半圆形截面形状的绝缘被覆596覆盖。因此,能够通过空间效率的改进而使布设材料590小型化。如图33(b)所示,在副电源系统25、主电源系统23、地线27与通信线29堆叠的状态下,布设材料600布设在具有矩形截面形状的强化部601中,因此,能够通过空间效率的改进而使布设材料600小型化。如图33(c)所示,布设材料610具有如下配置:其中,地线617堆叠在通信线619上,并且由主电源系统613和堆叠在该主电源系统613上的副电源系统615形成的电源线611堆叠在地线617上。护套612覆盖周边以将系统聚集在一起。因此,布设材料610被地线617屏蔽,并且能够防止电源线611的噪声的潜行。图34是用于说明根据本实施例的车辆电路体的变形例的局部截面立体图。在图34所示的骨干干线部620中,多个控制盒621、623和625之间的干线由具有圆杆导体的布设材料627和具有扁平导体的布设材料629形成。根据本实施例的骨干干线部620,具有适用于车辆的布设路径的导体的布设材料627和629能够用于多个控制盒621、623和625之间的各条干线,因而能够进一步提高布设性能。图35是用于说明根据本实施例的布设材料的接合形态实例的主要部分的立体图。如图35所示,布设材料630具有如下配置:其中,两个薄板状布设材料631与632通过将它们的面对表面对接而互相连接,从而一体化。具体地,凸部634形成在布设材料631的右端表面上,并且具有与凸部634的形状互补的形状的凹部636形成在布设材料632的左端表面上。电源线633、地线635和信号线637的各自的电极设置为向布设材料631的右端表面露出。虽然未图示,但是类似地,能够分别与电源线633、地线635和信号线637进行接触的电极也设置在布设材料632的左端表面上。如上所述,选择预先将连接部位的形状、电极规格等标准化的布设材料631和632的类型,并且将选择的部件互相组合,使得能够配置与各种规格对应的布设材料630。在该情况下,能够减少标准布设材料630的种类的数量,并且还能够减少部件的数量。图36是用于说明根据本实施例的布设材料的接合形态实例的主要部分的立体图。如图36所示,布设材料640具有如下配置:其中,两个薄板状布设材料642与646通过将它们的面对表面对接而互相连接,从而一体化。具体地,多个凹部636在布设材料642的右侧表面上在长度方向上以预定间隔形成,并且具有与凹部636的形状互补的形状的多个凸部648在布设材料646的左侧表面上在长度方向上以预定间隔形成。在布设材料642中,12v的主电源系统641、12v的副电源系统643、12v的地线645和信号线647并排布置,并且分别由具有绞合线的电线形成。在布设材料646中,48v的电源系统651与48v的地线649并排布置,并且分别由具有绞合线的电线形成。如上所述,根据本实施例,具有电压差的布设材料642和646彼此组合,从而用作单个的布设材料640。未来可以容易地添加具有电压差的布设材料。布设材料642和646能够通过将凸部648配合到凹部636的简单操作而互相固定。图37示出了用于说明根据本实施例的控制盒的变形例的主要部分的分解立体图。如图37(a)所示,沿着骨干干线部661设置的控制盒650包括:控制盒主体658,其连接到骨干干线部661;以及卡盒653和655,其能够装接到控制盒主体658的凸片端子656,并且能够从所述凸片端子656拆卸。卡盒653具有四个连接器口652,该四个连接器口652形成与支线的模块连接器(未示出)连接的支线连接部。卡盒655具有六个连接器口652,该六个连接器口652形成与支线的模块连接器(未示出)连接的支线连接部。因此,通过适当地选择卡盒653和655并且将卡盒安装在共通的控制盒主体658中,控制盒650具有数量变化的要连接的模块,并且能够在骨干干线部661中容易地设定车辆设备等级下的控制盒。如图37(b)所示,沿着骨干干线部661设置的控制盒660包括:控制盒主体658,其连接到骨干干线部661;以及卡盒657和659,其能够装接到控制盒主体658,并且能够从所述控制盒主体658拆卸。卡盒657具有与48v电源相对应的配置,该48v电源具有与“4.8端子”相对应的连接器口654等。卡盒659具有与12v电源相对应的配置,该12v电源具有与“1.5端子”相对应的连接器口652等。因此,控制盒660能够通过选择卡盒657和659并且将卡盒安装在共通的控制盒主体658中而应对12v电源、48v电源以及两个电源的变化。从而,带有控制盒660的骨干干线部661能够通过对单个电压升压或降压而应对不同电压的设备。图38示出了用于说明根据本实施例的布设材料的变形例的局部截面立体图。如图38(a)所示,布设材料670包括:地线671,其由扁平导体形成;以及主电源系统673和副电源系统675,其由设置在地线671两侧的圆杆导体形成。地线671具有凹面672,该凹面672在面对主电源系统673和副电源系统675的表面上具有半圆形形状,以增大与主电源系统673和副电源系统675的面对面积。因此,由于与主电源系统673和副电源系统675的面对面积增大,而提高了布设材料670的抗噪性能。地线671面对由圆杆导体形成的主电源系统673和副电源系统675,因而具有半圆形状的凹面672,然而在主电源系统673和副电源系统675由扁平导体形成的情况下,地线671具有平坦表面。换言之,地线671的面对表面具有与主电源系统673和副电源系统675的形状互补的形状。如图38(b)所示,布设材料674具有如下配置:其中主电源系统677和副电源系统678、一对地线676和676以及一对通信线679和679互相平行地设置,其中,所述主电源系统677和副电源系统678由具有绞合线的电线形成并且并排布置从而互相靠近,所述一对地线676和676由扁平导体形成,并且与主电源系统677和副电源系统678的布置方向平行地设置在主电源系统677和副电源系统678上方和下方,所述一对通信线679和679由具有绞合线的电线形成,并且设置在扁平地线676与相邻的主电源系统677或副电源系统678之间的上下间隙中。因此,主电源系统677或副电源系统678的上侧或下侧被由扁平导体形成的一对地线676覆盖,因而布设材料674能够防止通信线679和679受噪声影响。由于通信线679和679设置在扁平地线676与相邻的主电源系统677或副电源系统678之间的上下间隙中,所以能够节省空间。图39示出了用于说明根据本实施例的布设材料的布设形态实例的立体图。如图39(a)所示,其中并排布置的主电源系统681、地线683以及副电源系统685被绝缘被覆687覆盖的布设材料680能够在厚度方向上弯曲,。然而,当该布设材料布设在车身中时,布设材料680由于弹性斥力而趋于恢复直线形状,因此难以在角部等处布设该布设材料。因此,如图39(b)所示,具有以预定角度弯曲的形状的夹板部件682和684设置在布设材料680的正面和背面,因此能够将布设材料680维持为沿着其布设路径的期望形状。因此,提高了布设材料680的布设可操作性。图40是用于说明根据本实施例的车辆电路体的变形例的示意性平面图。如图40所示,包括电源线711和地线713的骨干干线部700连接到作为电源的电池706和交流发电机707。多个控制盒701、703和705以散布方式设置在骨干干线部700中。配件715和电机717连接到控制盒701、703和705。多个副电池720连接到各个控制盒701、703和705内部及附近的电源线711和地线713。因此,在骨干干线部700中,副电池720设置在靠近噪声源的部位处,从而易于吸收噪声,因而能够防止噪声潜入ecu内。由于多个控制盒701、703和705以散布的方式设置,所以即使噪声排放装置或者受噪声影响的装置位于骨干干线部700的任意位置处也不存在问题,因而能够提高抗噪性。图41示出了用于说明根据本实施例的车辆电路体的变形例的示意性平面图。如在图41(a)至41(d)所示的骨干干线部730、740、750和760中,电池732能够根据车辆的状况等连接到骨干干线部中的任意位置。在该情况下,为了去除电压波动或者噪声的影响,优选地使用低阻抗布设材料作为布设在控制盒731与控制盒733之间的骨干干线部730、740、750和760的布设材料(电源线735和地线737)。如在图41(e)中示出的骨干干线部770,电池732可以设置在控制盒771中。图42是用于说明根据本实施例的车辆电路体的变形例的示意性配置图。如图42所示,具有电源线782和地线784的骨干干线部780连接到作为电源的电池790和交流发电机791。多个控制盒781、783和785以散布方式设置在骨干干线部780中。配件787、788和789分别地连接到控制盒781、783和785。副电池可以在最后侧连接到骨干干线部780。电池790和交流发电机791接地到车身792。大电流系统的配件788和789也接地到车身792。配件788经由地线793接地到车身792,并且配件789经由将外壳固定到车身792的支架794而接地到车身792。换言之,大电流系统的配件788和789接地到车身,从而减小噪声的影响,因而能够减小接地电压波动或者交流发电机791的噪声。图43是用于说明根据本实施例的车辆电路体的变形例的示意性配置图。如图43所示,骨干干线部800包括布设材料810,在该布设材料810中,由例如铝圆杆导体或绞合线形成的电源线811和地线813绞合。布设材料810连接到作为电源的电池790和交流发电机791。多个控制盒801、803和805以散布方式设置在骨干干线部800中。由于电源线811和地线813绞合,所以能够提高噪声消除效果,因而能够提高对外部噪声的抵抗性能。图44是用于说明根据本实施例的车辆电路体的变形例的示意性配置图。如图44所示,具有电源线828和地线829的骨干干线部820连接到作为电源的电池790和交流发电机791。多个控制盒821、823、825和827以散布方式设置在骨干干线部820中。配件833各自地连接到控制盒821、823和825。环状铁氧体830在控制盒821、823、825和827之间连接到骨干干线部820。因此,能够防止各控制盒821、823、825和827的下游侧的噪声通过骨干干线部820扩散。图45是图示出在根据本实施例的变形例的车辆电路体布设在车身上的状态下,各个部分的布局和连接状态的示意性立体图。图45所示的车辆电路体900包括作为基本构成元件的:干线(骨干干线部915),其布设在车身901中,并且具有电源线931、地线933和通信线935;支线(仪表板支线子线束965、前门支线子线束963、后门支线子线束977和行李舱支线子线束979),其连接于车身各部位处的电气部件;以及多个控制盒(供给侧控制盒951、分支控制盒953、中间控制盒961和控制盒955、957、959和966),其以沿着干线散布的方式设置,并且具有控制单元,用以将供给到干线的来自电源线931的电力以及来自通信线935的信号分配到连接至干线的支线。车辆电路体900的骨干干线部915大体地分为仪表板骨干干线部911、地板骨干干线部913和发动机舱骨干干线部919。仪表板骨干干线部911在沿着前围板950的表面的部位处直线状地设置在左右方向上,从而在加强部(未示出)上方的位置处与加强部基本平行。仪表板骨干干线部911可以固定到加强部。地板骨干干线部913设置为在车身901的左右方向上的大致中央部处在车身901的前后方向上沿着车辆内部地板延伸,并且在沿着前围板950的表面的部位处在上下方向上直状地延伸的竖立部917的先头端连接到安装在前围板950的贯通孔中的接线盒920。与地板骨干干线部913分支连接的竖立部918的先头端连接到仪表板骨干干线部911的中间部。发动机舱骨干干线部919经由安装在前围板950的贯通孔中的接线盒920连接到地板骨干干线部913。布设在车辆的发动机室41中的发动机舱骨干干线部919经由与供给侧控制盒951连接的支线子线束975连接到作为主电源的主电池5。供给侧控制盒951和控制盒959连接到支线子线束971和973。此处,前围板950设置在发动机室41与车辆内部43之间的分界处,并且要求完好地密封电连接部件贯通前围板950的部位。换言之,要求前围板950具有隔绝发动机室41的振动、降低来自悬挂的振动和噪声以及阻隔热、噪声和气味的功能,以维持车辆内部43舒适。还要求充分考虑到电连接部件的贯通部位,以防止所述功能受损。如图46所示,接线盒920包括:继电器端子923、925和927,其贯通壳体921;以及密封圈922,其密封与前围板950的间隙。地板骨干干线部913的竖立部917处的电源线931、地线933和通信线935与发动机舱骨干干线部919处的电源线931、地线933和通信线935通过在继电器端子923、925和927的两端处利用螺栓941螺栓紧固以及利用连接器943连接器结合而互相连接。因此,地板骨干干线部913与发动机舱骨干干线部919经由安装在前围板950的贯通孔中的接线盒920以水密方式互相连接。<第二实施例>图47是图示出在根据本发明第二实施例的车辆电路体布设在车身上的状态下,各个部分的布局和连接状态的示意性平面图。图47所示的车辆电路体1000包括作为基本构成元件的:骨干干线部1015,其为布设在所谓的插电式混合动力汽车的车身1001中的干线;支线(前门支线子线束1063、后门支线子线束1065等),其连接到车身各部位处的电气部件;多个控制盒(供给侧控制盒1051、分支控制盒1053、中间控制盒1057以及控制盒1055和1059),该多个控制盒以沿着干线散布的方式设置,并且该多个控制盒具有控制单元,该控制单元将供给到干线的来自电源线的电力以及来自通信线的信号分配到连接至该干线的支线;以及高压电缆1300,其设置在车身下部处,以将高压电池组1110连接到电力控制单元1220。高压电池组1110经由高压j/b1140将高压电力从高压电池1130传输到高压电缆1300。从高压电缆1300传输到电力控制单元1220的电力经由dc/dc转换器1230传送到电动发电机和发动机1210。骨干干线部1015的地板骨干干线部1013和仪表板骨干干线部1011经由dc/dc转换器1120连接到高压j/b1140。连接到供给侧控制盒1051的电源电缆经由熔丝1020连接到主电池1005。主电池1005还经由熔丝1022连接到电力控制单元1220的dc/dc转换器1230。在车辆电路体1000中,dc/dc转换器1230和dc/dc转换器1120分别设置在车辆的前部和后部处,因而能够实现电源冗余。因此,来自高压电池组1110的电力能够在dc/dc转换器1120中逐降压,从而作为副电源供给到骨干干线部1015。换言之,熔丝1020和1022设置在骨干干线部1015的端部处,并且当在前部和后部处发生短路时断开电路,从而能够持续地进行(备用)从dc/dc转换器1230和dc/dc转换器1120中的一者的电力的供给。因此,根据上述车辆电路体10、900和1000,通过简化各种电气部件与车辆上的电源之间以及电气部件之间的电连接的结构,特别是干线部的配置,能够容易地添加新的电线,并且能够实现小型化和重量减轻。<第三实施例><主要部分的配置实例>图48图示出包括本发明第三实施例中的车辆电路体的车载装置的主要部分的配置实例。图48所示的车辆电路体用作传输线,要求其将电力从诸如车载电池这样的主电源供给到车身各个部位处的配件,即,各种电气部件,或者要求其在电气部件之间交换信号。换言之,第三实施例的车辆电路体的功能与普通线束的功能相同,然而所述车辆电路体的结构与普通线束的结构有很大不同。图48所示的车载装置图示了在前围板2016附近的车辆内侧的配置,该前围板2016将车身分为发动机室2011和车辆内部(乘客舱)2013。如图48所示,作为强化部件的强化部(未示出)设置在位于前围板2016的稍后侧的位置处的仪表板部上,从而在车身的左右方向上延伸。车辆电路体的主要构成元件设置在强化部附近。在车身的左右方向上延伸的部位处的车辆电路体可以固定到强化部,可以固定到前围板2016,或者可以固定到专用固定工具。图48所示的车辆电路体包括多个骨干干线部2021、2022和2023以及多个骨干控制盒2031、2032和2033。各个骨干干线部2021、2022和2023包括诸如电源线、地线和通信线这样的线。各个骨干干线部的电源线和地线具有如下配置:其中,采用具有扁平截面形状的条状金属材料(例如,铜或铝),并且这样的金属材料在彼此电绝缘的状态下在厚度方向上堆叠。因此,允许流过大的电流,并且相对有助于在厚度方向上的弯曲加工。骨干干线部2021和2022在沿着前围板2016的表面的部位处在左右方向上直线状地设置,从而在强化部上方与该强化部基本平行。骨干干线部2023基本设置在车身的左右方向上的中央部处,并且在沿着前围板2016的表面的部位处在上下方向上直线状地延伸。骨干干线部2023在前围板2016与车辆内部地板之间的分界附近以大约90度在厚度方向上弯曲,并且设置为沿着车辆内部地板在车身的前后方向上延伸。骨干控制盒2032设置在车身的左右方向上的大体中央部处,骨干控制盒2031设置在左右方向上的左端附近,并且骨干控制盒2033设置在左右方向上的右端附近。骨干干线部2021的左端连接到骨干控制盒2031的右端,并且骨干干线部2021的右端连接到骨干控制盒2032的左端。骨干干线部2022的左端连接到骨干控制盒2032的右端,并且骨干干线部2022的右端连接到骨干控制盒2033的左端。骨干干线部2023的先头端连接到骨干控制盒2032的下端。换言之,骨干干线部2021至2023和骨干控制盒2031至2033形成为类似t形的形状,如图48所示。骨干干线部2021至2023的内部电路处于能够经由骨干控制盒2032互相电连接的状态。<骨干控制盒的细节>设置在车身的左侧的骨干控制盒2031设置有主电源连接部2031a、干线连接部2031b和支线连接部2031c。如图48所示,骨干控制盒2031的主电源连接部2031a连接到主电源电缆2041,干线连接部2031b连接到骨干干线部2021的左端,并且支线连接部2031c连接到多个支线子线束2042。虽然图48中未示出,但是两个系统的电源线、地线和通信线设置在骨干干线部2021的内部。主电源连接部2031a设置有连接到主电源电缆2041的电源线和地线的两个连接端子。例如,在包括在骨干干线部2021中的两个系统的电源线中,一个电源线用作从主电源供电的路径。另一个电源线用作例如当异常发生时供给备用电源电力的路径。用于在主电源电缆2041、骨干干线部2021与支线子线束2042之间将各电路的电源系统、地系统和通信系统互相连接的电路板设置在骨干控制盒2031内。关于主电源电缆2041,与电源线和地线的先头端连接的端子连接到主电源连接部2031a的端子,并且通过使用螺栓和螺母而固定,从而能够将电路互相连接。关于支线子线束2042,设置在该支线子线束2042的各先头端处的连接器能够装接到支线连接部2031c,并且能够从该支线连接部2031c拆离,从而电路能够根据需要互相连接。支线子线束2042分别被配置为包括电源线、地线和通信线中的全部或一部分。在图48所示的骨干控制盒2031中,支线连接部2031c设置有六个连接器,因而最多能够连接到六个支线子线束2042。如图48所示,骨干干线部2021至2023和骨干控制盒2031至2033组合,并且各种支线子线束2042至2044连接到骨干控制盒2031至2033,因而能够利用与骨干相似的简单结构布设各种传输线。例如,能够仅通过添加或改变连接到任一骨干控制盒2031至2033的支线子线束2042至2044来处理额外安装在车辆上的选项或者各种电气部件,因此不需要改变车辆电路体的干线的结构。在本实施例中,假定如下情况:支线子线束2042至2044连接到骨干控制盒2031至2033,而其他支线子线束(未示出)可以连接到例如骨干干线部2021至2023上的适当的中继点的部位。在实际的车载装置中,例如,如图48所示,设置在车辆中的电子控制单元(ecu)2051可以经由支线子线束2042连接到骨干控制盒2031或者其它电气部件。骨干控制盒2032可以经由支线子线束2043连接到电子控制单元2051、2052和2053或者其它电气部件。骨干控制盒2033可以经由支线子线束2044连接到各种电气部件。各电子控制单元2051、2052和2053能够经由支线子线束2042、2043和2044的通信线、骨干控制盒2031至2033等控制车辆上的各种电气部件。另一方面,要求图48所示的车辆电路体不仅在车辆内部2013中的电气部件之间进行电连接,而且还在发动机室2011中的主电源与电气部件之间进行电连接。前围板2016设置在发动机室2011与车辆内部2013之间的分界处,并且要求完好地密封电连接部件贯通前围板2016的部位。换言之,要求前围板具有隔绝发动机室的振动、降低来自悬挂的振动或噪声以及阻隔热、噪声和气味的功能,以维持车辆内部舒适。还要求充分考虑到电连接部件的贯通部位,以防止上述功能受损。然而,例如,如果诸如骨干干线部2021至2023这样的具有大的截面面积并且难以在除了特定方向之外的方向上弯曲的部件被配置为贯通前围板2016,则非常难以密封贯通部位,因而还难以进行车辆电路体的布设操作。在图48所示的车辆电路体中,作为主要构成元件的骨干干线部2021至2023以及骨干控制盒2031至2033均设置在车辆内部2013侧的空间中,因而能够容易地解决前围板2016中的贯通部位的问题。实际上,如图48所示,连接到骨干控制盒2031的左端的主电源电缆2041被布设为穿过前围板2016的贯通孔2016a,并且发动机室2011内的主电源的电路经由主电源电缆2041连接到骨干控制盒2031的电源电路。因此,能够将来自主电源的电力供给到骨干控制盒2031。由于易弯曲材料能够用于主电源电缆2041,能够使得该主电源电缆2041的截面形状为圆形形状,且能够使得该主电源电缆2041的截面面积小,所以能够有助于贯通孔2016a的密封,从而能够防止当进行布设操作时的可操作性降低。在发动机室2011中的各种电气部件连接到车辆内部2013的车辆电路体的情况下,例如,连接到骨干控制盒2031的支线子线束2042的一部分设置为穿过前围板2016,或者连接到骨干控制盒2033的支线子线束2044的一部分设置为穿过前围板2016,从而能够实现期望的电连接路径。在该情况下,由于支线子线束2042和2044具有小的截面面积,并且容易弯曲,所以能够容易地密封支线子线束穿过前围板2016的部位。由于主电源位于发动机室2011侧,所以可以在设置于前围板2016的贯通部位处的支线子线束中省略电源线或地线,并且仅在其中设置通信线。这样的特殊支线子线束可以被配置为与从骨干干线分支的支线子线束2042至2044独立的通信干线。本实施例的车载装置具有如图48所示的上述基本配置,然而能够如下文所述地在配置或者操作中进行各种更改和添加,以进一步改进。<关于电力供给的特征技术><系统的配置实例>图49所示的系统包括骨干干线bb_lm,以确保用于电力供给和通信的主要路径。多个控制盒cb(1)和cb(2)连接在骨干干线bb_lm的中间。作为车辆侧主电源的主电池mb和交流发电机alt连接到骨干干线bb_lm的上游侧。控制盒cb(1)和cb(2)分别设置有用于连接到各种配件ae的连接部cnx。各个配件ae对应于诸如安装在车辆上的各种负载或电子控制单元(ecu)这样的电气部件。在图49所示的配置中,配件ae(1)经由支线子线束ls(1)连接到控制盒cb(1)的连接部cnx中的单个连接器。配件ae(2)经由支线子线束ls(2)连接到控制盒cb(1)的连接部cnx中的单个连接器。类似的,配件ae(3)和ae(4)分别经由对应的支线子线束ls(3)和ls(4)连接到控制盒cb(2)的连接部cnx中的单个连接器。各个控制盒cb的连接部cnx设置有多个连接器(图49中未示出),并且多个连接器具有相同的形状、尺寸和配置。因此,在各个支线子线束ls连接到连接部cnx的连接器的情况下,可以选择多个连接器中的任意一个连接器。因此,从主电源等供给到骨干干线bb_lm的电源电力在控制盒cb(1)或cb(2)的部位处分支,并且该电源电力经由连接到分支部位的支线子线束ls供给到各个配件ae。<干线的配置实例>图50(a)和50(b)图示出骨干干线bb_lm的配置实例。在图50(a)所示的实例中,骨干干线bb_lm包括两个独立系统的电源线l1和l2、地线l3以及由两条电线形成的通信线l4和l5。电源线l1和l2、地线l3以及通信线l4和l5设置为互相平行从而平行地延伸的线。在各个配件ae能够沿着诸如车身地面这样的其他路径连接到电源的地线的环境中,可以从骨干干线bb_lm的构成元件中省略地线l3。在图50(a)所示的实例中,两个系统的电源线l1和l2两者都被配置为处理12v的通用直流电源电压。控制盒cb具有选择两个系统的电源线l1和l2中的一条电源线并且将电力供给到下游侧功能。因此,例如,在电源线l1和l2中的仅一条电源线在骨干干线bb_lm中间断开的情况下,各个控制盒cb能够通过使用剩余的正常路径而持续地供电。在图50(b)所示的实例中,骨干干线bb_lm包括两个独立系统的电源线l1和l2b、地线l3以及由两条电线形成的通信线l4和l5。两个系统的电源线l1和l2b中的一条电源线l1被配置为处理12v的直流电源电压。另一条电源线l2b被配置为处理48v的直流电源电压。因此,在图50(b)所示的配置中,控制盒cb可以选择两种类型的电源电压中的一者,并且在控制盒的控制下将所选择的电压供给到配件ae。从而,可以依据例如负载的特性或状况而自动选择适当的电源电压。例如,在负载具有大的电力消耗的情况下,流经大的电源电流并且供给路径中的电压降增大,因而能够通过选择较高的电源电压防止电力损耗的增大。如在图50(b)所示的实例中,在电源线l1和l2b中仅一条电源线断开的情况下,各个控制盒cb能够通过使用剩余的正常路径而持续地供电。在使用两种类型的电源电压的情况下,电压在主电源侧可以从12v升高到48v,从而供给到骨干干线bb_lm,并且从骨干干线bb_lm供给的12v的电力可以在任一控制盒cb中升高以生成48v的电力。<电源系统的电路配置实例>图51图示了关于控制盒cb中的电源系统的具体配置实例。在该配置中,微计算机(cpu)cba、开关电路cbb和桥接电路cbc设置在控制盒cb中。微计算机cba由现场可编程门阵列(fpga)配置,并且因此能够根据外部程序重写指令(重编程序)而重新配置该微计算机的配置和操作。当前规格下的fpga的配置仅为实例。微计算机cba经由通信线lx连接到预定的诊断工具dt。实际上,存在仅当在车辆工厂中进行调整或维修时连接诊断工具dt的情况,以及诊断工具dt常规地安装在车辆上以通过随时进行诊断而自动解决问题这样的情况。作为通信线lx,可以使用骨干干线bb_lm的通信线l4和l5而无需改变,或者可以单独地制备专用通信线。如果预定的管理者通过使用诊断工具dt给出指令或者是执行预定的恢复程序,则诊断工具dt能够重写与微计算机cba的配置和操作相关的程序。开关电路cbb包括多个切换元件,该多个切换元件将从骨干干线bb_lm的电源线l1或l2供给的直流电源电压(+b)的电力分配至多个输出系统,并且针对各个输出系统进行通电的接通与断开之间的切换。在图51所示的实例中,使用六个功率场效应晶体管(fet)作为切换元件。各个切换元件被配置为根据来自微计算机cba的输出而接通和断开。关于切换元件的操作,除了简单的接通和断开之外,例如,可以通过使用接通和断开进行脉宽控制(pwm)而提供输出电力调整功能。此外,虽然+b负载、acc负载和ig负载必须根据传统结构而分别地连接,但是由于功率fet能够通过使用重编程序而具有与acc继电器和ig继电器等同的功能,所以能够将+b负载、acc负载和ig负载连接到任意部分。桥接电路cbc包括作为桥部的多个切换元件,其用于将位于开关电路cbb的输出侧的多个输出系统互相连接。各个切换元件还被配置为根据来自微计算机cba的输出而接通和断开。<电力控制功能的配置实例>图52图示了控制盒cb的电力控制功能cbx的具体实例。在该实例中,控制盒cb具有作为代表性电力控制功能的图52所示的六种类型的功能cbx0、cbx1、cbx2、cbx3、cbx4和cbx5。通过利用微计算机cba进行处理而实现这些功能。功能cbx0:微计算机cba检测各种情况,并且依据所检测到的情况将从骨干干线bb_lm供给的多个系统中的所有系统的电力供给到下游侧即,配件ae侧,或者选择性地仅将其中一个系统的电力供给到下游侧。例如,在骨干干线bb_lm具有图50(a)所示的配置的情况下,如果检测到电源线l1和l2中的一条电源线断开,则仅将从电源线l1和l2中的正常路径供给的电力供给到输出路径。例如,在骨干干线bb_lm具有图50(b)所示的配置的情况下,基于规格,优选地选择并且输出从电源线l2b供给的较高电压(48v)的电力,或者优选地选择并输出到与具有大的实际的负载电流的配件ae连接的输出系统。功能cbx1:微计算机cba识别要供给到各个支线的电力的类型。关于电力的类型,具体地,存在一直供给的“+b”电力,与配件开关的接通和断开协同地供给的“acc”电力,以及与点火开关的接通和断开协同地供给的“ig”电力。微计算机cba识别连接到该微计算机cba并在其控制下的配件ae的种类,并且选择性地将“+b、acc和ig”之中的更合适的类型的电力供给到相应的支线。可以将基于程序的常量数据而预先确定的类型的电力供给到各个支线,并且可以从实际连接的配件ae获取诸如id这样的信息,使得可以识别电力的类型。功能cbx2:微计算机cba监控设置在车辆侧的配件开关和点火开关的接通和断开状态,并且控制各类型的各输出系统的电力的接通和断开。换言之,仅当配件开关接通时,通过接通开关电路cbb而将电力供给到其中“acc:配件”被指定为电力类型的输出系统的支线,并且当配件开关断开时不供给电力。仅当点火开关接通时,通过接通开关电路cbb而将电力供给到其中“ig:开关”被指定为电力类型的输出系统的支线,并且当点火开关断开时不供给电力。功能cbx3:微计算机cba响应于来自诊断工具dt的指令而改变(重新编程)供给到各支线的电源电力的类型“+b、acc和ig”。例如,从开关电路cbb的元件“fet4”输出的电力的类型在正常状态下指定为“ig”。当需要进行某种改变时,通过执行微计算机cba的重新编程,将从元件“fet4”输出的电力的类型变为“acc”。这种改变影响由微计算机cba赋予元件“fet4”的控制信号的控制条件。换言之,在“ig”被指定为电力的类型的情况下,用于元件“fet4”的控制信号根据点火开关的状态而变化。在“acc”被指定为电力的类型的情况下,用于元件“fet4”的控制信号根据配件开关的状态而变化。功能cbx4:微计算机cba保护连接到外侧的各支线的相应电线。具体地,测量各个输出系统中的实际的通电电流,基于通电电流计算热量,并且在温度升高至预定水平以上之前,中断开关电路cbb的对应的系统。功能cbx5:微计算机cba检测各个开关电路cbb中的故障,并且在检测到故障的情况下自动避免故障从而维持功能。具体地,相邻的输出系统通过使用桥接电路cbc而互相连接,并且通过临时使用不经过发生故障的元件的路径,持续地进行向输出侧的电力的供给。可以采用“+ba”、“igp”和“igr”作为电力类型的新的分类来代替以上的“+b、acc和ig”。“+ba”表示当用户靠近车辆时接通的系统的电力。“igp”表示当点火开关进入接通状态然后发动机处于满载状态时接通的系统的电力。“igr”表示当车轮转动时接通的系统的电力。即使在采用新的电力类型分类的情况下,也能够通过获取控制所需的信息而以相同的方式实现图52所示的各个功能cbx1和cbx2。<关于通信的特性技术><不间断通信技术>图53图示出安装在车辆上的通信系统的配置实例。图53所示的配置采用形成为环状的通信干线bb_lc。虽然图53中未示出,但是通信干线bb_lc与用于电力供给的线束或者包括特别设置的电源线的骨干干线一体地形成。在图53所示的配置中,多个控制盒cb(1)至cb(4)以散布方式连接在通信干线bb_lc中间。配件ae(1)至ae(4)分别经由支线子线束ls(1)至ls(4)连接到控制盒cb(1)至cb(4),并且处于控制盒cb(1)至cb(4)的控制下。配件ae对应于诸如在车辆上设置的各种负载或电子控制单元(ecu)这样的电气部件。多个控制盒cb(1)至cb(4)中的每个控制盒均具有将从干线分支的电力经由支线子线束ls供给到配件ae的功能,或者将经过通信干线bb_lc的通信路径分支的功能。各个支线子线束ls包括电源线和通信线。支线子线束ls可以包括地线。在具有图53所示的配置的系统中,假定在配件ae(1)与配件ae(2)之间进行通信的情况。在该情况下,在呈环状的通信干线bb_lc中,使用控制盒cb(1)与控制盒cb(2)之间的路径,因而能够沿着最短的路径进行通信。此外,可以断开通信干线bb_lc的一部分。然而,即使在控制盒cb(1)与控制盒cb(2)之间的路径上断开通信干线bb_lc,由于整个路径具有环状,因而可以使用其他路径。换言之,能够使用从控制盒cb(1)经由控制盒cb(4)和控制盒cb(3)到达控制盒cb(2)的通信路径,因而不中断配件ae(1)与配件ae(2)之间的通信路径。如图53所示的呈环状的通信干线bb_lc还可以应用到具有直线状路径的通信系统,诸如图49所示的骨干干线bb_lm,而无需改变。例如,诸如用于正向路径的通信干线bb_lc和用于反向路径的通信干线bb_lc这样的两条干线互相平行地成组设置在直线状的骨干干线bb_lm上,并且用于正向路径和反向路径的通信干线bb_lc的端部互相连接,因而能够配置环形的,即,闭合环路的通信路径。<连接部的安全技术><使用物理方法的保护>图55(a)、55(b)和55(c)图示了用于物理保护各控制盒cb的连接部cbx的技术的具体实例。图55(a)、55(b)和55(c)所示的电路板cbd设置在各控制盒cb中。各个控制盒cb(1)至cb(4)具有连接部cnx,该连接部cnx包括作为支线连接部的多个连接器,从而经由支线子线束ls等连接到各种配件ae。连接器被配置为适于诸如通用串行总线(usb)这样的预定的标准,并且多个连接器设置为并排布置以连接到多个设备。然而,在特定控制盒cb中,由于车型的差异、等级的差异、目的地的差异以及购买车辆的用户选择的选项的差异,可以不使用连接部cnx的连接器,或者可以不使用连接部cnx的某些连接器。如果改变每个控制盒cb的配置以反映车型的差异、等级的差异、目的地的差异等,则每个控制盒cb的配置不能够共通地使用,因此控制盒cb的数量增多,从而也提高了制造成本。另一方面,在连接部cnx中存在在车辆出厂时的规定状态下没有连接支线子线束ls等的空状态的连接器的情况下,用户或者第三方可以自由并且非法地将特定设备连接到处于空状态下的连接器。图55(a)、55(b)和55(c)所示的物理配置用户防止这样的非法行为。在图55(a)所示的配置中,假定连接部cnx的六个连接器均未使用的情况。因此,通过将上锁的盖kc1用作使连接器的开口物理地锁定的锁定功能部,而闭合所有连接器的开口,使得无法自由使用连接部cnx的任何连接器。上锁的盖kc1是覆盖连接部cnx的外侧的盖,并且能够适当地固定到连接部cnx。上锁的盖kc1具有内置于其中的上锁机构,并且具有除非使用预先制备的物理解锁钥匙kk进行操作否则不能解锁该上锁的盖kc1的固定这样的结构。因此,没有解锁钥匙kk的人不能将任意设备非法连接到连接部cnx的连接器。在图55(b)所示的配置中,假定如下情况:其中,预定的支线子线束ls等连接到连接部cnx的某些连接器,并且剩余的连接器处于空状态。因此,在连接部cnx中,处于空状态下的连接器的开口等通过将上锁的盖kc2用作使连接器的开口物理地锁定的锁定功能部而单独地封闭,使得无法自由使用这些连接器。上锁的盖kc2由于被装接到具有与连接部cnx相同的形状和尺寸的六个连接器中的一个连接器,所以在结构上以封闭对应的单个开口的状态而固定到连接器。以与上锁的盖kc1相同的方式,上锁的盖kc2具有内置于其中的上锁机构,并且具有除非使用预先制备的物理解锁钥匙kk进行操作否则不能解锁该上锁的盖kc2的固定这样的结构。在图55(c)所示的配置中,假定如下情况:其中,预定的支线子线束ls等连接到连接部cnx的某些连接器,并且剩余的连接器处于空状态。因此,在连接部cnx中,处于空状态下的连接器的开口等通过将密封用的密封件ks用作使连接器的开口物理地锁定的锁定功能部而被单独地封闭,使得无法自由使用该连接器。可以存在这样的配置:其中,多个连接器的开口共同地被密封用的单个密封件ks覆盖。例如,密封用的密封件ks形成为细长的薄带形状,并且由树脂制成。例如,特定图案通过印刷形成在密封用的密封件ks的表面上,从而清楚地区别于一般市售的其他密封件。密封用的密封件ks的长度方向上的两端经由粘合剂等固定到连接部cnx。在用户等非法地使用了开口被密封用的密封件ks覆盖从而不能使用的特定连接器的情况下,密封用的密封件ks破损或者粘合部位被撕开,因此能够物理地留下去除了密封件的痕迹。换言之,在进行非法使用之后,预定的管理者等能够容易地确认连接器的非法使用。<基于控制的保护>图56图示出基于电气控制保护各控制盒cb的连接部cnx的技术的具体实例。换言之,设置在电路板cbd上的微计算机(未示出)作为使连接器物理地锁定的锁定功能部而进行图56所示的控制,因此保护连接部cnx的未使用连接器免受非法使用。电路板cbd上的微计算机通过使用诊断工具,基于预先写入的程序和常量数据而识别是否由微计算机管理的连接部cnx的每个连接器都被使用。微计算机监控设置在各连接器中的多个端子处的电压,并且因此能够实际上检测出特定设备是否连接到连接器。在步骤s11中,微计算机针对每个连接器监控是否连接了各通信端口连接器。如果在步骤s12中检测出到每个连接器的新的连接,则流程前进至步骤s13。在检测出新的连接的连接器被登记为未使用连接器的情况下,流程前进到下一个步骤s14,并且进行检测非法连接的处理。通过步骤s14中的处理,例如,在非易失性存储器上保存表示非法使用的数据,或者在诸如仪表单元这样的显示器上进行关于非法使用的异常显示。可以自动中断使用相应连接器的通信,从而防止设备的非法使用。<基于各种规范将通信网络与通信设备互相连接的技术>图54图示出安装在车辆上的通信系统的配置实例。图54所示的通信系统包括通信干线bb_lc。虽然图54中未示出,但是通信干线bb_lc与用于电力供给的线束或者包括特别设置的电源线的骨干干线一体地形成。骨干干线根据需要设置有地线。在图54所示的配置中,多个控制盒cb(1)、cb(2)和cb(3)以散布于多个区域ar1、ar2和ar3的状态连接到共用的通信干线bb_lc。区域ar1、ar2和ar3的具体实例可以包括发动机室、仪表盘区、地板区和行李舱。各个控制盒cb(1)至cb(3)具有划分供给到干线的电力从而将电力供给到配件ae的功能,或者将通信线的路径分支从而确保连接路径的功能。在图54所示的配置中,多个控制盒cb(1)、cb(2)和cb(3)中的每个控制盒都包括网关gw。图54所示的多个网关gw(1)至gw(3)中的每个网关都基本地具有基于诸如通信协议这样的不同的规范将网络或设备互相连接的功能。例如,在车辆上的系统中,对各个区域、各个车型等可以采用基于使用不同规格的各种标准的通信设备或网络,例如,控制器局域网(can(controllerareanetwork))、灵活数据传输率的can(can_fd(canwithflexibledatarate))、时钟扩展外围接口(cxpi(clockextensionperipheralinterface))、以太网(注册商标)和光通信网。网关gw吸收规格之间的差异,因此具有不同规格的设备能够互相可通信地连接。在图54所示的配置中,网关gw分别设置在各个区域的控制盒cb中,因此即使各区域通信规范彼此不同,也能够通过使用网关gw而使通信线能够互相连接。<实现高速通信的技术和网关技术>图57图示出具有光通信功能和网关功能的控制盒cb以及骨干干线bb_lm的通信系统的配置实例。图58图示出将电源电力供给到通信系统的配置实例。而且,在图57所示的系统中,控制盒cb连接到骨干干线bb_lm。图57所示的骨干干线bb_lm包括电源线l1和l2、地线l3以及通信线l4b和l5b。在图57中,gnd表示地,即,大地。在图57所示的实例中,电源线l1连接到车辆的主电池(batt),并且电源线l2连接到副电池。通信线l4b和l5b由光纤形成,从而处理光通信。在干线中采用光通信,因此能够在车辆上的各个部位处进行高速通信。而且,难以被噪声影响。图57所示的控制盒cb除了处理光通信之外,还处理以太网(注册商标)、can_fd和cxpi中的各通信功能。具体地,八组通信端口连接器cp1至cp8设置在控制盒cb中。通信端口连接器cp1和cp2是仅用于以太网(注册商标)的通信端口,并且通信端口连接器cp3至cp8分别是可选择诸如can_fd和cxpi这样的规范中的一者的通信端口。八组通信端口连接器cp1至cp8分别具有与金属通信线对应的规格。支线具有金属规格,并因此能够降低支线的部件成本。如图57所示,控制盒cb包括电源电路cb01、网关控制电路cb02、phy电路cb03、cb04、cb05和cb06、网络开关cb07和cb08、收发器cb09和cb10以及切换电路cb11。电源电路cb01连接到电源线l1和l2以及地线l3,并且基于从骨干干线bb_lm供给的电源电力生成在诸如网关控制电路cb02这样的各电路中需要的例如“+5v”的电源电压。网关控制电路cb02由微计算机形成,并且实现网关(gw)的功能。换言之,进行基于不同标准的通信之间的协议转换或进行信号切换控制。还生成用于在切换电路cb11中进行切换的控制信号。phy电路cb03、cb04、cb05和cb06提供以太网(注册商标)中的物理层的接口功能。phy电路cb03和cb04分别具有进行光信号与电信号之间的互相转换或者数字信号与模拟信号之间的互相转换以与两个波长的光信号对应的功能。phy电路cb05和cb06分别具有进行数字信号与模拟信号之间的互相转换以与基于以太网(注册商标)的金属标准的信号对应的功能。网络开关cb07和cb08是与以太网(注册商标)的标准相对应的开关电路,并且具有通过考虑接收数据的目的地而进行的判定是否进行到各连接设备的传输这样的功能。在图57所示的配置中,网络开关cb07具有控制车辆系统上的底盘系统和传动系统的功能。网络开关cb08具有控制车辆系统上的车身系统、娱乐系统、驾驶辅助系统和高级驾驶辅助系统的功能。网络开关cb07连接在phy电路cb03和cb04与网关控制电路cb02之间。网络开关cb08连接在phy电路cb03至cb06与网关控制电路cb02之间。收发器cb09和cb10连接在网关控制电路cb02与切换电路cb11之间。收发器cb09具有发送和接收与can_fd标准相对应的信号的功能。收发器cb10具有发送和接收与cxpi标准相对应的信号的功能。切换电路cb11具有将使用两条通信线的can_fd和使用单条通信线的cxpi能够由共同的通信端口连接器cp3至cp8使用的切换功能。具体地,切换电路cb11具有12个切换元件,用于在输入到各通信端口连接器cp3至cp8的信号之间切换。基于从网关控制电路cb02输出的控制信号控制切换元件的接通和断开,并且因此,通信端口连接器cp3至cp8能够使用适用于can_fd和cxpi中的任意一者的信号。例如,在诸如照相机或者各种传感器这样的要求比较高的通信速度的配件ae连接到控制盒cb并且处于该控制盒cb的控制下的情况下,能够通过使用例如通信端口连接器cp1或cp2而满足高速通信所要求的规范。在连接进行相对低速通信的配件ae的情况下,能够通过使用通信端口连接器cp3至cp8而确保必需的最小通信功能。图58图示出将电源电力供给到各通信端口连接器cp1至cp8的电路配置实例。在图58所示的配置中,设置在控制盒cb中的端子cbz1和cbz2连接到主电源。具体地,端子cbz1经由内置于主电池mb中的熔丝fl连接到主电池mb的正极。控制盒cb的端子cbz2连接到主电池mb的负极。端子cbz1和cbz2分别连接到骨干干线bb_lm的电源线l1和地线l3。骨干干线bb_lm的电源线l2连接到副电池(未示出)的正极。用于将电源电力供给到八个系统的各个通信端口连接器cp1至cp8的电源电路cb01a内置于控制盒cb中。电源电路cb01a包括用于与通信端口连接器相关的每个系统的开关电路sw01和sw02以及二极管d1和d2。开关电路sw01和sw02分别形成为如下电路:在该电路中,能够由控制盒cb的控制电路控制其接通和断开的切换元件串联连接到熔断器。二极管d1和d2具有防止反向电流的功能。因此,如果在开关电路sw01和sw02之中仅开关电路sw01接通,则能够将来自主电源的电力供给到各通信端口连接器cp1至cp8。如果开关电路sw01和sw02之中仅开关电路sw02接通,则能够将来自副电源的电力供给到各通信端口连接器cp1至cp8。<特殊的光通信技术><多个通信路径的组合>图101图示出车载系统的通信系统的配置实例。图101所示的车载系统包括五个控制盒cb(1)至cb(5)。三个控制盒cb(1)、cb(2)和cb(3)经由配置为环形的通信干线bb_lc互相连接。对等(p2p)通信线lpp1连接在控制盒cb(1)与控制盒cb(4)之间,并且p2p通信线lpp2连接在控制盒cb(1)与控制盒cb(5)之间。光通信用于所有的通信干线bb_lc以及通信线lpp1和lpp2。在使用光通信的情况下,各个与控制盒cb相对应的通信路径上的中继点进行将接收到的光信号转换为电信号、将电信号再次转换为光信号并且将光信号发送到传输路径这样的处理。因此,对各个中继点发生光信号的延迟。在以环形配置整个系统的通信路径的情况下,由于连接的中继点的数量增多,所以光信号的延迟增大。另一方面,由于在图101所示的车载系统中,具有环形的通信干线bb_lc以及p2p通信线lpp1和lpp2互相组合,所以能够减少信号延迟,并且能够进行高速通信。换言之,由于具有环形的通信干线bb_lc上的节点的数量为三个,所以能够使环上发生的延迟最小化。因此,例如,在控制盒cb(3)与控制盒cb(4)之间进行光通信的情况下,与整个通信路径被配置为环形的情况相比,减小了信号延迟,并且因此能够进行高速通信。由于设置了具有环形的通信干线bb_lc,所以存在通信路径的冗余,因此提高了通信的可靠性。换言之,在通信干线bb_lc上的单个部位处发生断开的情况下,能够通过使用未断开的其他路径进行通信。干线可以由用于光通信的传输路径形成,支线可以由用于电信号的传输路径形成,并且这些可以互相组合。<具有多个波长的光信号的同时使用>图102图示出在图101所示的车载系统中的通信干线bb_lc的截面的配置实例。换言之,如图102所示,图101所示的通信干线bb_lc包括形成正向路径的光纤电缆fbc1和形成反向路径的光纤电缆fbc2。光纤电缆fbc1和fbc2分别具有内置于其中的两个光纤fb11和fb12。在当前实施例中,特定的波长λ1和与波长λ1不同的波长λ2两者均分别用于要处理的光信号。如图102所示,一个光纤电缆fbc1传输具有波长λ1的光信号,并且另一个光纤电缆fbc2传输具有波长λ2的光信号。因此,通过在通信干线bb_lc上使用与两个波长相对应的光信号,能够一起确保两个通信路径,因此能够提供冗余。因此,能够提高通信的可靠性。作为具体实例,依据重要性或者优先级使用与两种类型的波长对应的光信号。例如,用于控制车辆上的重要负载的信号被分配为具有波长λ1的光信号,并且用于控制具有低重要性的负载的信号被分配为与波长λ2相对应的光信号。在使用具有向重要负载赋予的波长λ1的光信号的通信中断时,自动地通过使用具有波长λ2的光信号传输要传输的信息。因此,能够确保持续进行通信的路径。可以通过使用各个控制盒cb上的微计算机进行该控制。<波分复用/时分复用(tdm)的使用>图103图示出进行波分复用和时分复用的光信号的配置实例。图104图示出进行光波分复用通信的车载系统的通信系统的配置实例。例如,在一起使用具有波长λ1的光信号和具有波长λ2的光信号的情况下,两个光信号的波长彼此不同,因此可以通过如图103的波分复用利用单个光纤传输信号。因此,能够省略图102所示的两个光纤fb11和fb12中的任意一者。高优先级可以分配至具有波长λ1的光信号,并且低优先级可以分配至具有波长λ2的光信号。光信号经过时分复用,因此能够通过单个通信线如图103所示地依次传输多个信道的光信号ch1、ch2和ch3。在图104所示的车载系统中,三个控制盒cb(1)、cb(2)和cb(3)经由通信干线cb_lc互相连接。图104所示的通信干线bb_lc由用于正向路径的光纤和用于反向路径的光纤形成,并且整体配置为环形。经过波分复用和时分复用的光信号被发送到通信干线bb_lc的单个光纤上,如图103所示,并且能够在控制盒cb(1)至控制盒cb(3)之间进行光通信。图104所示的控制盒cb(1)至cb(3)分别包括接收侧电路和发送侧电路。接收侧电路包括分路器2057-1、光/电转换单元(o/e)2057-2和2057-3、分支单元(drop)2057-4和2057-5以及时分解复用器2057-6。发送侧电路包括时分复用器2057-7、插入单元(add)2057-8和2057-9以及电/光转换单元(e/o)2057-10和2057-11。换言之,在控制盒cb(1)至cb(3)中,光信号从通信干线bb_lc的单个光纤入射到接收侧电路。光信号在分路器2057-1中被分为分别具有波长λ1和λ2的两个光信号。所分出的具有波长λ1的光信号通过光/电转换单元2057-2转换为电信号,并且在分支单元2057-4中分支为两个系统。一个分支的电信号输入到时分解复用器2057-6,并且另一个电信号输入到发送侧电路。类似的,所分出的具有波长λ2的光信号通过光/电转换单元2057-3转换为电信号,并且在分支单元2057-5中分支为两个系统。一个分支的电信号输入到时分解复用器2057-6,并且另一个电信号输入到发送侧电路。时分解复用器2057-6每次都将从分支单元2057-4和2057-5输出的输入电信号分割,从而生成多个信道(ch1、ch2和ch3)的信号。例如,控制盒cb(1)将从时分解复用器2057-6输出的第一信道的接收信号发送到配件ae11(adasecu)。控制盒cb(2)可以使用从时分解复用器2057-6输出的第二信道的接收信号。控制盒cb(3)将从时分解复用器2057-6输出的第三信道的接收信号发送到配件ae31(后监视器)。在控制盒cb(1)的发送侧电路中,通过使用分配到该控制盒cb的信道(ch1),用于配件ae12(ridar)的信号作为具有高优先级的信号输入到时分复用器2057-7,并且用于配件ae13(dvd播放器)的信号作为具有低优先级的信号输入到时分复用器2057-7。时分复用器2057-7将两个系统的输入信号分别分配到信道的对应时点,从而生成经过时分复用的电信号。具有高优先级的信号和具有低优先级的信号分别从时分复用器2057-7输入到插入单元2057-8和2057-9。插入单元2057-8针对具有高优先级的信号对每个信道生成通过将接收信号与时分复用器2057-7的输出相组合而获得的信号。插入单元2057-9针对具有低优先级的信号对每个信道生成通过将接收信号与时分复用器2057-7的输出相组合而获得的信号。来自插入单元2057-8的输出信号通过电/光转换单元2057-10而转换为具有波长λ1的光信号。来自插入单元2057-9的输出信号通过电/光转换单元2057-11而转换为具有波长λ2的光信号。从电/光转换单元2057-10输出的具有波长λ1的光信号和从电/光转换单元2057-11输出的具有波长λ2的光信号被同时馈送到通信干线bb_lc的共用的单个光纤,并且作为经过波分复用的光信号而传输。类似地,在控制盒cb(2)的发送侧电路中,通过使用分配到该控制盒cb的信道(ch2),用于配件ae21(照相机)的信号作为具有高优先级的信号输入到时分复用器2057-7,并且用于配件ae22(照相机)的信号作为具有低优先级的信号输入到时分复用器2057-7。在控制盒cb(3)的发送侧电路中,通过使用分配到该控制盒cb的信道(ch3),用于配件ae32(照相机)的信号作为具有高优先级的信号输入时分复用器2057-7。在任意情况下,在图104所示的车载系统的通信系统中,通过如图103所示使用通信干线bb_lc的单个光纤,能够传输经过波分复用和时分复用的光信号。在图104所示的车载系统中,使用两种波长λ1和λ2,并且对每个波长单独的进行信号处理。波长之间的差异与优先级之间的差异关联。因此,在使用两种波长λ1和λ2中的任意一者的通信中发生故障的情况下,例如,可以进行切换控制,使得使用正常的通信线传输具有高优先级的信号。能够仅利用单个光纤确保通信路径。<其他特性技术><减少线束的部件的数量的技术>图59是图示出通过将印刷电路板与电线组合而获得线束的配置实例的分解图。线束的配置可以依据车型的差异、等级的差异、目的地的差异和选项的差异而不同地改变。如果配置改变,则需要为每个配置对每个部件附加部件号。如果配置的种类数量增加,则部件数量增多,并且因此制造过程也增多。因此,线束的构成元件被分为配置不变的基础部分和配置变化的附加部分。如图59所示的骨干部件2012-1中,形成在印刷电路板(pcb)上的电路用作线束的附加元件,由电线形成的子线束2012-2用作线束的基础元件,并且通过组合附加元件与基础元件而配置整个线束。此处,形成在印刷电路板上的电路被容易地配置为电子电路,并且具有例如内置于其中的现场可编程门阵列(fpga)装置,从而重写程序,因此能够容易地改变电路配置。从而,能够在骨干部件2012-1中采用对所有元件通用的硬件,并且能够防止部件的数量增加。<处理与后安装设备或带入设备的连接的技术>图60是图示出具有usb端口的控制盒的外部的实例的立体图。图60所示的控制盒2013-1连接到骨干干线2012-0,并且包括连接到预定的支线线束的多个标准通信端口2013-2。具体地,具有基于通用串行总线(usb)标准的通信功能的多个连接器设置在标准通信端口2013-2中。因此,各种设备能够经由控制盒2013-1连接到骨干干线2012-0,只要该设备具有标准化的通信端口即可。换言之,易于后安装各种设备或者连接用户带入车辆的设备。<使控制盒等的功能多样化的技术>图61(a)、61(b)和61(c)是内置于控制盒等中的电路板的三个配置实例的平面图。在车辆的线束等中,要支持的功能依据车型的种类、等级的种类、目的地的种类、选项的种类等大幅变化。例如,骨干干线上的各个控制盒处理的电路的数量、电流容量、处理速度和处理的数量依据车辆的等级等而变化。如果将满足所有需求的功能安装在所有等级的控制盒中,则增加了最低成本,因此不能提供低成本的车辆。然而,如果制备一种控制盒,其具有针对车型、等级、目的地、选项等的各种组合的最优配置,则部件数量显著增多,因此成本增加。因此,如图61(a)、61(b)和61(c)所示,通过使用通用的部件而防止部件数量增多。具体地,通过将三种类型的标准化电路板2014-1a、2014-1b和2014-1c与由fpga形成的微计算机2014-2组合而实现必需的电路功能。电路板2014-1a是用于作为三个等级中的等级最高的等级a的电路板。电路板2014-1b是用于作为三个等级中的等级第二高的等级b的电路板。电路板2014-1c是用于作为三个等级中的等级最低的等级c的电路板。三种电路板2014-1a、2014-1b和2014-1c具有不同的尺寸(大、中和小),并且能够通过对基板的选择而处理电路数量的改变。为了处理电路数量的改变,改变微计算机2014-2的数量。换言之,由于在低等级车辆的情况下要处理的电路的数量小,所以将小尺寸的电路板2014-1c与单个微计算机2014-2组合,从而实现必需的功能,如图61(c)所示。由于在中间等级车辆的情况下要处理的电路的数量中等,所以将中等尺寸的电路板2014-1b与两个微计算机2014-2组合,从而实现必需的功能,如图61(b)所示。由于在高等级车辆的情况下要处理的电路的数量大,所以将大尺寸的电路板2014-1a与三个微计算机2014-2组合,从而实现必需的功能,如图61(a)所示。各个微计算机2014-2是fpga,并且其程序易于重写。因此,为了处理诸如车辆的等级这样的各种规格之间的差异而重写各个微计算机2014-2的程序。因此,在采用图61(a)、61(b)和61(c)所示的配置的情况下,仅必须制备三种电路板2014-1a、2014-1b和2014-1c中的任意一者以及一种微计算机2014-2,因此能够防止部件的种类数增加以及部件数量的增加。<减少诸如干线这样的部件的数量的技术>图62是图示出形成干线的布设部件的连接部位的配置实例的立体图。例如,在形成诸如图48所示的骨干干线部2021、2022和2023这样的大尺寸布设部件的情况下,可以通过将互相通用的多个部件组合而配置单个布设部件,以防止由于诸如配置或形状这样的规格之间的差异而导致部件的种类数增加或者部件数量增加。在图62所示的配置实例中,两个薄板状的布设部件2015-1和2015-2通过将它们的面对表面对接而互相连接,从而一体化。具体地,如图62所示,凸部2015-1a形成在布设部件2015-1的右端表面上,并且形状与凸部2015-1a的形状互补的凹部2015-2a形成在布设部件2015-2的左端表面上。分别连接到电源线(+12v)、地线(gnd)和预定信号线的多个电极2015-3设置为在布设部件2015-1的右端表面露出。虽然未图示,但是类似地,能够分别与电极2015-3进行接触的电极也设置在布设部件2015-2的左端表面上。如上所述,选择连接部位的形状、电极规格等预先标准化了的布设部件2015-1和2015-2的类型,并且将所选择的部件互相组合,使得能够配置与各种规格对应的布设部件。在该情况下,能够减少标准化布设部件的种类的数量,并且还能够减少部件的数量。<处理连接规格的变化的技术>图63是图示出干线上的控制盒与支线子线束之间的连接实例的平面图。图63所示的控制盒2016-1连接到例如图48所示的骨干干线部2021、2022和2023。根据已经定购车辆的用户的指示确定线束的整体功能或规格,并且预定的支线子线束2016-2a、2016-2b、2016-2c和2016-2d连接到控制盒2016-1的连接部。程序易于重写的微计算机安装在控制盒2016-1上。当制造这样的线束时,制备导通检查器2016-3,以检查在支线子线束2016-2a、2016-2b、2016-2c和2016-2d的各端子与控制盒2016-1的各端子之间是否发生通过实际连接的导通。当利用预定工具重写控制盒2016-1上的微计算机的程序时,重写程序的内容,以结合导通检查器2016-3反映出实际导通状态。因此,实际上,操作者适当地重写程序,使得反映出组装到控制盒2016-1的支线子线束2016-2a、2016-2b、2016-2c和2016-2d的种类,或者反映出连接位置之间差异,因此能够自动地发生实际控制盒2016-1中的电路连接状态之间的切换。从而,提高了线束的生产率。<处理连接规格的变化的技术>图64是图示出干线上的控制盒与支线子线束之间的连接实例的平面图。图64所示的控制盒2017-1连接到例如图48所示的骨干干线部2021、2022和2023。根据已经定购车辆的用户的指示确定线束的整体功能或规格,并且预定的支线子线束2017-2a、2017-2b、2017-2c和2017-2d连接到控制盒2017-1的连接部。此处,支线子线束2017-2a、2017-2b、2017-2c和2017-2d分别具有通信线,并且将预分配的特有的识别信息(id)发送到作为连接目的地的控制盒2017-1的微计算机。微计算机识别例如“abcd”“abdc”和“acdb”中的任意一者作为从与该微计算机实际连接的支线子线束2017-2a、2017-2b、2017-2c和2017-2d发送的id的组合,因此,自动选择要应用到各支线的连接目的地的软件的模式。因此,操作者能够自由选择各种支线子线束2017-2a、2017-2b、2017-2c和2017-2d的各自的连接位置,并因而提高生产率。即使在后安装任何配件的情况下,如果微计算机预先识别出配件,则微计算机也能够自动地处理配件。<处理连接规格的变化的技术>图65(a)和65(b)是图示出干线与支线子线束之间的连接实例的平面图。如图65(a)所示,在由干线2018-1以及多个控制盒2018-2和2018-3形成的骨干经由各种支线子线束2018-4和2018-5连接到各种配件的情况下,用于各支线子线束2018-4和2018-5的连接的连接器的位置可以变化,或者可以改变连接器的插脚排列。例如,在图65(b)所示的实例中,假定如下情况:其中,作为配件的自动空调2018-6a和手动空调2018-6b中的任意一者根据规格的变化而选择性地连接到控制盒2018-2的连接器2018-2b。在该情况下,用于自动空调2018-6a的连接器的插脚排列与用于手动空调2018-6b的连接器的插脚排列互相不同。为了应对该变化,由fpga形成的微计算机2018-2a安装在控制盒2018-2上,并且由fpga形成的微计算机2018-3a也安装在控制盒2018-3上。由fpga形成的微计算机2018-2a安装在图65(b)所示的自动空调2018-6a和手动空调2018-6b的主体或连接器中。由根据所连接的支线子线束2018-4和2018-5的各电路的规格而重写程序的微计算机2018-2a和2018-3a来适当地选择各连接目的地。如图65(b)所示,设置在配件侧上的支线子线束中或其连接器中的微计算机进行控制,使得吸收诸如连接器插脚排列差异这样的规格差异。因此,在各配件连接到控制盒2018-2和2018-3的情况下,配件侧能够吸收连接规格,并且能够共通地使用骨干侧的规格。<处理连接规格的变化的技术>图66是图示出干线上的控制盒与支线子线束之间的连接实例的立体图。具有相同的尺寸或形状的多个连接器2019-1a、2019-1b、2019-1c、2019-1d、2019-1e和2019-1f被设置为在图66所示的控制盒2019-1上并排布置,以连接各种支线和配件。在配件连接到控制盒2019-1的情况下,选择多个连接器2019-1a至2019-1f中的任意一个连接器,并且分别连接支线子线束2019-2a、2019-2b和2019-2c。此处,当生产车辆时,操作者能够根据需要自由地选择作为各支线子线束2019-2a、2019-2b和2019-2c的连接目的地的连接器的位置。通过利用内置于重写程序的控制盒2019-1中的由fpga形成的微计算机自动改变控制盒2019-1中的电路连接状态,处理作为支线子线束2019-2a、2019-2b和2019-2c的连接目的地的连接器的位置的变化。因此,操作者能够自由地选择作为各支线子线束2019-2a、2019-2b和2019-2c的连接目的地的连接器的位置,因此能够提高生产率。能够通过使用共通的功能而减少部件的数量。<使用交流电力的技术>图67是图示出布设在车身上的干线和多个支线子线束的布置实例的立体图。图67所示的车载系统包括:骨干干线2020-1,其直线状地布设在车身的前后方向上;以及多个支线子线束2020-2a、2020-2b和2020-2c,其连接到骨干干线2020-1的各个部位。各支线子线束2020-2a、2020-2b和2020-2c连接到设置在骨干干线2020-1上的控制盒。作为特征事项,将交流电供给到骨干干线2020-1。具体地,使用大约200v交流电压。各个控制盒设置有变压器和ac/dc转换器,在控制盒中将交流电变压并且将交流电转换为预定的直流电压,而后供给到各支线子线束2020-2a、2020-2b和2020-2c。在图67所示的实例中,诸如直流5v、直流48v和直流12v这样的直流电压分别供给到支线子线束2020-2a、2020-2b和2020-2c。如上所述,使交流电流经骨干干线2020-1,因此相比于直流电的情况,能够减少干线中的电力损失。由于配置简单,并且能够通过使用廉价的变压器转换电压,所以能够降低系统的成本。减少了电力损失,因此提高了车辆的燃油效率。<使用多路通信的技术>图68(a)和68(b)是图示出多个控制盒以及将控制盒互相连接的通信干线的方框图。在图68(a)所示的配置中,将两个控制盒2021-1与2021-2互相连接的骨干干线的通信线2021-3由多条电线的组形成。换言之,为了确保通信路径,需要制备与要传输的信号相同数量的单独的通信线,因此如果信号的数量增多,则通信线的数量也增多。另一方面,在图68(b)所示的配置中,将两个控制盒2021-1b与2021-2b互相连接的骨干干线的通信线2021-3b仅由一条或两条通信线形成。换言之,在图68(b)所示的配置中,由于多个系统的信号通过使用诸如时分复用(tdm)技术叠加在单个通信线上,所以在要传输的信号的数量增加的情况下,能够大量减少通信线的数量。可以使用诸如频分复用(fdm)这样的技术代替时分复用(tdm)。在如图68(a)所示的通信线的数量大的情况下,可能需要在干线的线路的中间部分处划分通信线,然而通过减少通信线的数量,不需要划分通信线,因此能够简化配置。因此,减少了电路的数量和部件的数量。<用于异常发生期间的恢复的技术>图69是图示出具有恢复功能的控制盒的配置实例的电路图。诸如电路的断开这样的异常可能发生在骨干干线或者控制盒中。如果发生这样的异常,则不能将预定的电源电力供给到支线子线束或者负载侧,因此,包括各种负载的配件的运转停止。为了防止这种情况,设置了恢复功能。在图69所示的配置中,假定如下情况:其中,从车辆的主电源2022-2供给的电源电力经由控制盒2022-1供给到两个负载2022-3和2022-4。如果闭合开关2022-1a,则电力能够供给到负载2022-3。如果闭合开关2022-1b,则电力能够供给到负载2022-4。然而,如果诸如断开这样的故障发生在连接到开关2022-1b的线路中,则产生即使开关2022-1b闭合电力也不供给到负载2022-4这样的异常状态。因此,假定负载2022-4是具有相当高的优先级的负载,则在图69所示的配置中,使备用路径2022-1c以与开关2022-1b的路径并联的状态连接。备用路径2022-1c连接到能够通过微计算机2022-1e而接通和断开的继电器2022-1d。如果检测到在开关2022-1b的通电路径中发生异常,则微计算机2022-1e自动接通继电器2022-1d,从而进行电源电力经由备用路径2022-1c供给到负载2022-4的恢复控制。微计算机2022-1e控制设置在车辆的仪表单元中的警告显示部,以显示故障的发生。由于恢复功能而提高了与线束和各种配件的操作相关的可靠性。<车辆上近场无线通信技术>图70(a)和70(b)是图示出线束与负载之间的连接实例的方框图。图71是图示出车身上的各种构成元件的布置和连接的具体实例的立体图。如图70(a)所示,在设置在车辆的门2023-3中的各种配件经由线束连接到车辆内侧的线束2023-1的情况下,在线束的通常随着门的打开和关闭而弯曲的弯曲部处的电线束置于索环2023-2中,因此具有例如电线的保护、防水、防尘和隔音的功能。然而,在使用索环的情况下,难以进行线束的布设操作,并且也增加了部件成本。因此,在图70(b)所示的配置中,近场无线通信单元2023-5和2023-6用于将车辆内侧的骨干上的控制盒2023-4连接到设置在车辆的门2023-7中的各种配件。近场无线通信单元2023-5和2023-6不仅具有通信功能,而且还具有以无线的方式供给电源电力的功能。因此,在使用图70(b)所示的配置的情况下,不需要索环,并且配件的连接的布设操作也非常简化。将说明车辆上的更现实的配置实例。在图71所示的配置中,骨干主线2024-1、仪表板部骨干2024-2、发动机舱骨干2024-3等作为干线布设在车身上的各部位处。控制盒2024-41、2024-42、2024-43、2024-44和2024-45设置在这些干线中的各部位处。在图71所示的配置中,转向模块2024-5与控制盒2024-41通过近场无线通信而以无线方式互相连接。各个控制盒与门中的配件也通过近场无线通信以无线方式互相连接。诸如传感器2024-7和天线2024-8这样的设置在行李空间中的配件与控制盒2024-45也通过近场无线通信以无线方式互相连接。<抗噪措施技术>图72(a)、72(b)和72(c)是图示出干线、控制盒、电池等的连接状态的具体实例的方框图。在图72(a)所示的配置实例中,以与普通车辆中相同的方式,单个主电池2025-1和交流发电机2025-2连接到线束2025-3的端部附近。线束2025-3的各部位连接到诸如电子控制单元(ecu)2025-4和2025-5以及电动机2025-6这样的配件。在图72(a)所示的配置中,诸如交流发电机2025-2或者电动机2025-6这样的设备是产生噪声的源,从其产生的电磁噪声可能对位于其附近的电子控制单元2025-4和2025-5产生不利影响。因此,为了减小噪声的影响,采用以下抵抗措施。换言之,制备多个电池,并且将多个电池以散布的方式设置在骨干中的靠近噪声源的位置处。因此,电池易于吸收产生的噪声。能够防止噪声潜入各电子控制单元中。无论噪声源与易受噪声影响的设备在骨干上的连接位置如何,都能够解决噪声问题。在图72(b)所示的配置实例中,除了主电池2025-1之外,副电池2025-1b和2025-1c以散布的方式连接到线束2025-3的骨干。因此,从作为噪声源的电动机2025-6产生的噪声被连接在其附近的副电池2025-1b和2025-1c吸收。易受噪声影响的电子控制单元2025-4和2025-5设置在比副电池2025-1b和2025-1c远离噪声源的位置处,因此几乎不受噪声影响。在图72(c)所示的配置实例中,除了主电池2025-1之外,六个副电池2025-1b、2025-1c、2025-1d、2025-1e、2025-1f和2025-1g以散布的方式连接到线束2025-3的骨干。副电池2025-1b连接到主电池2025-1与控制盒2025-7a之间的干线2025-3a。副电池2025-1c连接到控制盒2025-7a的内部电路。副电池2025-1d连接到两个控制盒2025-7a与2025-7b之间干线2025-3b。副电池2025-1e连接到控制盒2025-7b的内部电路。副电池2025-1f连接到两个控制盒2025-7b与2025-7c之间干线2025-3c。副电池2025-1g连接到控制盒2025-7c的内部电路。如在图72(c)所示的配置中,在连接多个副电池的情况下,各个副电池可以连接到任意部位。由于各副电池用作噪声滤波器,所以连接多个副电池,因此提高了电源线中的吸收噪声的性能。<抗噪措施技术>图73(a)、73(b)、73(c)、73(d)和73(e)是图示出干线与一个以上的电池的连接状态的具体实例的方框图。在该技术中,采用以下(1)、(2)和(3)的抵抗措施。(1)具有吸收噪声的特性的电池被配置为连接到骨干干线的任意位置。(2)为了消除电压波动或者噪声的影响,将低阻抗的布设材料用作骨干干线的布设材料。(3)骨干干线的配置通用,并且根据各个车辆的状况而改变电池装接位置。在图73(a)所示的配置中,控制盒2026-4a、2026-4b、2026-4c和2026-4d分别连接到骨干干线2026-3的四个端部。主电池2026-1在控制盒2026-4a的位置处连接到骨干干线2026-3,并且副电池2026-2在控制盒2026-4d的位置处连接到骨干干线2026-3。即使在主电池2026-1和副电池2026-2在控制盒2026-4a、2026-4b、2026-4c和2026-4d的任意位置处连接到骨干干线2026-3的情况下,也能够使用配置通用的骨干干线2026-3。在图73(b)所示的配置中,仅主电池2026-1经由控制盒2026-4a连接到骨干干线2026-3的位于车辆前侧的前端。在图73(c)所示的配置中,仅副电池2026-2经由控制盒2026-4d连接到骨干干线2026-3的位于车辆后侧的后端。在图73(d)所示的配置中,主电池2026-1经由控制盒2026-4a连接到骨干干线2026-3的位于车辆前侧的前端,并且副电池2026-2经由控制盒2026-4d连接到骨干干线2026-3的位于车辆后侧的后端。在图73(e)所示的配置中,副电池2026-2设置在车辆的中央附近,并且副电池2026-2直接连接到骨干干线2026-3的中央。<抗噪措施技术>图74是图示出干线与多个电池的连接状态的具体实例的方框图。在图74所示的配置中,控制盒2027-2、2027-3、2027-4和2027-5分别连接到骨干干线2027-1的四个端部。多个控制盒2027-2、2027-3、2027-4和2027-5各自具有内置于其中的小尺寸的副电池(二次电池)。各个副电池连接到骨干干线2027-1的电源线。诸如主电池(未示出)这样的主电源也连接到骨干干线2027-1。因此,实现以下(1)至(4)所示的内容。(1)多个电池能够以散布的方式设置在骨干干线2027-1的各部分处。因此,能够通过从各个电池供给电流而抑制在负载中需要的电压高的情况下的电压波动。(2)所设置的多个电池能够以散布的方式常规地连接到骨干干线2027-1的各部分。因此,在骨干干线2027-1上产生再生电能的情况下,能够通过各部分处的多个电池有效地回收该能量。因此,提高了再生能量的回收率。(3)由于设置有多个电池,所以在诸如主电池这样的主电源中发生异常的情况下,能够从多个副电池供给备用电力。能够通过使用设置在控制盒2027-2、2027-3、2027-4和2027-5中的微计算机自动地进行这样的电力备用控制。(4)由于电池设置在车辆上的各区域中,所以即使在骨干干线2027-1的一部分由于车辆碰撞等而断开的情况下,也能够从配件的设置区域附近的位置处的电池供给电源电力,因此能够实现不停止供电的安全电源。<抗噪措施技术>图75是图示出在车载系统中的电源系统的配置实例的电路图。图75所示的装置包括交流发电机2028-1、主电池2028-2、骨干干线2028-3、车身地面2028-4、配件2028-5a至2028-5d以及支线子线束2028-6a至2028-6d。骨干干线2028-3包括电源线2028-3a和地(gnd)线2028-3b。车身地面2028-4是使用形成车身的金属的接地路径。在图75所示的配置中,交流发电机2028-1和主电池2028-2连接到骨干干线2028-3的上游侧。骨干干线2028-3的各部分经由支线子线束2028-6a至2028-6d连接到配件2028-5a至2028-5d。交流发电机2028-1和主电池2028-2各自的负端子分别连接到骨干干线2028-3的地线2028-3b和车身地面2028-4两者。配件2028-5a和2028-5b的电源的地侧端子分别经由支线子线束2028-6a和2028-6b仅连接到骨干干线2028-3的地线2028-3b。配件2028-5c和2028-5d的电源的地侧端子经由专用地线或外壳接地而仅连接到车身地面2028-4。使用车身地面2028-4的情况下的线路的阻抗值非常小,为例如大约0.7mω,然而在使用骨干干线2028-3的地线2028-3b的情况下阻抗值相对增大。由于骨干干线2028-3的地线2028-3b具有相对大的阻抗值,所以如果流过大的电流,则可能由于线路的阻抗所导致的电压降而发生地电位波动。然而,如果使用车身地面2028-4,则其阻抗值是小的,因此几乎不发生地电位波动。在图75所示的配置中,由于假定在配件2028-5a和2028-5b中消耗的电源电流相对小,所以其接地端子连接到骨干干线2028-3的地线2028-3b。另外,由于假定在配件2028-5c和2028-5d中消耗的电源电流相对大,所以其接地端子连接到车身地面2028-4。以上述的连接方式,能够减小地电位波动。交流发电机2028-1具有内置于其中的诸如dc/dc转换器这样的切换电路,因此存在由于切换而产生噪声的高可能性。然而,如图75所示,交流发电机2028-1的负端子连接到车身地面2028-4,因此由于线路的阻抗是小的,所以能够通过使用主电池2028-2等吸收产生的噪声。<在车辆与车辆外部之间通信的技术>图76(a)是图示出车载系统的配置实例的方框图,并且图76(b)是图示出同一车载系统的外部的实例的立体图。图76(b)所示的车载系统包括:多个控制盒2029-1;骨干干线2029-4,其将控制盒互相连接;以及多个支线子线束2029-5,其经由控制盒连接到骨干干线2029-4。如图76(a)所示,配件2029-3a和2029-3b等连接到支线子线束2029-5,并且处于支线子线束2029-5的控制之下。作为配件2029-3a和2029-3b的具体实例,例如,连接了音频装置或者电子控制单元(ecu)。如图76(b)所示,在该实例中,数据通信模块(dcm(datacommunicationmodule))2029-1a设置在多个控制盒2029-1中的一个控制盒中。在普通车辆中,各配件分开地连接到dcm,使得各种类型的配件进行与车辆外部的无线通信。从而,各种电路的连接部位聚集在dcm上。如果聚集太多电路,则线束中处理的电线的数量增多,这导致连接器的尺寸增大,因此线束的生产率下降。因此,如图76(a)所示的配置中,dcm2029-1a内置在单个控制盒2029-1中,并且各种配件2029-3a和2029-3b连接到共通的控制盒2029-1。由于图76(a)所示的控制盒2029-1连接到骨干干线2029-4,所以设置在车辆上的各种位置处的各种类型的配件连接到骨干干线2029-4,因此能够经由干线容易地使用dcm2029-1a的无线通信功能。因此,能够减少线束的电路的数量,因此能够降低线束的部件成本和制造成本。<关于在干线中的电压和电流消耗的技术>图77(a)和77(b)是分别图示出不同的骨干干线的配置实例的纵截面图。图78是图示出在进行特定的电源控制的情况下电源电流与电源电压之间的对应关系的实例的时序图。在车载系统中,如果连接到线束的配件的电流消耗增大,则在地线的阻抗大的情况下,电压降增大,并且地电位容易波动。配件的接地端子可能从地线浮动。存在供给到配件的电源电压由于电源线中的电压降而降低的情况。因此,在本实施例中,两种类型的电源电压,例如,+12v和+48v,被配置为在共用的骨干干线中一起使用,并且依据情况而使用两种类型的电源电压。图77(a)和77(b)所示的骨干干线2030-1包括两个电源线2030-1a和2030-1b、地线2030-1c以及通信线2030-1d。在本实施例中,能够在供给到至少一个电源线2030-1a和2030-1b的电源电压之间切换。换言之,在选择+12v的电源电压的情况下,如图77(a)所示,+12v的电源电压供给到电源线2030-1a或2030-1b。在选择+48v的电源电压的情况下,如图77(b)所示,+48v的电源电压供给到电源线2030-1a或2030-1b。例如,从诸如主电池这样的主电源供给的直流电在设置于骨干干线2030-1上的控制盒中升压或降压,因此能够进行+12v与+48v之间的切换。通过使用控制盒的微计算机而进行控制,因此能够自动地进行+12v与+48v之间的切换。例如,如果微计算机监控负载的所需电流或者实际电流消耗,则依据电流的大小,如图78所示的实例一样进行电压之间的自动切换。换言之,在负载的电流消耗大的情况下,由控制盒供给的电压从+12v变为+48v,因此能够减小供给到负载的电压降低的影响。<关于干线的配置的技术>图79(a)、79(b)和79(c)是分别图示出不同的骨干干线的配置实例的纵截面图。在普通车辆中,+12v用作电源电压。然而,如果负载的电流消耗增大,则产生诸如线束中的电压降这样的问题。如果使线束的电线直径增大以减小电压降,则线束增大得太大,因此其重量也增大。因此,作为在线束中处理的电源电压,除了+12v之外,也配置为使用+48v。在图79(a)所示的配置中,骨干干线由四个布设材料(电线、母线等)形成。四个布设材料中的两个布设材料用作+12v的电源线和地(gnd)线,并且另外两个剩余的布设材料用作+48v的电源线和地线。在图79(b)所示的配置中,骨干干线由三个布设材料形成。三个布设材料中的一个布设材料用作12v的电源线,另外一个用作地(gnd)线,并且剩余的一个布设材料用作+48v的电源线。在图79(c)所示的配置中,骨干干线由两个布设材料形成。两个布设材料中的一个布设材料用作+12v或+48v的共用电源线,并且另外一个布设材料用作地(gnd)线。在使用图79(c)所示的配置的情况下,例如,在骨干干线上的控制盒中进行+12v与+48v之间的电压切换。<关于省电控制的技术>例如,如果减少向具有低优先级的负载的电力的供给,或者暂时停止具有低优先级的负载的通电,则能够减少整个车辆的电力消耗,并且这导致电力效率的提高和电池的小型化。然而,如果一直进行这样的省电控制,则用户可能不能舒适地使用具有低优先级的负载。因此,假定如下情况:其中,仅当发生特定状况时将正常模式切换为省电模式,并且进行上述省电控制。此处,重要的是如何定义用于判定是否将正常模式切换为省电模式的判定条件。在本实施例中,为了判定从正常模式到省电模式的切换,准备过去数据da和从现在开始的一天的预期数据db。将过去数据da与预期数据db比较,将今天的用电预测呈现给用户,并且车辆侧的控制装置自动地选择省电模式。作为过去数据da的具体实例,考虑诸如每日、每个季节以及例如天气、温度和湿度这样的环境条件的条件模式,并且测量各条件模式的用电量,并且生成为数据。通过使用学习功能而优化该数据。作为预期数据db的具体实例,有基于当日的天气预测的汽车空调的使用量预测数据、智能手机等中记录的用户日程数据、输入到汽车导航装置的目的地信息等。基于具体数据提取具体的条件模式,并且因此能够获得适当的预期数据db。<防止电池耗尽的技术>例如,在车辆停车而不连接到外部电源的情况下,车辆上的大多数配件都处于停用状态,并且几乎不消耗在电池中积蓄的电力。然而,例如,由于诸如防盗装置这样的某些负载即使在停车期间也消耗电力,所以如果停车状态持续长时间段,则发生电池耗尽,因此不能启动车辆。因此,在本实施例中,车辆上的控制装置进行特殊控制,以预先防止电池耗尽。换言之,控制装置识别诸如主电池这样的电源中的电力剩余容量,测量流出电池的通电电流或者暗电流,并且基于信息而预测直至发生电池耗尽为止剩余的天数。在剩余的天数少的情况下,自动地停止电池的电力供给。可以控制为阶段地减少电力的供给。<关于断开检测的技术>图80是图示出在车载系统中的电源系统的配置实例的电路图。在图80所示的车载系统中,作为主电源的交流发电机2033-1和主电池2033-2连接到骨干干线2033-4的前端侧,并且副电池2033-2b经由开关2033-5连接到骨干干线2033-4的后端侧。多个控制盒2033-3a、2033-3b和2033-3c以散布在各位置处的方式连接到骨干干线2033-4的中间部分。作为骨干干线2033-4的构成元件包括电源线和地线。骨干干线2033-4的电源线被配置为不仅用于电力的供给,还用于通信。换言之,通过使用现有的电力线通信(plc)技术,直流电源和用于通信的交流信号以在电源线上互相叠加的状态传输。因此,多个控制盒2033-3a、2033-3b和2033-3c中的每个控制盒都具有内置于其中的plc通信的接口,并且因此多个控制盒2033-3a、2033-3b和2033-3c能够互相进行plc通信。在该配置中,例如,如果两个控制盒2033-3a与2033-3b之间的骨干干线2033-4断开,则不能在两个控制盒2033-3a与2033-3b之间进行plc通信。因此,在不能进行plc通信的情况下,控制盒2033-3a和2033-3b能够识别骨干干线2033-4的断开。此外,能够指定发生断开的位置。多个控制盒2033-3a、2033-3b和2033-3c中的每个控制盒都具有短程无线通信功能,从而即使在骨干干线2033-4断开的情况下也进行通信。在发生上述断开的情况下,根据检测出断开的控制盒2033-3a、2033-3b和2033-3c中的任意一者的故障安全功能而进行电力恢复控制。换言之,如果开关2033-5闭合,则电源电力从主电池2033-2和副电池2033-2b两者供给到骨干干线2033-4。开关2033-5维持闭合状态。因此,电力在断开位置的上游侧从主电池2033-2供给到各电路,并且电力在断开位置的下游侧从副电池2033-2b供给到各电路。在发生断开的情况下,停止plc通信,并且通过使用功能受限的无线通信而确保控制盒2033-3a、2033-3b与2033-3c之间的通信路径。<共用通信系统的技术>图81是图示出通信电缆的配置实例的纵截面图。存在诸如can或者cxpi这样的多个标准作为与车辆上的通信相关的标准。因此,由于车辆规格之间的差异、车辆上的区域之间的差异、等级之间的差异等,存在基于多个标准的通信接口可以互相组合的可能性。使用诸如通信电缆这样的针对各个标准具有不同配置的部件。由于配置互相不同,所以基于多个标准的部件不能通用。图81所示的通信电缆2034-1被配置为能够用于基于can标准的通信和基于cxpi标准的通信。通信电缆2034-1由四条电线形成,包括电源线2034-1a、地(gnd)线2034-1b、高侧通信线2034-1c和低侧通信线2034-1d。在基于can标准进行通信的情况下,使用高侧通信线2034-1c和低侧通信线2034-1d,并且在基于cxpi标准进行通信的情况下,仅使用高侧通信线2034-1c。因此,不论是否连接到基于can和cxpi标准中的任意一者的通信接口,都能够使用配置通用的通信电缆2034-1。通过该通用,有助于线束的制造,并且因此还容易后安装各种配件。如上所述,在图57中示出用于在基于can和cxpi的两种类型的接口连接之间切换的切换电路cb11的配置。<配置通用化的技术>图82是图示出车载系统中的通信系统的配置实例的框图。例如,在各种配件经由支线子线束连接到如图48所示的控制盒2031至2033并且处于控制盒2031至2033的控制下的情况下,难以使用大尺寸的控制盒,并且用于支线子线束的连接的连接器的数量可能受到限制。从而,在要将多个配件连接到单个控制盒的情况下,连接器的数量可能不足。换言之,控制盒的宽度是小的,因此存在不能在控制盒中设置多个连接器的情况。因此,在本实施例中,制备图82所示的模块连接连接器(jc)2035-1。模块连接连接器2035-1具有与台用插头(tabletap)相似的构造,并且其上游侧连接到单个支线子线束2035-5,并且下游侧的连接部2035-1a设置有用于多个设备的连接的多个连接器。如图82所示,例如,模块连接连接器2035-1的支线子线束2035-5作为支线连接到单个控制盒2035-2c的连接器。如图82所示,模块连接连接器2035-1中设置有两个phy电路、网络开关(开关)、网关(gw)、处理单元、can-fd接口、cxpi接口、标准功能驱动器等。在图82所示的配置中,模块连接连接器2035-1的一个phy电路经由通信线2035-8连接到照相机和传感器系统的设备2035-7。两个负载连接到标准功能驱动器,并处于该标准功能驱动器的控制之下。模块连接连接器2035-1的下游侧的连接部2035-1a设置有多个连接器,因此能够根据需要将多个配件连接到该连接部。例如,如图82所示,可以连接dcm和天线,或者可以经由电子控制单元(ecu)连接负载6。代替ecu,还可以经由具有简单的通信功能或者输出控制功能的连接器(e连接器)连接负载。另一个模块连接连接器2035-1能够串联连接到模块连接连接器2035-1的下游侧的连接部2035-1a,因此能够根据需要增加可连接的设备的数量。稍后将详细描述诸如图82所示的ecu盒2035-3这样的构成元件。<将光通信路径并入骨干干线中的技术>如上述图57所示,光纤电缆用作骨干干线bb_lm的两个通信线l4b和l5b,并且因此控制盒cb具有光通信功能。因此,由于能够通过使用干线进行大容量或高速通信,所以能够用于高等级车辆的通信。具体地,由于能够确保大约10gbps的最大通信速度,所以还能够应用到要求无时间迟滞地发送高分辨率视频数据的用途。<在控制盒中处理光信号的技术>用于处理光信号的功能安装在控制盒中。例如,如在图57所示的车载系统中,phy电路cb03和cb04并入到控制盒cb中,使得电信号能够转换为要传输的光信号,并且所接收到的光信号能够转换为电信号以接受接收处理。更具体地,如图104所示的控制盒cb(1)中,光/电转换单元2057-2和2057-3以及电/光转换单元2057-10和2057-11并入在该控制盒中,因此能够进行光信号与电信号之间的互相转换。<关于通信系统干线的连接形态的技术>图83是图示出在以环型连接通信系统的车载系统中的通信系统的配置实例的框图。图84是图示出在以星型连接通信系统的车载系统中的通信系统的配置实例的框图。在图83所示的车载系统中,四个控制盒2036-1、2036-2、2036-3和2036-4经由骨干的通信干线2036-5互相连接,并且该连接形态被配置为环形。换言之,从控制盒2036-1传输的信号经由通信干线2036-5到达下一控制盒2036-2,并且在控制盒2036-2内部中继的信号从控制盒2036-2传输到通信干线2036-5,并且到达下一控制盒2036-3。类似的,由控制盒2036-3接收并中继的信号传输到通信干线2036-5,并且到达下一控制盒2036-4。由控制盒2036-4接收并中继的信号传输到通信干线2036-5,并且到达下一控制盒2036-1。以上述方式,通信干线2036-5上的信号在沿着环形路径中继的同时依次传输。因此,能够实现与图53所示的车载系统相同的通信功能。如果使通信干线2036-5的路径双重化,则即使在一个通信路径中发生异常的情况下,也能够通过使用剩余的正常路径而确保通信路径,从而提高可靠性。能够通过一起使用两个路径而使通信速度加倍。另一方面,在图84所示的车载系统中,五个控制盒2037-1、2037-2、2037-3、2037-4和2037-5连接到通信干线2037-5a和2037-5b,并且该连接形态被配置为星型。换言之,单个控制盒2037-1居中,并且其他四个控制盒2037-2至2037-5经由独立的路径连接到控制盒2037-1。在图84所示的配置中,每个通信路径都是双重化的。例如,控制盒2037-1与控制盒2037-3经由彼此独立的两条通信干线2037-5a和2037-5b互相连接。可以依据例如通信的优先级、重要性和安全等级差异而单独地使用双重化的通信路径中的每一个。具体地,具有高优先级的通信路径用于与车辆的行驶相关的通信,并且具有低优先级的通信路径用于其他普通通信。在发生通信故障的情况下,可以将双重化的通信路径中的一个用作备用路径。安全级别可以分为例如私用与公用。在星形的中央处的控制盒2037-1从四个控制盒2037-2至2037-5之中选择性的判定接下来要传输的数据包的传输目的地,并且判定两个系统的通信路径中的供数据包沿其传输的通信路径。当判定车载系统的通信的优先级时,通常针对每个部件预先判定优先级,并且因此由例如发动机ecu处理的信息被视作具有高优先级的信息。然而,实际上,存在具有低优先级的信息被发动机ecu处理的诸多情况。因此,表示重要性的id被赋予各条信息,基于id识别信息的重要性,并且自动选择通信路径。换言之,具有高重要性的信息沿着骨干的双重化通信干线中的通信干线2037-5a传输,并且具有低重要性的信息沿着其通信干线2037-5b传输。<使用车辆上的系统中的无线通信的技术>图85(a)、85(b)和85(c)图示出在不同情况下的设备之间的通信连接状态,其中,图85(a)是立体图,并且图85(b)和85(c)是框图。例如,在通信线包含在图85(a)所示的骨干干线2038-1中的情况下,能够在连接至骨干干线2038-1的多个控制盒2038-2与2038-3之间进行有线通信。然而,骨干干线2038-1可能在车辆碰撞等期间损坏,并且因此通信线可能断开。因此,为了提供通信路径的冗余,短距离无线通信功能安装在各控制盒2038-2和2038-3中。因此,在图85(a)所示的配置中,即使在断开控制盒2038-2与2038-3之间的通信线的情况下,也能够经由无线通信线而确保多个控制盒2038-2与2038-3之间的通信路径。在未发生断开的部位处,经由骨干干线2038-1的通信线确保控制盒之间的通信路径。如图85(b)所示,即使在控制盒2038-4与2038-5之间的通信线断开,并且控制盒2038-5与2038-6之间的通信线也断开的情况下,也能够通过使用无线通信确保通信路径。因此,如图85(c)所示,能够在控制盒2038-4与2038-5之间、控制盒2038-5与2038-6之间以及控制盒2038-4与2038-6之间进行通信。因此,能够确保通信路径的可靠性。<关于骨干干线的直径减小的技术>图86是图示出在车载系统中的电源系统的配置实例的电路图。在图86所示的车载系统中,交流发电机(发电机:alt)2039-1连接到骨干干线2039-3的一端(例如,车身的前侧),并且主电池2039-2连接到骨干干线2039-3的另一端(例如,车身的后侧)。负载2039-4a、2039-4b和2039-4c经由预定的支线子线束连接到骨干干线2039-3的中间部分的各部位。在图86中,在负载2039-4a、2039-4b和2039-4c的各连接部位处的骨干干线2039-3的电压由v1、v2和v3表示。通常地,交流发电机2039-1的直流输出电压比主电池2039-2的端子之间的电压高。因此,如图86所示,满足“v1>v2>v3”的关系。此处,假定如下情况:其中,不对主电池2039-2产生影响,并且负载电流i1、i2和i3分别流经负载2039-4a、2039-4b和2039-4c。在该情况下,如图86所示,交流发电机2039-1的输出电流i向右流经骨干干线2039-3,并且电流在各负载的连接点处被分流。因此,如图86所示,电流“i”、“i-i1”和“i-i1-i2”在骨干干线2039-3上的各个位置处流动。在骨干干线2039-3上发生由电流产生的电压降,并且因此满足“v1>v2>v3”的关系。从而,在远离交流发电机2039-1的负载2039-4c的位置处,电压降的影响增大。因此,需要使骨干干线2039-3为粗的,以减小阻抗值。在通过使用普通线束布设电源线的情况下,能够通过将在电源的根部处分支为多条电线的电源线布设到独立的负载而减小电压降,但是电线的数量增加。然而,在图86所示的配置中,由于主电池2039-2连接到骨干干线2039-3的右端侧,所以能够使电流从主电池2039-2流经负载2039-4c。在该情况下,由于主电池2039-2与负载2039-4c之间的距离短,所以能够将电力从主电池2039-2供给到负载2039-4c,而不导致大的电压降。至少负载2039-4c等所需的一些电力从主电池2039-2侧供给,因此能够减小从交流发电机2039-1向右流经骨干干线2039-3的电流i。因此,能够减小在骨干干线2039-3上的各位置处发生的电压降,并且因此能够减小骨干干线2039-3的直径。即使在电力从交流发电机2039-1和主电池2039-2两者供给到需要大电流的负载的情况下,由于来自交流发电机2039-1的电流和来自主电池2039-2的电流流经不同的部位,也能够防止电流聚集在骨干干线2039-3上的相同部位处。结果,减小了流经骨干干线2039-3的各部分的电流的最大额定值,并且因此能够减小骨干干线2039-3的电源线的母线等的直径。<关于多个负载的布置形态的技术>图87是图示出在车载系统中的电源系统的配置实例的电路图。在图87所示的车载系统中,骨干干线2040-3从车身的发动机舱(发动机室)区域2040-2向车辆内部区域2040-1直线状地布设。骨干干线2040-3连接到作为主电源的交流发电机(alt)2040-4和由主电池形成的电源2040-5。车辆上的各种类型的负载2040-6a、2040-6b、2040-6c和2040-6d经由预定的支线子线束连接到骨干干线2040-3上的各个部分。在该实例中,负载2040-6a消耗大功率。负载2040-6b消耗小功率,例如ecu、开关、传感器或者照明装置。负载2040-6c消耗中等功率,例如灯或者设置在车身系统中的电动机。负载2040-6d消耗大功率,例如设置在底盘系统中的电动机。如图87所示,在该配置中,小功率负载2040-6b连接到靠近电源2040-5的位置,并且大功率负载2040-6d连接到远离电源2040-5的位置。基于该位置关系而连接各个负载,因此能够减小在骨干干线2040-3的端部处的电压降。换言之,如图87所示,如果流经负载2040-6a、2040-6d、2040-6c和2040-6b的电流分别由i1、i2、i3和i4表示,则建立“i2>i3>i4”的关系。如图87所示,如果在负载2040-6d、2040-6c、2040-6b和电源的相应区间处的骨干干线2040-3上的电压降分别由δv2、δv3和δv4表示,则建立“δv2>δv3>δv4”的关系。<防止非法设备连接的技术>在用于连接各种设备的通用连接端口,例如,基于usb标准的连接端口不必要地存在于上述控制盒cb等中的情况下,非法设备可能连接到连接端口中的未被使用的空端口。例如,当车辆的用户没有注意到时,第三方可能侵入车辆并且将非法设备连接到空端口。因此,设置有防止侵入者将非法设备连接到空端口的功能。具体地,入侵传感器安装在车辆上,并且采取行动,使得当检测到入侵时,在设置于控制盒cb等中的微计算机的控制下不运行非法连接的设备。换言之,微计算机进行控制,使得与空端口相对应的电源和通信线自动中断。微计算机能够通过例如监控各端口的通电电流而识别端口处于使用中还是为空端口。无论何时将车辆的点火开关接通,都进行各连接端口的连接确认,因此能够识别该端口是否处于使用中。<关于电源的备用和熔断器的技术>图88是图示出备用电源电路的配置实例的电路图。图88所示的备用电源电路2041-1设置在控制盒cb中,并且可以用于将电力供给到大多数种类的配件。如图88所示,电路设置有主电源线2041-2、副电源线2041-3、两个切换元件2041-5、两个二极管2041-6、电源输出部2041-7和地线2041-9。电源输出部2041-7连接到为连接预定支线子线束而设置的控制盒cb的连接器2041-8的一部分。连接器2041-8设置有四个端子2041-8a、2041-8b、2041-8c和2041-8d。端子2041-8a和2041-8d分别连接到电源输出部2041-7的地(gnd)线和电源线。端子2041-8b和2041-8c连接到两个通信线。端子2041-8a、2041-8b、2041-8c和2041-8d的各自的尺寸假定为1.5、0.5、0.5和1.5。来自车辆的主电池等的直流电经由骨干干线供给到备用电源电路2041-1的主电源线2041-2。来自预定的副电池等的直流电经由骨干干线等供给到副电源线2041-3。来自用于驱动车辆的高压电池组的电力可以通过dc/dc转换器而降压,从而作为副电力供给到骨干干线的副电源线和主电源线中的至少一者。从设置在控制盒cb中的微计算机(未示出)馈送用于控制两个切换元件2041-5的接通和断开的控制信号2041-4。微计算机适当地控制控制信号2041-4,并且因此能够实现以下(1)、(2)和(3)所述的功能。(1)电子熔断器功能:监控负载电流的大小,并且在检测到预定程度以上的过大电流通电的情况下,自动断开通电路径。在检测到返回到正常状态的情况下,再次连接通电路径。(2)主电源与副电源之间的自动切换功能:例如,在正常时间期间电力仅从主电源线2041-2侧供给到负载侧,并且在检测到主电源线2041-2的故障等的情况下,自动发生切换,使得电力从副电源线2041-3侧供给到负载。换言之,副电源线2041-3用作备用供电路径。在连接具有相对大的电力消耗的负载的情况下,电力从主电源线2041-2和副电源线2041-3两者供给到相同的负载。这使得能够补偿电源侧的电力容量的短缺。(3)电源种类(+b、+ba、ig等)之间的切换功能:微计算机在从备用电源电路2041-1供给到电源输出部2041-7的电力的类型之间自动切换。电力的类型包括“+b”、“acc”、“ig”、“+ba”、“igp”、“igr”等。“+b”表示从电池正常供给电力的系统的电力。“acc”表示结合车辆的配件(acc)开关的接通和断开来供给电力的系统的电力。“ig”表示结合车辆的点火(ig)开关的接通和断开来供给电力的系统的电力。“+ba”表示当用户靠近车辆时接通并且向其供给电力的系统的电力。“igp”表示当点火开关进入接通状态而后发动机处于满载状态时接通并且向其供给电力的系统的电力。“igr”表示在紧急情况期间供给必要的电力并且当车轮转动时向其供给电力的系统。微计算机进行处理,从而依据情况而控制两个切换元件2041-5的各自的接通和断开,并且因此能够将各种类型的电力供给到负载侧。<关于电力负载的电源电路的技术>图89是图示出用于电力负载的电源电路的配置实例的电路图。图89中所示的用于电力负载的电源电路2042-1设置在各控制盒cb中,并且可以用于将电力供给到例如需要特别大的电源电力的负载。如图89所示,电路设置有主电源线2042-2、切换元件2042-5、电源输出部2042-6和地线2042-3。电源输出部2042-6连接到为连接预定的支线子线束而设置的控制盒cb的连接器2042-7。连接器2042-7设置有两个端子2042-7a和2042-7b。端子2042-7a和2042-7b分别连接到电源输出部2042-6的地(gnd)线和电源线。端子2042-7a和2042-7b的各自的尺寸均假定为4.8。例如,车辆的鼓风发电机经由预定的电力电缆连接到连接器2042-7。来自车辆的主电池等的直流电经由骨干干线供给到用于电力负载的电源电路2042-1的主电源线2042-2。地线2042-3连接到骨干干线的地线或者车辆的车身地面。从设置在控制盒cb中的微计算机(未示出)馈送用于控制切换元件2042-5的接通和断开的控制信号2042-4。微计算机适当地控制控制信号2042-4,因此能够实现上述“电子熔断器功能”。能够适当地控制用于将电力供给到负载的时间。例如,可以通过反映主电池的电力剩余容量而确定控制时间,或者可以进行省电的时间控制。<应对多个通信协议的技术>图91是图示出能够在多个通信协议之间切换的控制盒的配置实例的框图。在车辆上的通信系统中,例如,可以使用适用于诸如控制器局域网(can)或者时钟扩展外围接口(cxpi)这样的标准的多种类型的通信接口。如果通信对象的通信接口所采用的标准不同,则通信规范或者通信协议不同,因此不能够互相进行通信。因此,需要将通信系统配置为使得基于相同标准的通信接口互相连接。从而,针对关于连接器或连接电缆的各通信标准,不仅需要准备通信接口还需要准备不同的部件,并且这会导致部件的数量增多或者制造成本的增加。因此,为了应对以can和cxpi两者的标准为基础的协议,图91所示的控制盒2044-1和2044-2使得部件能够通用化并且使得能够在协议之间自动切换。图91所示的控制盒2044-1具有由微计算机控制的四个phy电路、两个网络开关(开关)和网关(gw)的功能。网关应对基于can-fd标准和cxpi标准的通信协议。基于can-fd标准的通信接口和基于cxpi标准的通信接口内置于控制盒2044-1中,并且四个独立的连接器设置在控制盒2044-1的连接部2044-1a中。一个控制盒2044-1还包括无线phy电路。连接部2044-1a的各个连接器具有内置于其中的切换电路2044-4。切换电路2044-4的can连接部2044-4a连接到基于can-fd标准的通信接口,并且能够处理基于can-fd标准的“+侧”和“-侧”的一组通信信号。切换电路2044-4的cxpi连接部2044-4b连接到基于cxpi标准的通信接口,并且能够处理基于cxpi标准的单个通信信号。切换电路2044-4的can连接部2044-4a和cxpi连接部2044-4b的各信号路径经由内部的可控开关而连接到通用连接部2044-4c的两个端子。开关由内部网关(gw)控制。控制盒2044-1和2044-2分别设置有包括四个端子的通用的连接器,所述四个端子包括通用连接部2044-4c的两个端子、电源线和地线。为了应对基于can标准的信号,图91所示的模块电缆2044-5包括“gnd”、“canfd-”、“canfd+”和“电源”这四个端子以及四条电线。为了应对基于cxpi标准的信号,模块电缆2044-6包括“gnd”、“cxpi”、“gnd”和“电源”这四个端子以及四条电线。换言之,两个模块电缆2044-5与2044-6具有相同数量的端子和相同数量的电线,并且因此能够用作通用部件。具有共同配置的模块电缆2044-5或模块电缆2044-6连接到控制盒2044-1的通用连接器,因此能够处理基于can-fd标准和cxpi标准的任何通信。实际上,在控制盒2044-1中的微计算机的控制下,在初始状态下选择基于can-fd标准的通信,并且在基于cxpi标准的通信设备连接到对方侧的情况下,发生切换到基于cxpi标准的通信的自动切换。具体地,当对方侧的通信设备经由模块电缆2044-5或者2044-6连接时,微计算机进行信号扫描,从而识别来自对方的请求。在不能通过使用基于can标准的协议建立通信的情况下,尝试通过切换到基于cxpi标准的协议建立通信。此时,微计算机改变切换电路2044-4的开关,从而对切换电路2044-4中的信号路径进行切换,因此能够将流经连接器的各个端子的信号的形式从cxpi形式(单条信号线)改变为can形式(两条信号线)。<关于控制盒和ecu的布置的技术>图90是图示出车载系统的配置实例的框图。在图90所示的车载系统中,两个控制盒2043-1和2043-2经由骨干干线2043-4互相连接。ecu盒2043-3经由骨干干线2043-5连接到控制盒2043-1。用于控制空调和多个其他ecu的电子控制单元(ecu)内置在ecu盒2043-3中。控制盒2043-1设置在例如车辆的仪表板部中。连接器2043-7和ecu2043-6经由作为支线的两个模块电缆2043-8连接到控制盒2043-2并且处于控制盒2043-2的控制之下。ptc加热器2043-9也经由另一支线连接到控制盒2043-2并且处于控制盒2043-2的控制之下。多个负载2043-10连接到ecu2043-6的输出端子。连接器2043-7具有内置于其中的电子电路,并且具有与控制盒2043-2通信的功能以及控制负载的通电的功能。在图90所示的车载系统中,在作为负载2043-10的空调连接到控制盒2043-2并且处于控制盒2043-2的控制之下的情况下,控制盒2043-2中的微计算机可以进行空调的控制,来代替ecu盒2043-3中的控制空调的ecu。在该情况下,ecu盒2043-3中的控制空调的ecu可以省去。另一方面,在图82所示的车载系统中,控制盒2035-2a经由基于以太网(注册商标)标准的通信线2035-6连接到ecu盒2035-3。例如,互相独立的10个ecu能够内置于ecu盒2035-3中。因此,多个ecu能够以聚集的方式设置在单个部位处。各种负载可以连接到ecu盒2035-3中的各个ecu,并且处于所述各个ecu的控制之下。ecu盒2035-3设置有基于can-fd标准的通信接口、网关(gw)和phy电路。因此,ecu盒2035-3中的每个ecu能够经由控制盒2035-2a至2035-2e与车辆上的各种设备通信。内置于ecu盒2035-3中的各ecu是可装接和可拆卸的,并且可以根据需要更换。还能够改变各ecu的安装位置。<关于通信系统的双重化的技术>图93(a)和93(b)是图示出车载系统的配置实例的框图。在发生故障或者通信线由于车辆碰撞而断开的情况下,不能够在设备之间进行通信。然而,例如,在诸如自动驾驶这样的技术安装在车辆中的情况下,要求通信系统的高可靠性,并且因此需要考虑通信路径不被断开。因此,在图93(a)和93(b)所示的车载系统中,供电路径和通信路径被配置为至少在具有高重要性的部位处是双重化的,以提高可靠性。在图93(a)所示的配置中,控制盒2046-1与控制盒2046-2经由骨干干线2046-4互相连接,并且控制盒2046-1与控制盒2046-3经由骨干干线2046-5互相连接。虽然图93中未示出,但是骨干干线2046-4和2046-5分别包括电源线、地线和通信线,并且电源线和通信线分别具有彼此独立的两个线路。控制单元2046-6经由作为支线的模块电缆2046-7连接到控制盒2046-2,并且处于该控制盒2046-2的控制之下。控制单元2046-6经由作为支线的模块电缆2046-8连接到控制盒2046-3,并且处于该控制盒2046-3的控制之下。多个负载2046-9经由支线子线束2046-10连接到控制单元2046-6,并且处于控制盒2043-6的控制之下。各个模块电缆2046-7和2046-8包括两个系统的电源线、地线以及两个系统的通信线。地线可以由两个系统形成。例如,在从控制盒2046-1经由骨干干线2046-4、控制盒2046-2和模块电缆2046-7向控制单元2046-6发出指令的情况下的通信路径和供电路径是双重化的。在从控制盒2046-1经由骨干干线2046-5、控制盒2046-3和模块电缆2046-8向控制单元2046-6发出指令的情况下的通信路径和供电路径是双重化的。从而,例如,即使在骨干干线2046-4和2046-5中的一个骨干干线或者模块电缆2046-7和2046-8中的一个模块电缆之中的一个系统的通信线断开的情况下,也能够通过使用未断开的另一个系统的通信线确保通信路径。例如,即使在骨干干线2046-4或模块电缆2046-7中的两个系统的通信线同时断开的情况下,发生从控制盒2046-1向经过骨干干线2046-5、控制盒2046-3和模块电缆2046-8的通信路径的切换,因此能够确保控制控制单元2046-6所需的通信路径。另一方面,在图93(b)所示的车载系统中,中央的控制盒2046-12经由独立的骨干干线2046-17、2046-16和2046-18连接到多个控制盒2046-11、2046-13、2046-14和2046-15。控制单元或负载经由支线连接到各控制盒,并且处于各控制盒的控制之下。例如,控制单元2046-21a经由支线2046-22连接到中央的控制盒2046-12,并且控制单元2046-21a经由支线2046-23连接到控制盒2046-14。因此,在控制盒2046-12向控制单元2046-21a给出指令的情况下,可以使用经过支线2046-22的通信路径和经过骨干干线2046-18、控制盒2046-14和支线2046-23的通信路径中的任意一个通信路径。换言之,即使多个路径中的一个路径断开,也能够通过使用剩余的正常通信线确保所需的通信路径。<关于模块化设备的连接形态的技术>图94是图示出驾驶座门板中设置的电路模块的配置实例的框图。图94所示的电路模块2047-4设置在驾驶座门板中,并且经由支线子线束2047-2和2047-3连接到设置在车身侧上的控制盒2047-1。支线子线束2047-2和2047-3布设为贯通车身与驾驶座门的连接部位处的分隔壁。支线子线束2047-2的通信线连接到标准通信接口(cxpi等),并且支线子线束2047-3的通信线连接到基于以太网(注册商标)的通信接口。电路模块2047-4不仅设置有模块连接连接器2047-8,而且设置有作为具有标准接口的配件的多个电子控制单元(ecu)2047-10和2047-11以及侧电视2047-9。还设置有天线2047-5、扬声器2047-6、传感器2047-7、通用通信连接器2047-12等。模块连接连接器2047-8内置有基于cxpi标准的三个标准通信接口以及标准(std)驱动电路。模块连接连接器2047-8中的各个标准通信接口具有使得接收到的信号仅是通过并且将该信号发送到输出侧的功能。电子控制单元2047-10和2047-11以及通用通信连接器2047-12分别连接到模块连接连接器2047-8的标准通信接口。通用通信连接器2047-12具有内置于其中的电子电路,并且能够通过使用该电子电路而进行通信、对负载的控制以及信号的输入。模块连接连接器2047-8的标准驱动电路的输出端子连接到门中的门锁电机2047-17以及各种照明设备2047-18。电子控制单元2047-10包括微计算机,该微计算机进行控制电动车窗所需的处理,并且该电子控制单元2047-10的输出端子连接到电动车窗的电动机(p/wmtr)。电子控制单元2047-11包括微计算机,该微计算机具有控制设置在门中的后视镜的功能。电子控制单元2047-11的输出端子连接到镜的构成元件2047-14和2047-15。通用通信连接器2047-12的输出端子连接到镜加热器2047-16和存储器开关2047-19等。图95是图示出乘客座门板中设置的电路模块的配置实例的框图。图95所示的电路模块2048-4设置在乘客座门板中,并且经由支线子线束2048-2和2048-3连接到设置在车身侧上的控制盒2048-1。支线子线束2048-2和2048-3布设为贯通车身与乘客座门的连接部位处的分隔壁。支线子线束2048-2的通信线连接到标准通信接口(cxpi等),并且支线子线束2048-3的通信线连接到基于以太网(注册商标)的通信接口。电路模块2048-4不仅设置有模块连接连接器2048-8,而且设置有作为具有标准接口的配件的多个电子控制单元(ecu)2048-10和2048-11以及侧电视2048-9。还设置有天线2048-5、扬声器2048-6、传感器2048-7、通用通信连接器2048-12等。模块连接连接器2048-8内置有基于cxpi标准的三个标准通信接口以及标准(std)驱动电路。电子控制单元2048-10和2048-11以及通用通信连接器2048-12分别连接到模块连接连接器2048-8的标准通信接口。通用通信连接器2048-12具有内置于其中的电子电路,并且能够通过使用该电子电路而进行通信、对负载的控制以及信号的输入。模块连接连接器2048-8的标准驱动电路的输出端子连接到门中的门锁电机2048-17以及各种照明设备2048-18。电子控制单元2048-10包括微计算机,该微计算机进行控制电动车窗所需的处理,并且该电子控制单元2048-10的输出端子连接到电动车窗的电动机(p/wmtr)。电子控制单元2048-11包括微计算机,该微计算机具有控制设置在门中的后视镜的功能。电子控制单元2048-11的输出端子连接到镜的构成元件2048-14和2048-15。通用通信连接器2048-12的输出端子连接到镜加热器2048-16和灯2048-19。图96是图示出后座门板中设置的电路模块的配置实例的框图。左后座门板与右后座门板具有相同的配置。图96所示的电路模块2049-3设置在后座门板中(左门板和右门板中的每个门板),并且经由支线子线束2049-2连接到设置在车身侧上的控制盒2049-1。支线子线束2049-2布设为贯通车身与后座门的连接部位处的分隔壁。支线子线束2049-2的通信线连接到标准通信接口(cxpi等)。电路模块2049-3不仅设置有模块连接连接器2049-4,而且设置有作为具有标准接口的配件的电子控制单元(ecu)2049-5等。模块连接连接器2049-4内置有基于cxpi标准的三个标准通信接口以及标准(std)驱动电路。电子控制单元2049-5连接到模块连接连接器2049-4的标准通信接口。模块连接连接器2049-4的标准驱动电路的输出端子连接到门中的门锁电机2049-7以及各种照明设备2049-8、2049-9和2049-10。电子控制单元2049-5包括微计算机,该微计算机进行控制电动车窗所需的处理,并且该电子控制单元2049-5的输出端子连接到电动车窗的电动机(p/wmtr)2049-6。图97是图示出车顶中设置的电路模块的配置实例的框图。图97所示的电路模块2050-3设置在车身的顶部中,并且经由支线子线束2050-2连接到设置在车辆内侧上的控制盒2050-1。支线子线束2050-2布设为贯通车身与车顶的连接部位处的分隔壁。支线子线束2050-2的通信线连接到标准通信接口(cxpi等)。电路模块2050-3不仅设置有模块连接连接器2050-4,而且设置有作为具有标准接口的配件的电子控制单元(ecu)2050-6、雨水传感器2050-14等。还设置有麦克风2050-5、通用通信连接器2050-7等。模块连接连接器2050-4内置有基于cxpi标准的三个标准通信接口以及标准(std)驱动电路。模块连接连接器2050-4中的各个标准通信接口具有使得接收到的信号只是通过并且将该信号发送到输出侧的功能。电子控制单元2050-6、雨水传感器2050-14以及通用通信连接器2050-7分别连接到模块连接连接器2050-4的标准通信接口。通用通信连接器2050-7具有内置于其中的电子电路,并且能够通过使用该电子电路而进行通信、对负载的控制以及信号的输入。模块连接连接器2050-4的标准驱动电路的输出端子连接到各种灯负载2050-12和2050-13。电子控制单元2050-6包括微计算机,该微计算机进行诸如打开和关闭滑动车顶这样的驱动控制所需的处理,并且该电子控制单元的输出端子连接到滑动车顶开关2050-8和驱动电动机2050-9。通用通信连接器2050-7的输出端子连接到无线电求救信号(mayday)开关2050-10和内部的后视镜2050-11。图98是图示出智能连接连接器的配置实例的框图。图98所示的智能连接连接器2051-3是提供能够以通用的方式在车辆上的各个部位处使用的连结功能的元件,并且可以经由支线子线束2051-2和标准接口2051-1连接到期望的控制盒。如图98所示,智能连接连接器2051-3的输出侧连接器2051-7可以连接到门锁电机开关2051-8、各种照明设备2051-9、2051-10和2051-11、门锁电机2051-12等。控制电路2051-4设置在智能连接连接器2051-3中。控制电路2051-4包括标准通信接口2051-4a、电源电路2051-4b、微计算机(cpu)2051-4c、信号处理电路(strb)2051-4d、输入电路2051-4e、智能功率器件(ipd)2051-4f以及电机驱动器2051-4g。智能连接连接器2051-3的输出侧连接器2051-7设置有用于输出各种类型的电源电力的端子、通信端子、用于输入到输入电路2051-4e的信号的端子、用于连接由ipd2051-4f驱动的负载的端子以及用于连接电动机的端子。从输出侧连接器2051-7输出的电源电力用于通过微计算机2051-4c中的处理而操作电子熔断器或在电力的种类(+b、+ba、ig等)之间切换。为了进行该控制,切换元件连接在输出侧连接器2051-7的各端子与输入侧电源线之间。利用微计算机2051-4c控制切换元件的接通和断开。<通过添加新的单元而添加功能的技术>在本实施例中,在通过将新的单元连接到车载系统的通用接口而添加功能的情况下,采取对系统侧的控制。例如,在图49所示的系统中,假定新的配件ae经由支线子线束ls连接到各个控制盒cb的连接部cnx的连接器这样的情况。然而,不能说新连接的单元就是合法单元,因此为了确保整个系统的安全性,需要进行特殊控制。虽然未示出,但是该情况下进行的步骤的具体实例如下。步骤s50:在车辆的运营商等处,操作者等将对应的新的单元(配件)经由支线子线束ls连接到控制盒cb的连接部cnx。步骤s51:在车辆的运营商等处,操作者等将由车辆制造商等提供的专用于车辆的诊断工具(例如,“tascan”)连接到车辆的系统,并且执行扫描的命令以诊断所连接的单元。步骤s52:控制盒cb的微计算机响应于来自诊断工具的命令而开始扫描处理。首先,将电力供给到初始连接到连接部cnx的第一个标准接口,并且微计算机自动识别是否能够针对使用该标准接口的通信进行can标准通信。步骤s53:在步骤s52中不能建立can标准通信的情况下,微计算机将通信规范从can切换为cxpi,并且识别是否能够进行cxpi标准通信。步骤s54:在步骤s52和s53中既不建立can标准通信也不建立cxpi标准通信的情况下,微计算机停止将电力供给到该标准接口。步骤s55:在步骤s52和s53中建立can标准通信或cxpi标准通信的情况下,在诊断工具、控制盒cb的微计算机与作为连接目的地的配件(新的单元等)之间进行通信,并且诊断工具进行预定处理,以进行对配件的认证处理。预先使认证处理的内容标准化。步骤s56:在步骤s55中认证成功的情况下,控制盒cb的微计算机将基于标准接口向配件供给电源电力的情况记录在微计算机的存储装置中。例如,基于经过认证证明的配件的种类或者id信息自动地识别出要供给的电力的种类是“+b、+ba、ig和igp”中的任意一种,并且记录该识别结果。步骤s57:重复地对第二个以及随后的标准接口依次进行步骤s52至s56中的处理。步骤s58:在完成对所有的标准接口的扫描处理之后,诊断工具或者控制盒cb的微计算机显示消息等,使得用户(或操作者)能够确认关于添加的新单元的功能的添加。通过使用例如车辆上的仪表单元的显示部而进行该显示。步骤s59:控制盒cb的微计算机在其存储装置中存储用于使用户在步骤s58中确认的功能转移到该功能能够实际使用的环境的信息。因此,例如,即使用户或第三方试图将不被车辆制造商等允许的非法设备连接到车载系统,该非法设备也不能进行与合法车载系统的通信,并且也不能经由通信的连接器供电,并且因此非法设备根本不能运行。<关于在车载系统中的通信系统的连接形态的技术>图99(a)和99(b)以及图100是分别图示出不同的车载系统中的通信系统的配置实例的框图。图99(a)所示的车载系统包括经由网关互相连接的三个系统的通信网络v2-can、v1-can和ms-can。通信网络v2-can被分配到发动机舱(发动机室)的设备,通信网络v1-can被分配到发动机系统的设备(包括仪表单元),并且通信网络ms-can分配到车身系统的设备(门、电动座椅等)。通信网络ms-can作为域设置在整个车辆中,并且每个通信网络v1-can、v2-can是针对车身上的区域而划分的。各种配件连接到各个通信网络ms-can、v1-can和v2-can,并且在其控制之下。在图99(b)所示的车载系统中,多个通信网络互相连接,所述多个通信网络分别负责多个域,该多个域被分别分配到驾驶辅助系统、传动系统、底盘系统、车身系统和多媒体系统。各个通信网络采用基于can标准的通信接口。这些组的通信网络被布设为在车辆的整个区域中互相并行地延伸。在图100所示的车载系统中,域被分为诸如“区域1”、“区域2”、“区域3”、“区域4”和“区域5”这样的各个区域,并且通信网络形成在每个区域中。对于将各个区域互相连接的干线,使用光通信网络,以实现高速通信。通过使用光通信网络,能够在区域之间进行例如大约1gbps的高速通信。光通信网络的通信容量被分布到各个区域的通信网络中的多个系统,从而分配到各种配件的通信。基于分配到诸如配件这样的各个设备的具体id信息而预先判定通信的优先级。<关于控制盒的内部配置的技术>图92是图示出控制盒的配置实例的框图。图92所示的车载系统中包括经由骨干干线2045-7和2045-8互相连接的五个控制盒2045-1、2045-2、2045-3、2045-4和2045-5以及ecu盒2045-6。如图92所示,骨干干线2045-7包括两个系统的电源线以及地线。骨干干线2045-8包括两个系统的通信线。控制盒2045-1设置有两个系统的电源部2045-10、两组网络(以太网:注册商标)集线器2045-11和2045-12、网关(gw)的通信控制单元2045-13、wifi通信模块2045-14、网络(以太网:注册商标)集线器2045-15、电力控制单元2045-16、切换电路2045-17a、2045-17b和2045-17c以及连接器2045-21、2045-22、2045-23和2045-24。骨干干线2045-8中包括的两个系统的通信线中的一条通信线连接到网络集线器2045-11,并且另一条通信线连接到网络集线器2045-12。网络集线器2045-11侧的通信系统被分配为用于车辆的传动系统和底盘系统,并且网络集线器2045-12侧的通信系统被分配为用于车辆的车身系统和多媒体系统。网关(gw)的通信控制单元2045-13是在控制盒2045-1中设置的微计算机(未示出)的控制下实现的功能单元,并且具有以下功能。(1)在基于不同标准诸如协议的多个网络之间的互相连接;(2)相关数据包的接收;(3)信号的传输;(4)控制系统的通信和驾驶辅助系统的通信的分类;以及(5)高级信息的旁路通信。wifi通信模块2045-14用于将控制盒2045-1无线连接到车辆上所安装的其他设备或者用户所携带的设备。网络集线器2045-15具有将通信控制单元2045-13的一个通信路径分出,以连接到连接器2045-21、2045-22和2045-23的任意一个通信路径这样的功能。电力控制单元2045-16是在控制盒2045-1中设置的微计算机(未示出)的控制下实现的功能部,并且具有如下所述的电源电力控制功能。(1)当过电流流动时阻断路径的电子熔断器功能;(2)控制诸如“+b、+ba、igp和igr”这样的电力的类型的功能;(3)当在电源中发生异常时通过适当地使用两个系统的电源线而支援重要系统的电源的功能;以及(4)停止&开始(s&s)切换功能。各个切换电路2045-17a、2045-17b和2045-17c包括两个可控的切换元件,用于分别将两个系统的电源线连接到连接器2045-21、2045-22和2045-23的电源线。切换元件被分开控制,以根据从实现电力控制单元2045-16的各功能的微计算机输出的控制信号而接通和断开。各个连接器2045-21、2045-22和2045-23包括诸如电源线端子、地线端子和两个通信线端子这样的四个端子。各种类型的配件能够经由预定的支线子线束连接到连接器2045-21、2045-22和2045-23,并且在所述连接器的控制之下。如上所述,根据本发明的车辆电路体,能够通过简化各种电气部件与车辆上的电源之间以及电气部件之间的电连接的结构,尤其是骨干干线部的配置,而容易地添加新的电线。<控制盒的配置实例>图105是图示出控制盒内的配置实例的方框图。图105所示的配置是图57和58所示的配置的变形例,并且在图105中,共同的构成元件被赋予相同的参考标号。下文将不描述上述共同的构成元件。图105所示的控制盒cb连接到骨干干线bb_lm2。骨干干线bb_lm2由电源线l1、一个系统的地线l3以及通信线l4b和l5b配置而成。电源线l1和地线l3分别是诸如母线这样的长导体,并且通信线l4b和l5b是光纤。图105所示的控制盒cb包括电源控制单元2101和通信控制单元2102。两个系统的电源连接器cp11和cp12以及八个系统的通信端口连接器cp13至cp20设置在控制盒cb的输出侧。通信控制单元2102能够向六个系统的通信端口连接器cp13至cp18中的每个通信端口连接器提供分别对应于can_fd和cxpi这两种类型的通信标准的通信功能。实际上,可以根据连接到各连接器的设备的规格选择性地使用两种类型的通信标准can_fd和cxpi。通信控制单元2102能够向两个系统的通信端口连接器cp19和cp20中的每个通信端口连接器提供基于以太网(注册商标)标准的通信功能。通信控制单元2102还能够向骨干干线bb_lm2的通信线l4b和l5b提供基于以太网(商标)标准的光通信功能。电源连接器cp11和cp12分别设置有用于电力的供给的两个端子,即,电源端子和接地端子。电源连接器cp11和cp12的各自的两个端子具有足够大的截面面积,使得能够供给相对大的电力。八个系统的通信端口连接器cp13至cp20分别设置有用于电力的供给的电源端子和接地端子以及用于通信的两个端子。电源控制单元2101包括网关控制电路2111、电源电路2112、电压监控电路2113、电池反向连接保护电路2114、控制电路监控器2115和电源输出电路部2116。网关控制电路2111包括主要由微计算机形成的电气电路,并且在微计算机的控制下实现作为控制盒cb中的网关所需的各种控制功能。电源电路2112基于来自电源线l1的直流电(+12v)生成操作诸如网关控制电路2111这样的电路所需的5v的稳定直流电。电压监控电路2113监控电源电路2112的电压,并且当供给电源时或者电压异常时,该电压监控电路2113生成用于重设网关控制电路2111的操作的信号。电池反向连接保护电路2114具有如下功能:在车辆上的电池由于操作错误等以反向极性连接的情况下,保护诸如网关控制电路2111这样的电路。控制电路监控器2115具有监控诸如网关控制电路2111的微计算机失控这样的操作错误的功能。电源输出电路部2116具有输出电路,该输出电路能够单独地控制与电源连接器cp11和cp12以及通信端口连接器cp13至cp20相对应的十个系统的各电源端子的电源电力的供给的接通和断开。这些输出电路响应于从网关控制电路2111输出的控制信号将电源电力从电源线l1供给到各电源端子。因此,能够根据实际连接到电源连接器cp11和cp12以及通信端口连接器cp13至cp20的设备将电源电力仅供给到必需的系统。<在供电故障期间向用户所需的设备供电的功能>图106图示出在供电故障期间显示的屏幕的具体实例。图107图示出在供电故障期间用户选择要使用的设备的处理的实例。在车辆中,存在可能在各种情况下发生供电故障的可能性。例如,存在发生发电系统的输出停止、主电池故障、副电池故障、电源线断开等的情况。在这些情况下,如果进行与正常时相同的控制,则车辆上的所有设备可能停止操作,或者可能在短时间内消耗掉能够供给的全部有限电力。然而,在车辆行驶期间发生供电故障的情况下,为了将转向系统、制动系统等功能维持到车辆安全停车,需要确保电源电力。需要确保用于使进行紧急通知的设备工作的电源电力。例如,在半夜没有路灯的乡村道路等上发生这样的故障的情况下,由于车辆上的各种照明功能不工作,所以其他车辆难以看到该车辆,并且因此易于发生诸如追尾碰撞这样的交通事故。因此,在本实施例中,在车辆上发生某一供电故障的情况下,至少直至车辆安全停车为止,在车辆的行驶期间必需的电力从副电池等供给到转向系统、制动系统等的设备。还确保了用于使进行紧急通知的设备工作的电源电力。存在用户选择功能,用于在车辆已经由于故障而停止的状态下,将车辆上剩余的电源电力选择性地供给到由用户需要的设备。包括控制盒cb的车载系统进行图107所示的处理,从而实现用户选择功能。在该用户选择功能中,为了有助于用户的输入操作而显示如图106所示的屏幕。可以通过使用例如常规设置在车辆上的仪表单元中的显示器或者在车辆的中控台处设置的显示器来显示图106所示的显示屏幕2200。在使用仪表单元中的显示器的情况下,仪表单元的控制单元(微计算机)进行与控制盒cb的控制单元(例如,图105中的网关控制电路2111)的通信。通过仪表单元的控制单元和控制盒cb的控制单元中的任意一者或两者的操作来进行图107所示的处理。在图106所示的实例中,目标设备列表显示部2201、光标显示部2202、操作限制显示部2203、操作引导显示部2204和剩余电池容量显示部2205显示在显示屏幕2200上。目标设备列表显示部2201是如下区域:在其中显示由用户单独指定其操作的开和关的设备的列表以及各个设备的当前操作状态(区分开与关)。在图106所示的实例中,在能够由用户指定的设备的列表中显示头灯、尾灯、空调、音频/导航、acc插座和内部照明灯。头灯和尾灯的操作状态被指定为“开(on)”状态,并且空调、音频/导航、acc插座和内部照明灯的操作状态被指定为“关(off)”状态。光标显示部2202表示当前用户利用模拟手的标记从目标设备列表显示部2201中显示的设备列表所选择的设备的位置。在图106所示的实例中,光标显示部2202的显示位置表示将“尾灯”选择为目标设备。操作限制显示部2203表示各个设备的操作能够在目标设备列表显示部2201中显示的当前用户指定状态下持续的剩余时间的限制。在图106所示的实例中,头灯和尾灯利用剩余的电源容量仅能够从此时开始运行大约35分钟。操作引导显示部2204利用要由用户操作的图形图像模拟操作部而显示操作引导,以改变目标设备列表显示部2201中的指定。在该实例中,由于假定了使用设置在车辆的方向盘附近的转向开关的情况,所以在操作引导显示部2204中显示使用表示转向开关的外观的图像以及文字的说明。转向开关包括在上下方向上移动选择位置的开关以及用于在选择设备的开与关之间交替切换的开关。剩余电池容量显示部2205利用相比于基准值(100%)的比率(65%)显示车辆上的整个电源系统中的电池的当前剩余电力容量。因此,在发生故障的情况下,驾驶车辆的用户能够选择各个设备的操作,使得在检查显示屏幕2200上所显示的操作限制显示部2203和剩余电池容量显示部2205的内容的同时,充分地使用用户所需的最少设备。在剩余电池容量非常小的情况下,可以进行控制使得不能选择具有大电流消耗的设备,或者将其预先从目标设备列表显示部2201中的显示目标排除。因此,能够防止由于用户的错误判定和选择操作而导致短时间内的电源电力的消耗。在图107所示的步骤s21中,控制盒cb的控制单元或者仪表单元的控制单元识别是否发生供电故障。如果检测到供电故障,则流程前进到随后的步骤s22。在步骤s22中,控制盒cb的控制单元或者仪表单元的控制单元显示供电故障异常,并且还以图106所示的内容显示显示屏幕2200。在显示图106所示的显示屏幕220的状态下,用户能够操作转向开关。控制盒cb的控制单元或者仪表单元的控制单元在步骤s23中检测用户对转向开关的输入操作,并且根据检测到的输入操作更新显示屏幕2200的显示内容。换言之,光标显示部2202的显示位置上下移动,并且进行在目标设备列表显示部2201中的选择位置处的设备状态的开与关之间的交替切换。在检测到表示设备选择输入完成的用户操作的情况下,流程从步骤s24前进到步骤s25。在步骤s25中,控制盒cb的控制单元或者仪表单元的控制单元将用户对目标设备列表显示部2201进行的输入操作反映在实际控制上。换言之,选择性地进行电源电力的供给,使得电源电力供给到在目标设备列表显示部2201中操作状态被指定为“开”状态的设备,并且电源电力不供给到操作状态被指定为“关”状态的设备。例如,在图105所示的控制盒cb中,电源输出电路电路2116能够单独地接通和断开向各个系统的各连接器cp11至cp20的电力供给。因此,网关控制电路2111控制每个系统的电源输出电路部2116的接通和断开,使得反映出用户选择的状态,因此电源电力被控制为仅供给到用户需要的设备。<骨干干线的配置实例>图108(a)、108(b)和108(c)是分别图示出对应于不同等级的三个骨干干线的配置的方框图。图108(a)、108(b)和108(c)所示的车辆电路体被配置为分别满足150ah、300ah和500ah的电源容量的规格。图108(a)所示的车辆电路体由三个骨干干线bb_lm(1)-a、bb_lm(2)-a和bb_lm(3)-a以及将骨干干线互相连接的控制盒cb(1)和cb(2)形成。图108(b)所示的车辆电路体由三个骨干干线bb_lm(1)-b、bb_lm(2)-b和bb_lm(3)-b以及将骨干干线互相连接的控制盒cb(1)和cb(2)形成。图108(c)所示的车辆电路体由三个骨干干线bb_lm(1)-c、bb_lm(2)-c和bb_lm(3)-c以及将骨干干线互相连接的控制盒cb(1)和cb(2)形成。骨干干线bb_lm(1)-a、bb_lm(2)-a和bb_lm(3)-a包括具有与150ah的电源容量相对应的厚度的电源线(l1)和地线(l3)。骨干干线bb_lm(1)-b、bb_lm(2)-b和bb_lm(3)-b包括具有与300ah的电源容量相对应的厚度的电源线(l1)和地线(l3)。骨干干线bb_lm(1)-c、bb_lm(2)-c和bb_lm(3)-c包括具有与500ah的电源容量相对应的厚度的电源线(l1)和地线(l3)。换言之,在图108(a)、108(b)和108(c)所示的三种类型的车辆电路体中,形态和配置彼此相同,但是骨干干线bb_lm的电源线和地线的厚度互不相同。因此,预先制备包括具有不同厚度的电源线和地线的三种类型的骨干干线bb_lm,仅选择性地改变厚度,因此能够形成能分别在等级互不相同的多种车辆或者多种车型中采用的车辆电路体。例如,在基础等级的车辆的情况下,连接的电气部件的数量少,并且各个电气部件的电力消耗也小。从而,如图108(a)所示,能够通过使用具有150ah的电源容量的车辆电路体充分地满足要求的规格。在中等等级的车辆的情况下,连接的电气部件的数量增多,并且各个电气部件的电力消耗稍微增大。从而,如图108(b)所示,能够通过使用具有300ah的电源容量的车辆电路体充分地满足要求的规格。在高等级的车辆的情况下,连接的电气部件的数量进一步增多,并且各个电气部件的电力消耗也增大,并且可以添加诸如自动驾驶系统这样的新开发的电气部件。从而,如图108(c)所示,能够通过使用具有500ah的电源容量的车辆电路体充分地满足要求的规格。在图108(a)、108(b)和108(c)所示的实例中,假定仅依据等级的差异而改变骨干干线bb_lm的电源线和地线的厚度,并且仅使用一种控制盒cb。然而,可以制备多种控制盒cb,并且依据等级的差异在多种控制盒之中选择一个控制盒。在该情况下,能够通过采用例如图61所示的技术而共用控制盒cb的部件。在电源容量的规格不变的情况下,可以通过改变控制盒cb的种类而进行处理,而无需改变骨干干线bb_lm的厚度。因此,能够处理安装在车辆上的电气部件的数量的变化以及通信规格(传输速度)的变化。<供给稳定电压的电源系统><配置的说明>图109(a)和109(b)分别图示出两种车载系统的配置实例。图109(a)所示的车载系统的配置适用于仅具有低电压系统作为电源的普通车辆。图109(b)所示的车载系统的配置适用于具有低电压系统和高电压系统作为电源的混合动力车辆。在图109(a)所示的车载系统中,上述骨干干线bb_lm中所包括的电源线l1的一端l1a连接到交流发电机alt和主电池mb。电源线l1的另一端l1b连接到dc/dc转换器dc1的输出侧。dc/dc转换器dc1的输入侧连接到蓄积再生电力的副电池sb。交流发电机alt是发电机,并且能够自动地调整输出到电源线l1的一端l1a的直流电压。dc/dc转换器dc1能够转换从副电池sb供给的直流电的电压,并且将该电压输出到电源线l1的另一端l1b。dc/dc转换器dc1能够自动地调整输出直流电压。在图109(a)所示的实例中,多个负载以散布的方式连接于电源线l1的一端l1a与另一端l1b之间的中间部。各个负载所需的电源电力可以经由电源线l1从交流发电机供给,并且可以经由电源线l1从dc/dc转换器dc1供给。另一方面,在图109(b)所示的车载系统中,上述骨干干线bb_lm中所包括的电源线l1的一端l1a连接到dc/dc转换器dc2的输出侧以及主电池mb。dc/dc转换器dc2的输入侧连接到高压电源系统。电源线l1的另一端l1b连接到dc/dc转换器dc3的输出侧。dc/dc转换器dc3的输入侧连接到高压电源系统的电池hb。dc/dc转换器dc2将从高压电源系统供给的高电压转换为例如大约12v的低电压,并且将该电压供给到电源线l1的一端l1a和主电池mb。dc/dc转换器dc3将从电池hb供给的高电压转换为例如大约12v的低电压,并且将该电压供给到电源线l1的另一端l1b。dc/dc转换器dc2和dc3分别具有自动调节输出电压的功能。在图109(b)所示的实例中,多个负载以散布的方式连接于电源线l1的一端l1a与另一端l1b之间的中间部。由各个负载所需的电源电力可以经由电源线l1从dc/dc转换器dc2的输出侧供给,并且可以经由电源线l1从dc/dc转换器dc3的输出侧供给。<基本操作的说明>在图109(a)和109(b)所示的两个车载系统中,不同的电源分别连接到电源线l1的一端l1a和另一端l1b。因此,适当地调整从一端l1a侧的电源流经各个负载的电源电流与从另一端l1b侧的电源流经各个负载的电源电流之间的分配,并且因此能够防止流经电源线l1的各部分的电流增大,因此能够减小电源线l1中的电压降。从而,还能够减小电源线l1的截面面积。然而,如果在各个负载中的电流消耗由于连接到电源线l1的各个负载的操作状态的变化而波动,则从一端l1a侧的电源流经各个负载的电源电流与从另一端l1b侧的电源流经各个负载的电源电流之间的分配也变化。如果供给相对大的电流的电源与消耗大电流的负载之间的距离增大,则电源线l1的对应部分中的电压降增大。为了防止电压降的增大,进行下面描述的特性控制。<电源系统的特性控制>在图109(a)和109(b)所示的两个车载系统中,控制基准点l1r设置在靠近电源线l1的中心的特定位置处。在图109(a)所示的车载系统中,进行自动控制,使得由于从交流发电机alt输出的电力而在电源线l1的控制基准点l1r处出现的电压vxr与由于从dc/dc转换器dc1输出的电力而在电源线l1的控制基准点l1r处出现的电压vyr相同,即,产生平衡状态。可以通过调整来自交流发电机alt的输出电压或者来自dc/dc转换器dc1的输出电压实现该控制,或者通过调整这两个输出电压实现该控制。实际上,通过基于交流发电机alt的输出电压、控制基准点l1r的位置、各个负载的连接位置、各个负载的操作状态等的计算,可以估计电压vxr。通过基于dc/dc转换器dc1的输出电压、控制基准点l1r的位置、各个负载的连接位置、各个负载的操作状态(电流消耗)等的计算,可以估计电压vyr。因此,自动地调整来自交流发电机alt的输出电压和来自dc/dc转换器dc1的输出电压,使得估计的电压vxr与电压vyr进入平衡状态。在图109(b)所示的车载系统中,进行自动控制,使得由于从dc/dc转换器dc2输出的电力而在电源线l1的控制基准点l1r处出现的电压vxr与由于从dc/dc转换器dc3输出的电力而在电源线l1的控制基准点l1r处出现的电压vyr相同,即,产生平衡状态。可以通过调整来自dc/dc转换器dc2的输出电压或者来自dc/dc转换器dc3的输出电压实现该控制,或者通过调整这两个输出电压实现该控制。实际上,通过基于dc/dc转换器dc2的输出电压、控制基准点l1r的位置、各个负载的连接位置、各个负载的操作状态等的计算,可以估计电压vxr。通过基于dc/dc转换器dc3的输出电压、控制基准点l1r的位置、各个负载的连接位置、各个负载的操作状态等的计算,可以估计电压vyr。因此,自动地调整来自dc/dc转换器dc2的输出电压和来自dc/dc转换器dc3的输出电压,使得估计的电压vxr与电压vyr进入平衡状态。如上所述地进行特性控制,因此能够防止电源线l1的各部分中的电压降。从而,即使在连接各种类型的负载的情况下,也能够减小包括电源线l1的骨干干线bb_lm的直径。<干线电源的备用控制>图110图示出车载系统的配置实例。图110所示的车载系统的电源干线由多个控制盒cb(1)至cb(5)以及将控制盒互相连接的骨干干线bb_lm形成。如图110所示,包括交流发电机alt和主电池mb的主电源部2213的输出侧连接到设置在车辆的前部中的控制盒cb(1)。设置在车辆的后部中的副电池sb连接到控制盒cb(5)。控制盒cb(1)包括电源异常检测单元2211,其检测由于主电源部2213中的供电故障导致的电压等的异常,即,短路或断路。控制盒cb(5)包括电源异常检测单元2211,其检测诸如副电源sb中的供电故障这样的异常。在图110所示的配置中,控制盒cb(3)的输出侧连接到普通负载2214和备用负载2215。控制盒cb(3)设置有在普通负载2214的电源电力的供给的接通与断开之间切换的开关,以及在备用负载2215的电源电力的供给的接通与断开之间切换的开关。普通负载2214是预先定义为在整个系统正常操作的情况下使用的负载。备用负载2215是预先定义为在系统中发生某些供电故障的情况下优选确保操作所需的电源电力的负载。在图110所示的车载系统中,例如,如果控制盒cb(1)的电源异常检测单元2211检测到主电源部2213中的供电故障,则控制盒cb(1)将预定的控制信号2212发送到所有剩余的控制盒cb(2)至cb(5)。响应于控制信号2212,例如,控制盒cb(3)停止向普通负载2214供给电力,并且将从骨干干线bb_lm供给的电源电力仅分配到备用负载2215。其他控制盒cb(2)、cb(4)和cb(5)类似地将电力分配到与其连接并处于其控制下的备用负载。例如,如果控制盒cb(5)的电源异常检测单元2211检测到副电池sb中的供电故障,则控制盒cb(5)将预定的控制信号2212发送到所有剩余的控制盒cb(1)至cb(4)。同样在该情况下,每个控制盒cb停止对与其连接并在其控制下的普通负载2214供给电力,并且将来自骨干干线bb_lm的电源电力仅分配到备用负载2215。例如,在主电源部2213中发生供电故障的情况下,能够使用来自副电池sb的电源电力,然而整个电源系统的供电性能比正常时低得多。类似地,在副电池sb中发生供电故障的情况下,能够使用来自主电源部2213的电源电力,然而如果假定使用副电池sb,则整个电源线系统的供电性能下降。在该情况下,通过上述控制,停止对普通负载2214供给电力,电力仅供给到备用负载2215,因此能够通过有效地使用有限的电源电力而维持必需的功能。<改变每个分支的干线直径的技术>图111图示出在骨干干线中所包括的电源线的配置以及各个设备的连接状态的实例。在图111所示的配置中,包括在骨干干线bb_lm中的电源线21的厚度(截面面积)被配置为根据骨干干线bb_lm上的部位的变化而逐步地变化。具体地,通过在厚度方向上堆叠多个薄板状的布设材料(导电材料)21a、21b、21c和21d而形成电源线21,并且堆叠的薄板状布设材料21a至21d的数量被配置为针对骨干干线bb_lm上的每个分支部位而变化。在图111所示的配置中,设置在电源线21的上游侧的端部处的连接点p0连接到交流发电机alt和主电池mb。连接点p1、p2、p3和p4在电源线21上的各自的位置分支,从而分别经由支线子线束ls连接到负载。在最上游侧的连接点p0与下一个连接点p1之间通过堆叠四个薄板状的布设材料21a、21b、21c和21d而形成电源线21。在连接点p1与下一个连接点p2之间通过堆叠三个薄板状的布设材料21b、21c和21d而形成电源线21。在连接点p2与下一个连接点p3之间通过堆叠两个薄板状的布设材料21c和21d而形成电源线21。在连接点p3与下一个连接点p4之间仅通过单个薄板状的布设材料21d而形成电源线21。在图111所示的配置中,所有四个负载的电流都在连接点p0与连接点p1之间的区段中流动。三个负载的电流在连接点p1与连接点p2之间的区段中流动;两个负载的电流在连接点p2与连接点p3之间的区段中流动;并且仅一个负载的电流在连接点p3与连接点p4之间的区段中流动。换言之,电流在靠近交流发电机alt和主电池mb的上游侧的位置处以集中的方式流动。在各个区段中产生的电压降与流动的电流的大小成正比,因此随着位置越靠近电源线21的上游侧,越容易发生电压降。然而,如图111所示,如果电源线21的厚度在上游侧是大的,则每单位长度的电阻系数减小,因此能够减小电压降。由于电流值在电源线21的下游侧相对减小,所以即使电源线21的厚度是小的,电压降也不增大。如上所述,由于考虑到流动的电流的大小而使得电源线21的厚度依据部位的差异而变化,所以能够整体减小骨干干线bb_lm的厚度或重量,而不增大电压降。虽然未示出,但是电池骨干干线bb_lm的地线的厚度也优选地被配置为以与电源线21相同的方式依据部位而变化。<稳定通信的无线通信技术>图112图示出车载系统的配置实例。在图112所示的车载系统中,以散布到车身的各个部分的状态所布置的七个控制盒cb-1、cb-2、cb-3、cb-4、cb-5、cb-6和cb-7经由骨干干线bb_lm互相连接。骨干干线bb_lm包括如上所述的电源线、地线和通信线。图112所示的控制盒cb-1至cb-7分别具有无线通信功能。通信终端2221、2222、2223、2224、2225和2226设置在车身的四个门的各部分以及车身的行李舱后部的左侧和右侧。具有中继功能的多个通信终端2231、2232和2233设置在行李舱后部中。各个通信终端2221至2226以及各个控制盒cb-1、cb-3、cb-4、cb-6和cb-7安装有采用近场无线技术的电路,并且能够以非接触的方式进行电力的供给和通信。具有中继功能的各个通信终端2231至2233具有无线通信功能,并且还具有中继功能。在图112所示的车载系统中,控制盒cb-1至cb-7之间的通信通常经由骨干干线bb_lm的通信线而进行。例如,即使在控制盒cb-7与具有中继功能的通信终端2232之间的无线通信路径被行李2241阻断的情况下,具有中继功能的通信终端2232也能够与设置在其左右附近的具有中继功能的通信终端2231和2233的进行无线通信。因此,例如,如图112中的虚线所示,在具有中继功能的通信终端2232与2231之间以及在具有中继功能的通信终端2231与控制盒cb-7之间建立无线通信线路,并且具有中继功能的通信终端2231用作无线中继站。换言之,沿着从具有中继功能的通信终端2232经由具有中继功能的通信终端2231到控制盒cb-7的路径而建立无线通信线路。实际上,由于各个终端的成本的差异、终端的种类之间的差异、终端的制造商之间的差异以及终端个体之间的差异的影响,导致存在通信性能的变化,因此可能在与直接通信对象或间接通信对象的通信状态方面产生差异。在图112中,例如,虽然期望以无线方式进行从具有中继功能的通信终端2232到控制盒cb-2的通信,但是在由于终端性能的差异而导致难以进行通信的情况下,临时进行从具有中继功能的通信终端2232到控制盒cb-5的通信,而后以有线或无线方式进行从控制盒cb-5至控制盒cb-2的通信。因此,例如,基于预定义的优先级对可用的通信线路依次检查是否能够实际进行通信,并且自动选择最优路径。在中间处中断通信的情况下,检测到通信故障,并且自动改变中继的执行或者通信路径。例如,如图112所示,骨干干线bb_lm可能在控制盒cb-2与cb-5之间断开(包括仅通信路径断开)。在由于有线路径的这样的断开而无法进行通信的情况下,通过使用各个控制盒cb-1至cb-7的无线通信功能而确保必需的通信线路。例如,在骨干干线bb_lm在控制盒cb-2与cb-5之间断开的情况下,如图112中的虚线所示,在控制盒cb-3与cb-5之间确保了无线通信线路,并且通过使用控制盒cb-3与cb-2之间的有线线路,维持控制盒cb-2与控制盒cb-5之间的可通信状态。另一方面,例如,由于车辆的门打开和关闭,所以在线束用于将设置在门中的电气部件连接到车身的车辆内部的情况下,线束趋于由于受车门的打开和关闭所导致的变形等的影响而断开。在图112所示的车载系统中,控制盒cb-1与通信终端2221利用近场无线技术而互相连接。类似地,控制盒cb-3与通信终端2222、控制盒cb-4与通信终端2223、控制盒cb-6与通信终端2224以及控制盒cb-7与通信终端2225和2226也利用近场无线技术而互相连接。因此,由于不需要在可移动部中设置线束,并且不担心断开,所以能够增强电力供给和通信的可靠性。然而,在行李2241设置在车身的行李室中的情况下,如果在其附近进行无线通信,则电波可能被行李2241阻挡,因而不能进行无线通信。例如,在图112所示的车载系统中,假定如下情况:控制盒cb-7与具有中继功能的通信终端2231、2232和2233经由无线通信线路互相连接,并且彼此进行通信,然而无线通信线路可能由于行李2241或乘客的影响而中断。然而,具有中继功能的各通信终端2231至2233具有使用无线通信的中继功能,因此能够通过确保其他的无线通信线路而继续进行通信。如上所述,在图112所示的车载系统中,由于能够进行无线通信的控制盒cb-1至cb-7或者具有中继功能的通信终端2231至2233设置在车身的各种部位处,所以具有无线通信功能的各种设备能够通过后安装而容易地连接到车载系统。即使在将控制盒cb-1至cb-7互相连接的有线通信路径中发生诸如断开这样的故障的情况下,也能够通过使用无线通信而确保必需的通信线路。由于在诸如门这样的可移动部中使用近场无线技术,所以不需要使用线束,并且不存在对断开的担心。因此,能够进行稳定的无线通信和电力供给。<第四实施例>图113是图示出根据本发明第四实施例的车辆电路体的骨干干线部的布局的示意性平面图。以与根据第一实施例的车辆电路体10相同的方式,根据第四实施例的车辆电路体包括作为基本构成元件的:干线(骨干干线部1415),其布设在车身中,并且具有电源线1421、地线1427和通信线1429;支线(未示出),其连接到在各车身部位处的电气部件;以及多个控制盒(供给侧控制盒1451、分支控制盒1453、中间控制盒1457以及控制盒1455和1459),其以沿着干线散布的方式设置,并且具有控制单元,该控制单元将供给到干线的来自电源线1421的电力以及来自通信线1429的信号分配到连接至该干线的支线。(骨干干线部)图113所示的骨干干线部1415是干线,其包括电源线1421、地线1427和通信线1429,并且布设在车身中,并且大体分为:仪表板骨干干线部1411,其直线状地设置在左右方向上,从而与车身的强化部(未示出)基本平行;以及地板骨干干线部1413,其设置为沿着车辆内部地板在车身的左右方向上的大致中央处在车身的前后方向上延伸。地板骨干干线部1413在沿着前围板50(参见图1)的表面的部位处在上下方向上直线状地延伸,使得其前端连接到仪表板骨干干线部1411的中间部。仪表板骨干干线部1411与地板骨干干线部1413的连接部处于经由稍后描述的分支控制盒1453的连接器部1500和地板骨干干线部1413的多连接器1600而可装接和可拆卸的状态。由于仪表板骨干干线部1411和地板骨干干线部1413,骨干干线部1415被构造为形成类似t形的形状。仪表板骨干干线部1411经由供给侧控制盒1451连接到发动机舱子线束61(参见图1)的主电源电缆1481,其中该供给侧控制盒1451设置在作为骨干干线部1415的上游侧的车身的左侧。以与根据第一实施例的车辆电路体10相同的方式,根据第四实施例的车辆电路体的主要构成元件,即,仪表板骨干干线部1411、地板骨干干线部1413、供给侧控制盒1451、分支控制盒1453、中间控制盒1457以及控制盒1455和1459都设置在车辆内部43侧的空间中。与在仪表板骨干干线部1411的左端处设置的供给侧控制盒1451连接的主电源电缆1481连接到发动机室41内的发动机舱子线束61。因此,来自主电源的电力能够供给到供给侧控制盒1451。从主电源供给到供给侧控制盒1451的电力经由骨干干线部1415供给至分支控制盒1453、中间控制盒1457以及控制盒1455和1459。电力供给到经由模块连接器mc(参见图116(a))而与在各车身部位处的电气部件(配件)连接的各种子线束(支线),其中所述模块连接器连接到各控制盒的支线连接部1521。模块连接器mc能够将电源的电力和地的电力以及信号共同地连接到控制盒,从而将电力和信号有效地传输到骨干干线部1415和各配件。(布设材料)根据第四实施例的车辆电路体的骨干干线部1415由布设材料1420形成,该布设材料1420具有电源线1421、通信线1429和地线1427,如图113和114所示。电源线1421和地线1427采用由金属材料(例如,铜合金或者铝)制成的圆杆导体403,其截面形状为圆形,并且其周围由绝缘被覆110覆盖。通信线1429采用形成正向路径和反向路径的两个塑料光纤。由电源线1421、地线1427和通信线1429形成的布设材料1420被例如夹具455(参见图23)一体地保持,该夹具455沿着长度方向以预定间隔成型。因此,布设材料1420允许通过大的电流,并且能够进行耐噪声的通信。骨干干线部1415的电源线1421要求大的截面面积,以确保预定的电流容量,而本实施例的电源线1421由具有截面形状为圆形的圆杆状导体403的布设材料1420形成,使得能够在所有方向上自由地弯曲,因而有助于沿着预定布设路径的布设操作。(控制盒)如图114所示,根据第四实施例的车辆电路体设置有五个控制盒,诸如,供给侧控制盒1451,其设置在骨干干线部1415的上游端(仪表板骨干干线部1411的左端);分支控制盒1453,其设置在骨干干线部1415的中间处的分支部(仪表板骨干干线部1411与地板骨干干线部1413之间的连接部)中;中间控制盒1457,其设置在骨干干线部1415的中间(地板骨干干线部1413的中间部)处;以及控制盒1455和1459,其设置在骨干干线部1415的下游端(仪表板骨干干线部1411的右端和地板骨干干线部1413的后端)。如图115(a)至115(c)所示,供给侧控制盒1451设置有:主电源连接部1520,其将主电源电缆1481连接到仪表板骨干干线部1411;支线连接部1521,其与前门支线子线束63或者子线束71(参见图1)连接;以及仪表板连接部1510,其将电力和信号传输到安装在诸如仪表盘这样的仪表板上的多个配件。供给侧控制盒1451能够在主电源电缆1481、仪表板骨干干线部1411、前门支线子线束63、子线束71与仪表盘之间,将各电路的电源系统、地系统和通信系统互相连接。供给侧控制盒1451将电路板(未示出)容纳在由下壳1522和上壳1524形成的外壳中。仪表板骨干干线部1411中的电源线1421、地线1427和通信线1429经由形成在基板上的电路或者汇流条电气地分支连接到设置在电路板的一端缘部处的多个板连接器1531或者仪表板连接部1510的连接器,以形成支线连接部1521。主电源连接部1520包括:端子连接部1511,其连接到主电源电缆1481的电源线1482;和端子连接部1513,其连接到主电源电缆1481的地线1484。如图113所示,形成在电源线1421中的圆杆导体403的前端处的端子连接部1511配合并连接到设置在电源线1482的端部处的圆端子1486。形成在地线1427中的圆杆导体403的前端处的端子连接部1513配合并连接到设置在地线1484的端部处的圆端子1486。以上述方式,主电源电缆1481能够连接并固定到仪表板骨干干线部1411。通信线1429经由例如板连接器(未示出)连接到电路板。以与根据第一实施例的供给侧控制盒51的电路板125相同的方式,供给侧控制盒1451的电路板安装有控制单元,该控制单元将来自电源线1421的电力和来自通信线1429的信号分配至诸如发动机舱子线束61、前门支线子线束63或者子线束71这样的支线。电路板安装有多个电气部件(配件)以及切换电路,切换电路分别包括作为在电气部件的连接状态之间切换所需的构成元件的fpga装置和电路模块。支线连接部1521的板连接器1531连接器连接到仪表板支线子线束31、前门支线子线束63和与子线束71的端部连接的模块连接器mc(参见图116)。模块连接器mc能够将来自电源线1421和地线1427的电力以及来自通信线1429的信号传输至各电气部件。如图113所示,分支控制盒1453设置在作为仪表板骨干干线部1411与地板骨干干线部1413之间的连接部的骨干干线部1415的中间处的分支部中。如图116(a)和116(b)所示,分支控制盒1453设置有:支线连接部1521,其用于连接到与电气部件(未示出)连接的子线束(支线);以及连接器部1500,其用于连接到地板骨干干线部1413。分支控制盒1453能够在子线束、仪表板骨干干线部1411与地板骨干干线部1413之间,将各电路的电源系统、地系统和通信系统互相连接。以与供给侧控制盒1451相同的方式,分支控制盒1453将电路板1525容纳在由下壳1522和上壳1524形成的外壳中。如图117以及图118(a)和118(b)所示,连接到仪表板骨干干线部1411中的电源线1421、地线1427和通信线1429的板连接连接器1441配合到安装在电路板1525上的干线连接连接器1541。仪表板骨干干线部1411中的电源线1421、地线1427和通信线1429经由干线连接连接器1541和形成在基板上的电路或汇流条而电气地分支连接到设置在电路板1525的一端缘部处的多个板连接器1531,以形成支线连接部1521。形成支线连接部1521的板连接器1533是例如用于连接到电力负载用子线束的连接器,所述电力负载用子线束用以将电源电力供给到需要相当大的电源电力的电气部件,并且仪表板骨干干线部1411中的电源线1421和地线1427经由干线连接连接器1541和形成在基板上的汇流条1550电气地分支连接到该板连接器1533。在设置在电路板1525的一个端缘部处的光连接器部1535中,光连接到地板骨干干线部1413的通信线1429的一对光纤收发器(fot)1544(参考图118(b))安装在电路板1525上,以形成连接器部1500。用于将来自电源线1421的电力和来自通信线1429的信号分配到多个电气部件(配件)的控制单元1551安装在电路板1525上。电路板1525安装有多个电气部件(配件)以及切换电路1552,该切换电路1552包括作为在电气部件的连接状态之间切换所需的构成元件的现场可编程门阵列(fpga)装置和电路模块。干线连接连接器1541包括:阴连接器部1547,其中,分别电连接到电源线1421和地线1427的一对阴端子1527(参考图118(a))安装在电路板1525上;以及光连接器部1543和1545,其中,分别在上游侧和下游侧光连接到通信线1429的一对fot1542(参考图118(b))安装在电路板1525上。fot1542和1544将电信号与光信号互相转换,并且传输和接收信号。因此,由fot1542和1544接收的光信号被转换为电信号,而后经由电路板1525的电路的电气分支,并且输入到fot1542和1544的电信号被转换为光信号,而后传输到通信线1429。固定到下壳1522的板连接连接器1441包括:一对汇流条1534,其在容纳主体1440中分别电连接到电源线1421和地线1427;以及两组光插接连接器1443和1445,其分别在上游侧和下游侧光连接到通信线1429。一对臂部1442在沿着容纳主体1440的长度方向的一个侧表面上突出,并且将电源线1421与地线1427保持为互相平行。光连接器固定部1446设置在容纳主体1440的长度方向上的两端表面上,并且与通信线1429的上游侧和下游侧的端部连接的光连接器固定到该光连接器固定部,并且光连接到各组光插接连接器1443和1445。如图118(a)所示,各个汇流条1534包括:导体连接部1532,其在与电源线1421和地线1427正交的方向上延伸;以及阳端子1530,其从导体连接部1532的一端悬垂。各个导体连接部1532通过焊接等电连接到圆杆导体403,该圆杆导体403通过在电源线1421和地线1427的预定部位处剥离绝缘被覆404而露出。如图120(a)和120(b)所示,形成连接器部1500的一对端子连接部1561和1563经由壳体1560固定到与电路板1525的设置有光连接器部1535的一个端缘部相对应的下壳1522的一侧表面。前端与地板骨干干线部1413的电源线1421和地线1427连接的端子连接部1561和1563的基端1562和1564通过焊接等电连接到仪表板骨干干线部1411的电源线1421和地线1427的圆杆导体403。如图118(a)和118(b)所示,阳端子1530和板连接连接器1441的光插接连接器1443和1445分别固定到干线连接连接器1541中的阴端子1527和光连接器部1543和1545,使得电路板1525固定到下壳1522。如图119(a)和119(b)所示,多连接器1600连接到地板骨干干线部1413的端部。多连接器1600设置有壳体1610,该壳体1610具有端子容纳室,连接到电源线1421和地线1427的圆端子1620容纳在该端子容纳室内(参考图120(a))。壳体1610一体地保持与通信线1429的端部连接的光连接器1630。因此,如图121所示,如果多连接器1600配合到分支控制盒1453的连接器部1500,则各个端子连接部1561和1563的前端插入到圆端子1620内,并且电连接到该圆端子1620,并且光连接器1630插入到光连接器部1535中,并光连接到该光连接器部1535。如上所述,多连接器1600能够将电源线1421、地线1427和通信线1429集中地连接到分支控制盒1453的连接器部1500。结果,分支控制盒1453将仪表板骨干干线部1411中的电源线1421、地线1427和通信线1429分支连接到地板骨干干线部1413中的电源线1421、地线1427和通信线1429,并且还能够经由连接到支线连接部1521的模块连接器c将电力和信号供给到各电气部件。在仪表板骨干干线部1411与地板骨干干线部1413中,经由连接器部1500和多连接器1600使得连接部可装接且可拆卸,因此大幅提高车身的布设期间的可操作性。如图122(a)至122(b)所示,控制盒1455设置在与仪表板骨干干线部1411的右端相对应的骨干干线部1415的下游端,并且包括:支线连接部1521,其用于连接前门支线子线束63或者子线束73(参见图1);以及仪表板连接部1510,其用于将电力和信号传输到安装在诸如仪表盘这样的仪表板上的多个配件。控制盒1455能够在仪表板骨干干线部1411、前门支线子线束63与子线束73之间将各电路的电源系统、地系统和通信系统互相连接。以与供给侧控制盒1451相同的方式,控制盒1455将电路板(未示出)容纳在由下壳1522和上壳1524形成的外壳中。仪表板骨干干线部1411中的电源线1421、地线1427和通信线1429经由形成在基板上的电路或者汇流条电气地分支连接到设置在电路板的一端缘部处的多个板连接器1531或者仪表板连接部1510的连接器,以形成支线连接部1521。如图123所示,中间控制盒1457设置在作为地板骨干干线部1413的中间部的骨干干线部1415的中间处,并且包括支线连接部1521,该支线连接部1521用于连接到后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68和(参考图1)。中间控制盒1457能够在地板骨干干线部1413、后门支线子线束65、中控台支线子线束66、前座支线子线束67与后座支线子线束68之间将各电路的电源系统、地系统和通信系统互相连接。以与分支控制盒1453相同的方式,中间控制盒1457将电路板1725容纳在由下壳1522和上壳1524形成的外壳中。如图124和125所示,连接到地板骨干干线部1413中的电源线1421、地线1427和通信线1429的板连接连接器1841配合到安装在电路板1725上的干线连接连接器1741。地板骨干干线部1413中的电源线1421、地线1427和通信线1429经由干线连接连接器1741和形成在基板上的电路或汇流条而电气地分支连接到设置在电路板1725的两个端缘部处的多个板连接器1531,以形成支线连接部1521。以与电路板1525相同的方式,控制单元1551和切换电路1553安装在电路板1725上。干线连接连接器1741包括:阴连接器部1547,其中,分别电连接到电源线1421和地线1427的一对阴端子1527(参考图125)安装在电路板1725上;以及光连接器部1543和1545,其中,分别在上游侧和下游侧光连接到通信线1429的一对fot1542(参考图125)安装在电路板1725上。固定到下壳1522的板连接连接器1841包括:一对汇流条1534,其在容纳主体1840中分别电连接到电源线1421和地线1427;以及两组光插接连接器1443和1445,其分别在上游侧和下游侧光连接到通信线1429。一对臂部1842在沿着容纳主体1840的长度方向的一侧表面上突出,并且将电源线1421与地线1427保持为互相平行。光连接器固定部1846设置在容纳主体1840的长度方向上的两端表面上,并且与通信线1429的上游侧和下游侧的端部连接的光连接器固定到该光连接器固定部,并且光连接到各组光插接连接器1443和1445。如图125所示,各个汇流条1534包括:导体连接部1532,其在与电源线1421和地线1427正交的方向上延伸;以及阳端子1530,其从导体连接部1532的一端悬垂。各个导体连接部1532通过焊接等而电连接到圆杆导体403,该圆杆导体403通过在电源线1421和地线1427的预定部位处剥离绝缘被覆404而露出。如图126(a)和126(b)所示,阳端子1530和板连接连接器1841的光插接连接器1443和1445分别配合到干线连接连接器1741中的阴端子1527和光连接器部1543和1545,使得电路板1725固定到下壳1522。结果,中间控制盒1457能够将来自地板骨干干线部1413中的电源线1421、地线1427和通信线1429的电力和信号经由连接到支线连接部1521的模块连接器c而供给到各电气部件。在中间控制盒1457中,地板骨干干线部1413的电源线1421和地线1427贯通,然而电源线1421和地线1427可以被配置为在该中间控制盒1457中分开,并且经由形成在电路板1525上的汇流条电连接到电气部件。因此,由于中间控制盒1457的上游侧和下游侧的地板骨干干线部1413缩短,该地板骨干干线部1413的两端能够装接到该中间控制盒1457且从中间控制盒1457拆卸,所以能够进一步提高车身中的布设期间的可操作性。如图114所示,除了不设置仪表板连接部1510之外,设置在地板骨干干线部1413的后端处的控制盒1459具有与控制盒1455基本相同的配置。在上述地板骨干干线部1413的通信线1429中,形成正向路径和反向路径的两个塑料光纤在分支控制盒1453与中间控制盒1457之间以及中间控制盒1457与控制盒1459之间并联连接。相比之下,一个塑料光纤可以被配置为贯通中间控制盒1457,并且通信线1429可以在分支控制盒1453、中间控制盒1457与控制盒1459之间以环路形式连接。上述各控制盒(供给侧控制盒1451、分支控制盒1453、中间控制盒1457以及控制盒1455和1459)能够通过与装接目标车辆的等级或者目标规格对应地适当改变具有支线连接部1521的多种类型的电路板1525和1725而应对大多数车型,因而能够通过使用共通的部件而减少部件的数量。电路板1525和1725能够被容纳在由下壳122和上壳124形成的共同的外壳中。(车辆电路体的效果)如上所述,根据第四实施例的车辆电路体,能够利用如下部件提供具有简单结构的车辆电路体:骨干干线部1415,其具有预定的电流容量和预定的通信容量,并且被布设在车身中;和支线(仪表板支线子线束31、前门支线子线束63、后门支线子线束65、中控台支线子线束66、前座支线子线束67、后座支线子线束68、行李舱支线子线束69等),其经由五个控制盒(供给侧控制盒1451、分支控制盒1453、中间控制盒1457以及控制盒1455和1459)而将在各车身部位处的电气部件连接到骨干干线部1415,所述五个控制盒沿着骨干干线部1415以散布方式设置。易于制造骨干干线部1415,该骨干干线部1415整体具有简单的结构,并且其中,在车身的左右方向上延伸的仪表板骨干干线部1411和在车身的大致中央部处在车身的前后方向上延伸的地板骨干干线部1413可拆装。图127示出了骨干控制盒2332及其附近的另一配置。如图127所示,骨干控制盒2332包括:干线连接部2332a,其设置在左端侧;干线连接部2332b,其位于右端侧;以及干线连接部2332c,其设置在下端侧。骨干干线部2321的右端可连接到干线连接部2332a。骨干干线部2322的左端可连接到骨干连接部2332b。骨干干线部2323的前端可连接到干线连接部2332c。具体的,设置在干线连接部2332a上的连接器cn11与设置在骨干干线部2321的右端处的连接器cn12被配置为能够互相可拆卸地连接。类似地,设置在干线连接部2332b上的连接器cn21与设置在骨干干线部2322的左端处的连接器cn22被配置为能够互相可拆卸地连接。另外,设置在干线连接部2332c上的连接器cn31与设置在骨干干线部2323的左端处的连接器cn32被配置为能够互相可拆卸地连接。两个系统的电源线、地线和包括两条信号线的通信线设置在各骨干干线部2321、2322、2323中。骨干干线部2321的两个系统的电源线、地线和通信线的两条信号线连接到在连接器cn12中布置在彼此相邻的位置处的各五个端子t12a至t12e。类似地,骨干干线部2322的两个系统的电源线、地线和通信线的两条信号线连接到在连接器cn22中布置在彼此相邻的位置处的各五个端子t22a至t22e。此外,骨干干线部2323的两个系统的电源线、地线和通信线的两条信号线连接到在连接器cn32中布置在彼此相邻的位置处的各五个端子t32a至t32e。在骨干控制盒2332的连接器cn11的内侧,能够以阳/阴关系与连接器cn12中的各端子t12a至t12e接合的五个端子t11a至t11e被布置为在彼此相邻的位置中对齐。类似地,在连接器cn21的内侧,能够与连接器cn22中的各端子t22a至t22e接合的五个端子t21a至t21e被布置为在彼此相邻的位置中对齐。此外,在连接器cn31的内侧,能够与连接器cn32中的各端子t32a至t32e接合的五个端子t31a至t31e被布置为在彼此相邻的位置中对齐。配置继电器电路2332d的印刷电路板设置在骨干控制盒2332的内部。连接器c11的端子t11a至t11e、连接器c21的端子t21a至t21e以及连接器c31中的端子t31a至t31e分别连接到继电器电路2332d。继电器电路2332d包括将与骨干控制盒2332连接的骨干干线部2321、2322、2323的电源线、地线和通信线互相连接的电路。用于截断电路的连接的功能、用于限制供电的功能等可以根据需要而安装在继电器电路2332d上。此外,虽然图127未示出,但是支线子线束连接到的支线连接部设置在骨干控制盒2332中。如图127所示,通过设置连接器cn11、cn12、cn21、cn22、cn31、cn32,易于将骨干干线部2321、2322、2323与骨干控制盒2332拆卸和连接。因此,当难以在它们彼此连接的状态下将它们布置在车身的期望路径上时,通过将骨干干线部2321、2322、2323与骨干控制盒2332互相拆卸,作为一个实例,如图127所示,诸如转移和定位各个部件这样的操作变得相对容易。另外,连接器cn11的端子t11a至t11e、连接器cn12的端子t12a至t12e、连接器cn21的端子t21a至t21e、连接器cn22的端子t22a至t22e、连接器cn31的端子t31a至t31e、连接器cn32的端子t32a至t32e被布置为在彼此相邻位置中对齐。即,可拆卸并且可连接的各种连接部(各端子)被布置为能够集中在相对窄的空间内。因此,在使骨干干线部2321、2322、2323与骨干控制盒2332一体的组装操作、拆卸它们的拆卸操作、各个连接部的检查操作、部件的替换操作等中,能够仅在相对窄的空间中进行操作。因此,在例如维修期间,操作者不需要为了看到各种检查部而到处移动,并且操作者能够实施对诸如骨干控制盒2332附近这样的特定连接部的操作。另外,能够通过仅打开覆盖操作对象部的盖的一部分而进行操作,能够使得可打开和闭合的盖小型化。图128示出了包括车辆电路体的车载装置的主要部分的另一配置。如图128所示,车辆的车身2310由发动机室2311、车厢2313、行李舱2314这三个部分构成。前围板2316设置在发动机室2311与车厢2313之间的分界部。发动机e/g、主电池2317、交流发电机(alt)2318、起动机(st)2319、电气部件2320、2320b等安装在发动机室中。主电池2317、交流发电机2318等对应于车辆的主电源。作为主电源的备用,副电池2326安装在车厢2313中。在图128所示的配置中,骨干控制盒2331、2332、2333和骨干干线部2321、2322、2323设置在车厢2313中的仪表板部2312中,并且它们彼此电连接。此外,骨干干线部2323的尾端延伸至行李舱2314,并且连接到骨干控制盒2335。另外,骨干控制盒2334设置在骨干干线部2323的中间部处。骨干控制盒2336和副电池2326连接到从骨干控制盒2334分出的支线。行李室2314中的各种电气部件通过支线子线束2345连接到骨干控制盒2335。根据图128所示的配置,由于假定存在副电池2326,所以主电源系统和副电源系统(备用电源系统)包括在各骨干干线部2321、2322、2323中。即,两个系统的电源线设置在各骨干干线部2321、2322、2323中。因此,当发生某些问题并且停止从主电池供电时,能够通过骨干干线部2321、2322、2323将副电池2326的电力供给到具有高重要性的电气部件。因此,能够使异常发生时的各种车载部件的操作停止最小化,并且能够实现例如在安装有自动驾驶功能的车辆中所需的高可靠性。在图128所示的配置中,车厢2313中的骨干控制盒2331、发动机室2311中的作为主电源的主电池2317与交流发电机2318通过主电源电缆2341互相连接。因此,主电源电缆2341布置为贯通前围板2316。此外,与设置在车厢2313中的骨干控制盒2331连接的支线子线束2342的一部分贯通前围板2316,并且连接到电气部件2320。另外,与设置在车厢2313中的骨干控制盒2333连接的支线子线束2342的一部分贯通前围板2316,并且连接到电气部件(负载)2320b。如图127所示,在骨干控制盒2332与骨干干线部2321、2322、2323之间的各连接部中,端子t11a至t11e、端子t12a至t12e、t21a至t21e、t22a至t22e、t31a至t31e、t32a至t32e布置为彼此相邻地对齐。因此,当操作者进行连接操作、分解操作、检查操作、部件替换操作等时,能够仅在集中作为操作部的特定区域中进行操作。此外,由于在连接部中使用连接器cn11、cn12、cn21、cn22、cn31、cn32,如图127所示,所以易于进行各个部分的拆卸和装接。因此,例如,在将车辆电路体组装到车身时,各骨干控制盒2332和骨干干线部2321、2322、2323能够作为彼此分离的独立部分单独地移动和定位。因此,与骨干控制盒2332与骨干干线部2321、2322、2323预先一体化的情况相比,可操作性更好。此外,通过使用具有像脊柱一样简化的结构的车辆电路体,能够降低装置的制造成本、布设操作的成本。另外,与可选电气部件和附加新的电气部件的存在无关,不要求改变车辆电路体的基本配置。从而,部件和结构的通用化变得容易。虽然图128示出了骨干干线部被构造为具有图128所示的t状这样的配置的实例,但是车辆电路体可以被构造为具有其他形状。例如,车辆电路体可以具有仅由骨干控制盒2332、2335和骨干干线部2323构成的i状结构。在如下的[1]至[2]中分别简要总结和列出根据以上公开的本发明的实施例的车辆电路体的方面。[1]一种车辆电路体,包括:干线(通信干线(bb_lc)),该干线包括具有预定电流容量的电源线和具有预定通信容量的通信线,并且该干线布设在车身中;支线(支线子线束ls(1)至ls(4)),该支线直接或间接地连接到配件(ae(1)至ae(4));和多个控制盒(cb(1)至cb(4)),该多个控制盒以沿着所述干线散布的方式设置,该多个控制盒各自具有控制单元,该控制单元将来自所述通信线的信号和供给到所述干线的来自所述电源线的电力中的至少一者分配到与所述干线连接的所述支线。所述干线由布设材料形成,所述布设材料具有扁平导体、圆杆导体和绞合线之中的至少一种类型的导体。所述干线的所述通信线布设为使得所述多个控制盒以环状连接。[2]一种车辆电路体中,包括:干线,该干线包括具有预定电流容量的电源线和具有预定通信容量的通信线,并且该干线布设在车身中;支线(支线子线束ls),该支线直接或间接地连接到配件;和多个控制盒(cb),该多个控制盒以沿着所述干线散布的方式设置,该多个控制盒各自具有控制单元,该控制单元将来自所述通信线的信号和供给到所述干线的来自所述电源线的电力中的至少一者分配到与所述干线连接的所述支线。所述干线由布设材料形成,所述布设材料具有扁平导体、圆杆导体和绞合线之中的至少一种类型的导体。所述支线包括电源线和通信线。所述多个控制盒中的每个控制盒均包括多个支线连接部(连接部cnx),所述支线的通信线能够装接到所述支线连接部并且从所述支线连接部脱离,并且其中,所述多个支线连接部中的每个支线连接部均设置有锁定功能部(上锁的盖kc1、kc2、密封用的密封件ks、微计算机),在所述支线未连接到所述支线连接部的情况下,该锁定功能部物理地或电气地进入锁定状态。虽然通过参考具体实施例而详细描述了本发明,但是本领域的普通技术人员理解为可以在不背离本发明的精神和范围的情况下进行各种改变和修改。本申请基于2016年6月24日提交的日本专利申请no.2016-125287、2016年6月24日提交的日本专利申请no.2016-125896、2016年6月30日提交的日本专利申请no.2016-131167以及2016年9月26日提交的日本专利申请no.2016-187627,这些专利的内容通过引用并入本文。[工业适用性]根据本发明,效果为:在车辆电路体中,用于各种电气部件与车辆上的电源之间以及电气部件之间的电连接的结构,特别是干线部上的配置简化,并且易于添加额外的电缆。具有该效果的本发明适用于布设在车辆中的车辆电路体。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1