电动车辆的制作方法

文档序号:18332661发布日期:2019-08-03 12:46阅读:176来源:国知局
电动车辆的制作方法

本发明涉及电动车辆,详细而言,涉及具备漏电检测装置的电动车辆,该漏电检测装置与外部电源装置连接并在由充电装置正对蓄电装置进行充电的过程中检测漏电。



背景技术:

作为这种电动车辆,提出了一种搭载与商用ac电源连接来对电池等进行充电的充电装置的电动车辆(例如,参照日本特开2011-15530)。对该电动车辆所搭载的充电装置设置有漏电检查部。漏电检查部检查在充电中是否产生了漏电。另外,在漏电检查部设置有噪声滤波部,利用噪声滤波部将负载部所产生的共模噪声除去。

然而,在上述的电动车辆所搭载的充电装置中,会产生因外部电源装置的由共模噪声带来的影响而无法恰当地检查充电中的漏电的情况。当使用电容器作为对充电中的漏电进行检查的漏电检查电路,并基于从电容器开始充电起经过规定时间后的电容器电压来检测有无漏电的情况下,电容器的电压变化会因外部电源装置的共模噪声容限(common-modenoisemargin)的大小而不同。因此,若与外部电源装置的共模噪声容限大时相对应地设定规定时间,则在共模噪声容限小时会产生误检测漏电的情况,反之若与外部电源装置的共模噪声容限小时相对应地设定规定时间,则在共模噪声容限大时会产生误检测漏电的情况。



技术实现要素:

本发明提供一种根据外部电源装置的共模噪声容限来更加恰当地检测漏电的电动车辆。

本发明的方式涉及电动车辆。上述电动车辆具备电动机、蓄电装置、充电装置、漏电检测装置、以及控制装置。上述电动机构成为对上述电动车辆的行驶用的动力进行输入输出。上述蓄电装置构成为与上述电动机进行电力的交换。上述充电装置构成为与外部电源装置连接并对上述蓄电装置进行充电。上述漏电检测装置构成为具有用于对充电系统的漏电进行检查的漏电检查电路,检测利用上述充电装置正对上述蓄电装置进行充电的过程中的漏电。上述控制装置构成为与上述外部电源装置进行通信并且与上述漏电检测装置进行通信。上述控制装置构成为取得上述外部电源装置的共模噪声容限。上述控制装置构成为将基于上述外部电源装置的共模噪声容限的漏电检查时间发送至上述漏电检测装置。上述漏电检测装置构成为在从使上述漏电检查电路成为能够进行漏电的检查的状态起经过了上述漏电检查时间时,对漏电的有无进行检测。

在上述本发明的方式的电动车辆中,具备:电动机,构成为对电动车辆的行驶用的动力进行输入输出;蓄电装置,构成为与电动机进行电力的交换;充电装置,构成为与外部电源装置连接来对蓄电装置进行充电;漏电检测装置,构成为具有用于对充电系统的漏电进行检查的漏电检查电路,检测利用充电装置正对蓄电装置进行充电的过程中的漏电;以及控制装置,构成为与外部电源装置进行通信并且与漏电检测装置进行通信。控制装置构成为通过通信来取得外部电源装置的共模噪声容限。另外,控制装置构成为通过通信来将基于外部电源装置的共模噪声容限的漏电检查时间发送至漏电检测装置。而且,漏电检测装置构成为在从使漏电检查电路成为能够进行漏电的检查的状态起经过了接收到的漏电检查时间时,对漏电的有无进行检查。由此,能够根据外部电源装置的共模噪声容限而更加恰当地检查漏电。

在这样的本发明的方式的电动车辆中,上述漏电检查电路也可以具有电容器,上述漏电检测装置构成为:基于从使上述漏电检查电路成为能够进行漏电的检查的状态起经过了上述漏电检查时间时的上述电容器的电压,来对漏电的有无进行检查。这样,能够通过简易的结构对漏电进行检查。该情况下,上述控制装置也可以构成为:将从上述漏电检查电路成为能够进行漏电的检查的状态起未产生漏电时的上述电容器的电压与产生了漏电时的上述电容器的电压之差为最大的时间作为上述漏电检查时间并发送至上述漏电检测装置。这样,能够更加恰当地进行漏电的有无的检查。

在本发明的方式的电动车辆中,上述控制装置也可以构成为:通过通信来取得上述外部电源装置的识别符,基于上述识别符来取得上述外部电源装置的共模噪声容限。这样,能够取得各个外部电源装置的恰当的共模噪声容限,能够更加恰当地检查漏电。

在本发明的方式的电动车辆中,上述控制装置也可以构成为上述共模噪声容限越小则将越短的时间作为上述漏电检查时间并进行发送。这基于外部电源装置的共模噪声容限越小,则未漏电时与漏电时的变化就越大这一情况。由此,能够更加恰当地检查漏电。

附图说明

下面将参照附图来描述本发明的示例性实施例的特征、优点以及技术和工业意义,附图中相同的数字表示相同的部件,并且其中:

图1是表示作为本发明的一个实施例的电动汽车的示意结构的构成图。

图2是表示漏电检测电路的一个例子的构成图。

图3是对检测有无漏电时的电子控制单元、漏电用ecu、外部直流电源装置的动作的一个例子进行说明的说明图。

图4是表示基于漏电的有无与外部直流电源装置的共模噪声容限的大小的漏电检测电路的电容器的电压的时间变化的一个例子的说明图。

具体实施方式

接下来,对本发明的实施例进行说明。

图1是表示作为本发明的一个实施例的电动汽车20的示意结构的构成图。如图所示,实施例的电动汽车20具备马达32、逆变器34、电池36、升压转换器40、高电压侧电力线42、低电压侧电力线44、系统主继电器38、充电用电力线50、漏电检测装置60、以及电子控制单元70。

马达32构成为同步发电电动机,具备被埋入有永久磁铁的转子和卷绕有三相线圈的定子。该马达32的转子连接于经由差动齿轮24与驱动轮22a、22b连结的驱动轴26。

逆变器34与马达32连接并且与高电压侧电力线42连接。该逆变器34构成为具有6个晶体管和6个二极管的公知的逆变器电路。

电池36例如构成为锂离子二次电池、镍氢二次电池,并与低电压侧电力线44连接。

升压转换器40与高电压侧电力线42和低电压侧电力线44连接,构成为具有两个晶体管、两个二极管、以及电抗器的公知的升降压转换器电路。

在高电压侧电力线42的正极母线与负极母线连接有高电压侧电容器46,在低电压侧电力线44的正极母线与负极母线安装有低电压侧电容器48。在低电压侧电力线44安装有系统主继电器38。该系统主继电器38具有:设置于低电压侧电力线44的正极母线的正极侧继电器smrb;设置于低电压侧电力线44的负极母线的负极侧继电器smrg;以及以绕过负极侧继电器smrg的方式将预充电用电阻r和预充电用继电器smrp串联连接而成的预充电电路。

对于充电用电力线50而言,一端与低电压侧电力线44的比系统主继电器38靠升压转换器40侧(马达32侧)的部位连接,另一端与车辆侧接入口(inlet)54连接。在充电用电力线50安装有充电用继电器52。充电用继电器52具有:设置于充电用电力线50的正极侧线的正极侧继电器dcrb;和设置于充电用电力线50的负极侧线的负极侧继电器dcrb。通过将外部直流电源装置120的外部侧连接器154与车辆侧接入口54连接,使得充电用电力线50与来自外部直流电源装置120的外部侧充电用电力线150连接。虽未图示,但外部直流电源装置120与外部的商用电源连接,将来自商用电源的电力转换为直流电力而从外部侧充电用电力线150进行供给。

漏电检测装置60具备:与充电用电力线50连接的漏电检测电路62;和对漏电检测电路62进行控制的漏电用电子控制单元(以下,称为漏电用ecu)64。如图2所示,漏电检测电路62例如由4个开关sw1~sw4和电容器63构成。开关sw2的一个端子与充电用电力线50的正极侧线连接,另一个端子与开关sw1连接。开关sw1的另一端经由未图示的绝缘电阻而接地。开关sw4的一个端子与充电用电力线的负极侧线连接,另一个端子与开关sw3连接。开关sw3的另一端经由未图示的绝缘电阻而接地。电容器63与开关sw1、sw2的接点和开关sw3、sw4的接点连接。在该图2所例示的漏电检测电路62中,当检测充电用电力线50的正极侧线侧的漏电时,将开关sw1、sw4断开并且将开关sw2、sw3接通来进行。当检测充电用电力线50的负极侧线侧的漏电时,将开关sw1、sw4接通并且将开关sw2、sw3断开来进行。通过在从将漏电检测电路62设为能够进行漏电检测的开关状态起经过了漏电检测时间时检测电容器63的电压,来进行漏电的检测。由于产生了漏电时的电容器63的电压与未产生漏电时相比迅速地上升,所以通过将产生了漏电时的电容器63的电压与未产生漏电时的电容器63的电压之差变大的时间使用为漏电检测时间,能够基于电容器63的电压来检测漏电的有无。

电子控制单元70构成为以cpu72为中心的微处理器,除了cpu72之外,还具备存储处理程序的rom74、暂时存储数据的ram76、未图示的闪存、未图示的输入输出端口、以及未图示的通信端口等。

经由输入端口向电子控制单元70输入来自各种传感器的信号。作为向电子控制单元70输入的信号,例如能够列举来自对马达32的转子的旋转位置进行检测的旋转位置检测传感器(例如分解器)32a的旋转位置θm、来自安装于电池36的端子间的电压传感器36a的电压vb、以及来自安装于电池36的输出端子的电流传感器36b的电流ib。另外,也能够列举来自安装于高电压侧电容器46的端子间的电压传感器46a的高电压侧电容器46(高电压侧电力线42)的电压vh、来自安装于低电压侧电容器48的端子间的电压传感器48a的低电压侧电容器48(低电压侧电力线44)的电压vl。另外,也被输入来自安装于充电用电力线50的电压传感器50a的充电电压vchg。此外,为了使电子控制单元70也作为车辆的驱动控制装置发挥功能,也被输入行驶控制所需的信息。作为这些信息,虽未图示,但例如能够列举来自点火开关的点火信号、来自对换挡杆的操作位置进行检测的换挡位置传感器的换挡位置、来自对加速踏板的踩踏量进行检测的加速踏板位置传感器的加速器开度、来自对制动踏板的踩踏量进行检测的制动踏板位置传感器的制动踏板位置、以及来自车速传感器的车速等。

从电子控制单元70经由输出端口输出各种控制信号。作为从电子控制单元70输出的信号,例如能够列举针对逆变器34的晶体管的开关控制信号、针对升压转换器40的晶体管的开关控制信号、针对系统主继电器38的驱动控制信号、以及针对充电用继电器52的驱动控制信号等。

电子控制单元70经由通信端口与漏电用ecu64连接,来与漏电用ecu64进行信息的交换。另外,通过连接于通信端口的通信线58经由车辆侧接入口54和外部侧连接器154与外部侧通信线158连接,使得电子控制单元70与外部直流电源装置120进行通信。

接下来,对这样构成的实施例的电动汽车20的动作、特别是使用来自外部直流电源装置120的电力对电池36充电时检测漏电的有无时的动作进行说明。图3是对检测有无漏电时的电子控制单元70、漏电用ecu64、外部直流电源装置120的动作的一个例子进行说明的说明图。

在有无漏电的检测中,首先,电子控制单元70对外部直流电源装置120请求识别符的发送(步骤s100)。针对这样的请求,外部直流电源装置120将自身的识别符发送至电子控制单元70(步骤s110)。接收到外部直流电源装置120的识别符的电子控制单元70基于识别符来取得外部直流电源装置120的共模噪声容限(步骤s120)。对于该共模噪声容限的取得而言,在实施例中,预先求出识别符和共模噪声容限的关系并作为容限设定用表而存储起来,将识别符应用于容限设定用表来取得共模噪声容限。

接着,电子控制单元70基于所取得的共模噪声容限来设定漏电检测时间(步骤s130)。在实施例中,预先决定共模噪声容限和漏电检测时间的关系并作为漏电检测时间设定用表而存储起来,若被赋予共模噪声容限则从表中导出漏电检测时间来进行设定。图4是表示基于漏电的有无和外部直流电源装置120的共模噪声容限的大小的漏电检测电路62的电容器63的电压的时间变化的一个例子的说明图。在图中,实线表示产生了漏电时的漏电检测电路62的电容器63的电压的时间变化。单点划线表示在外部直流电源装置120的共模噪声容限小的情况下未产生漏电时的漏电检测电路62的电容器63的电压的时间变化。双点划线表示在外部直流电源装置120的共模噪声容限大的情况下未产生漏电时的漏电检测电路62的电容器63的电压的时间变化。时间t1是产生了漏电时的电容器63的电压与在外部直流电源装置120的共模噪声容限小的情况下未产生漏电时的电容器63的电压之差(实线与单点划线之差)为最大的时间。时间t2是产生了漏电时的电容器63的电压与在外部直流电源装置120的共模噪声容限大的情况下未产生漏电时的电容器63的电压之差(实线与双点划线之差)为最大的时间。如单点划线所示,在外部直流电源装置120的共模噪声容限小时,电容器63的电压缓慢地上升,如双点划线所示,在外部直流电源装置120的共模噪声容限大的情况下,电容器63的电压变为迅速地上升,并接近产生了漏电时的电容器63的电压的上升程度。在外部直流电源装置120的共模噪声容限小时,即便在未产生漏电时的电容器63的电压与产生了漏电时的电容器63的电压之差为最大的时间t1之前也能够根据电容器63的电压来判别漏电的有无,但在外部直流电源装置120的共模噪声容限大时,若没有基于未产生漏电时的电容器63的电压与产生了漏电时的电容器63的电压之差为最大的时间t2附近的电容器63的电压来判别漏电的有无,则会产生误检测的情况。因此,在实施例中,在外部直流电源装置120的共模噪声容限的值中,将未产生漏电时的电容器63的电压与产生了漏电时的电容器63的电压之差为最大的时间设定为漏电检测时间。外部直流电源装置120的共模噪声容限越小则该漏电检测时间为越短的时间。

若设定了漏电检测时间,则电子控制单元70将所设定的漏电检测时间发送至漏电用ecu64(步骤s140)。接收到漏电检测时间的漏电用ecu64对开关sw1~sw4进行接通断开操作(步骤s150)。即,在检测充电用电力线50的正极侧线侧的漏电时,将开关sw1、sw4断开并且将开关sw2、sw3接通,在检测负极侧线侧的漏电时,将开关sw1、sw4接通并且将开关sw2、sw3断开。然后,等到从进行开关操作起经过漏电检测时间(步骤s160),漏电用ecu64对电容器63的电压进行检测(步骤s170),将检测到的电压发送至电子控制单元70(步骤s180)。接收到电容器63的电压的电子控制单元70通过判定所接收到的电压是否是漏电时的电压,来判定漏电的有无(步骤s190),然后结束有无漏电的检测。

此外,在实施例中,通过反复进行步骤s150~s190,来反复进行充电中的充电用电力线50的正极侧线侧的有无漏电的检测、充电中的充电用电力线50的负极侧线侧的有无漏电的检测。

在以上说明的实施例的电动汽车20中,当将外部侧连接器154连接于车辆侧接入口54并借助来自外部直流电源装置120的电力对电池36进行充电时,通过通信来取得外部直流电源装置120的识别符,并且基于所取得的识别符来取得外部直流电源装置120的共模噪声容限。接着,基于外部直流电源装置120的共模噪声容限来设定漏电检测时间,当从将漏电检测电路62设为能够进行漏电检测的开关状态起经过了漏电检测时间时,对电容器63的电压进行检测。然后,通过判定所检测到的电容器63的电压是否是漏电时的电压,来判定漏电的有无。这样,通过使用基于外部直流电源装置120的共模噪声容限的漏电检测时间来判定漏电的有无,能够更加恰当地检测漏电的有无。

在实施例的电动汽车20中,通过通信来取得外部直流电源装置120的识别符,并且基于所取得的识别符来取得外部直流电源装置120的共模噪声容限。但是,也可以使外部直流电源装置120存储自身的共模噪声容限,并通过通信来从外部直流电源装置120取得其共模噪声容限。

在实施例的电动汽车20中,将在使漏电检测电路62成为能够进行漏电检测的开关状态起经过了漏电检测时间时由漏电用ecu64检测到的电容器63的电压发送至电子控制单元70,由电子控制单元70基于电容器63的电压来判断漏电的有无。但是,也可以基于由漏电用ecu64检测到的电容器63的电压来判定漏电的有无,并将判定结果发送至电子控制单元70。

在实施例的电动汽车20中,在外部直流电源装置120的共模噪声容限的值中,将未产生漏电时的电容器63的电压与产生了漏电时的电容器63的电压之差为最大的时间设定为漏电检测时间。但是,也可以将产生下述程度的电压差的最早的时间设定为漏电检测时间,该程度是指能够充分识别未产生漏电时的电容器63的电压与产生了漏电时的电容器63的电压之差的程度。

在实施例的电动汽车20中,作为蓄电装置而使用了电池36,但只要是能够进行蓄电的装置即可,也可以使用电容器等。

在实施例中,成为具备马达32的电动汽车20的方式。但是,也可以成为在马达32的基础上还具备发动机的混合动力汽车的方式。

在实施例中,能够将马达32视为“电动机”,能够将电池36视为“蓄电装置”,能够将外部直流电源装置120视为“外部电源装置”,能够将充电用电力线50、充电用继电器52、车辆侧接入口54、电子控制单元70视为“充电装置”,能够将漏电检测电路62视为“漏电检查电路”,能够将漏电检测装置60视为“漏电检测装置”,能够将电子控制单元70视为“控制装置”。

以上,使用实施例对用于实施本发明的方式进行了说明,但本发明并不限定于这样的实施例,当然能够在不脱离本发明要旨的范围内,以各种方式来实施。

本发明能够应用于电动车辆的制造工业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1