用于连接到共享电源的分布式电负载的方法和系统与流程

文档序号:20113692发布日期:2020-03-17 19:31阅读:157来源:国知局
用于连接到共享电源的分布式电负载的方法和系统与流程

相关申请的交叉引用

本申请要求2018年9月11日提交的美国临时申请no.62/729,790的优先权,该临时申请通过引用结合在此。

关于联邦政府资助的研究或开发的声明

无。

本文的技术涉及用于电动垂直起飞和着陆(e-vtol)飞行器的连接布置,该飞行器将电池视为唯一的推进动力源并且电动机作为连接到这些能源的负载。本技术还涉及一种方法和系统,其考虑负载和电能源的组合,以便减少对能量源丢失的影响,以及如果任何负载变得不可用,更好地利用能量源的剩余能量。



背景技术:

垂直飞行的概念已知数百年。莱昂纳多达芬奇在他的一本笔记本中画了一架垂直起飞和着陆(vtol)飞机。无处不在的直升机(一种vtol)用于许多应用,包括人员运输、货物运输、观测、交通安全、救援任务、医院空运和许多其他没有足够的水平空间用于跑道的情况。

最近,人们对电动和/或混合动力垂直起飞和着陆(e-vtol)飞机产生了极大的兴趣。这种电动飞机使用电动机和电池代替内燃机,因此由于降低的燃料和维护成本而具有噪音污染和排放、机械效率和运行费用较低的优点。

典型的e-vtol使用机载电池和电动机用于推进。许多e-vtol设计与传统直升机不同,因为可能使用多个电动机的配置而不是由内燃机驱动的单个旋翼进行分布式推进,从而创造了更好的安全方法。这与航空航天界通常采用的方法一致,即为关键系统提供冗余以提供足够的安全性和容错性。这种冗余通常仍然必须考虑到项目必须高效且不会过大。

尽管具有分布式推进,但是当一个或多个旋翼/电机发生故障时,许多e-vtol多直升机配置不能保持稳定和可控。这对于用于携带重要有效载荷和/或人员的多直升机构成了安全、操作和认证挑战。

作为推进系统中的故障组合的一部分,在电池故障情况期间,e-vtol应该保持稳定性、可控性以及使用剩余能量以确保安全着陆的能力。需要解决以下技术问题:

1.一个电池丢失,导致一个或多个电动机丢失;

2.发生(1)时电池系统的载重量(超重量)(dead(over)weight);以及

3.在(1)发生时提供足够的剩余能量以执行紧急着陆。

根据现有技术,这种技术问题的一个显而易见的解决方案是使用两个(冗余)电池集或电池组来提供所需能量的两倍。在一种配置中,第一电池组用作第二电池组的备用(活动和待机)。在另一种配置中,电池集或电池组同时馈送两个不同的推进通道(图1)。在这两种情况下,提供所需能量的两倍会导致重量的巨大不利。

考虑到最小重量解决方案,即精确地使用所需的电池能量,另一种可能的解决方案是在如前所述操作的两个电池集之间划分总能量。当一个电池发生故障时,系统重新配置为需要剩余电池的正常放电率的两倍和正常可用能量的一半。这导致在执行能量着陆的剩余时间内受到很大的惩罚。

使电气系统和电源故障导致的一个电动机丢失最小化的另一种方法是为每个电动机提供专用电池(参见现有技术图2)。这种方法最大化了电池和电机的分配;每个电池/电机对独立于其他所有电池/电机对运行,因此一个电池/电机对的故障不会影响其他电池/电机对的操作。

仍存在重量或能量优化的问题。如果一个电池发生故障,剩余的电池必须能够满足剩余电机的额外电力需求,以补偿故障通道(电池/电机对)的缺失。因此,每个电池需要提供足够的额外能量(导致额外的重量),或者剩余能量可能对于紧急着陆程序是低的。

进行简单比较,用于e-vtol的电池相当于传统直升机中的燃料系统,即使电池可以更好地应对分布式推进。然而,燃料系统具有悠久的历史,并且与用于该应用的电池相比具有非常成熟的技术,并且通常在更节省燃料的内燃机的情况下提供更高的能量密度。

附图说明

结合附图阅读以下对示例非限制性说明性实施例的详细描述,附图中:

图1示出了现有技术的双电池配置;

图2示出了为每个电动机提供电池的现有技术布置;

图3示出了根据本技术的环形拓扑结构;

图4示出了与电动机的数量对应的电池集;

图5示出了示例非限制性操作逻辑流程图;

图6示出了隔离通道中的电池集;

图7示出了集成通道中的电池集;

图8示出了一个电池通道发生故障的情况;

图9示出了具有丢失推进通道的情况;

图10示出了示例母线短路;

图11示出了现有技术的过大尺寸组件;

图12示出了示例非限制性小尺寸组件,包括具有单充电/放电连接的电池;

图13示出了包括具有充电输入和放电输出连接的电池的配置中的示例非限制性小尺寸组件;

图14示出了具有用于悬停和巡航的八个螺旋桨的示例非限制性e-vtol;

图15示出了为图14示例e-vtol的八个电机提供八个电池集的示例非限制性架构;

图16示出了具有用于悬停的八个螺旋桨和用于巡航的一个螺旋桨e-vtol;

图17示出了包括用于图16的e-vtol的九个电机的八个电池集或电池组的示例非限制性架构;

图18示出了具有用于悬停和巡航的四个螺旋桨的示例非限制性e-vtol;以及

图19示出了包括用于图18的e-vtol的八个电动机的八个电池集的示例非限制性架构。

具体实施方式

本技术的一个非限制性实施例解决了针对采用多个电动机进行分布式推进的e-vtol设计来处理电子系统和电源故障的方法。该技术涉及最小化执行紧急着陆程序所需的电源能量。

本技术的一个方面提供了在“环形拓扑结构”中互连电负载和电源的方法和系统,其考虑电负载和电源的组合以减少对电源丢失的影响,以及如果任何负载变得不可用时更好地利用剩余电源的剩余能量。

示例非限制性技术不仅在电池故障的情况下提供冗余路径,而且还提供在电池和/或电动机故障之后提供高自主性的连接布置。

示例非限制性技术还考虑了特定布置,其中在充电状况期间流向电池的电流根据最大单个电池集容量而受到限制。

为了本文的示例技术的目的,“电池”的示例非限制性实施例包括多个(例如,在一些情况下,大量)单个电池单元的关联、组合或组,以提供所需的e-vtol的能源,具有传统的电池管理系统(bms)、冷却系统和密封设计。

最初,标称组合是在每个电总线中连接的至少一个电负载和至少一个电源,具有可能的不同组合。图3中所示的环形拓扑结构以链式配置连接每个电气总线(n个总线),允许相邻电池彼此互连或者可选地彼此隔离,如由确定分离所提出的网络的一个组件、将它们互连或隔离环的确切时刻的控制逻辑(例如,处理器、asic)所定义的。具体地,图3的环形拓扑结构示出了母线b1、b2、b3,......bn-2、bn。开关设置在每个母线之间,以选择性地将每个母线连接到相邻的母线或者将每个母线与相邻的母线断开。开关选择性地将每个负载l1、l2、ln连接到相关母线b1、......、bn或从相关母线b1、...、bn断开。附加开关选择性地将每个电源p1、p2、.....pn连接到相关母线b1、......bn或从相关母线b1、......bn断开。该拓扑结构被称为“环”,因为母线bn可以选择性地连接到母线b1(如虚线所示),以提供连续的母线“环”。在此上下文中,n可以是大于1的任何正整数。

更具体地,对于示例非限制性e-vtol应用,电负载可以包括电动机,并且电源可以包括电池或其他类型的电源例如电容器、太阳能电池板、燃料电池等。更具体地,在每个电动公交中连接一个电动机和一个电池。

本技术的实施例的另一个非限制性方面包括组合电池冗余和互连的方法和架构(系统)。主要思想是分割几个电池集所需的总能量,并互连这些组件以:

·尽量减少失去电动机的可能性,提高飞行器安全性;

·尽量减少电池超重,以更好地容忍电池发生故障;

·最大化剩余能量,以便在电池发生故障时执行着陆紧急程序,从而缩短反应时间并提高能源可用性;

·隔离内部配电故障,在紧急程序期间尽可能多地提供电动机。

·考虑电池充电和放电速率,优化电源馈线和连接母线。

本技术的一个示例非限制性方法将n个电池上的总能量分开以单独供应n个电动机并使用如上所述的环形拓扑结构互连电池(图4中所示的n个电动机配置)。控制逻辑确定精确的时刻以隔离所提出的网络的一个组件,将组件互连到环中的相邻组件,或者隔离环。

图5示出了示例非限制性操作逻辑流程图。该流程图可以例如由连接到存储一系列可执行指令的非暂时性存储器的处理器来执行。如图5所示,处理器最初(在飞行器起飞之前)执行与电机控制器状态、电机保护等有关的操作,并且作为响应,可以控制选择性地连接电机/电机控制器以由相关的母线供电的开关。处理器还连续监视电池状态、电池保护等,并且能够选择性地将电池与相关的母线断开,以将电池与母线隔离。

飞行阶段期间的处理器监视电池状态、电机控制器状态,母线过电流状况等。如果不满足关键条件(即,如果检测到组件故障),则处理器执行控制操作以自适应地重新配置环形拓扑结构用于将故障组件与其他组件隔离和/或选择性地将非故障组件互连在一起(例如,使得一个或多个未故障的电池可以为电机供电以补偿故障电池和/或一个或多个更多未故障的电池可以为不同的电机供电以补偿故障的电机)。

例如,在正常操作期间,每个电池馈送其自己的电机而不通过环连接。这是图6所示的“隔离通道架构”,其中环上的每对总线之间的每个开关是开路。还参见图6,每个电池和每个总线之间的每个开关都是闭合的,每个总线和每个电机之间的每个开关也是闭合的,从而提供电池-电机对之间的相应连接,但保持每个电池-电机对和所有其他电池-电机对之间的电隔离。

还可以连接/配置环以平衡电池电平。图7“集成信道架构”示出了每个相邻总线对之间的每个开关是闭合的。还参见图7,每个电池和每个总线之间的每个开关都是闭合的,每个总线和每个电机之间的每个开关也是闭合的。这具有将所有电池彼此并联连接并且所有电机彼此并联连接使得一个大电池组向并联连接的所有电机供电的效果。

在电池故障的情况下,控制逻辑将重新配置所有互连以隔离故障组件并使用n-1个电池供应所有电机,如图8所示。该提议的重新配置的结果是丢失剩余能量的1/n和最小增加每个电池的放电率,因为额外的负载均匀地分布在所有剩余的未故障电池上。

根据本技术的一个非限制性示例,“推进通道”表示由至少一个电机控制器、至少一个电机和相应的旋翼形成的通道。在这种情况下,旋翼是若干旋转机翼(旋翼叶片)和控制系统的组合,该控制系统产生支撑飞行器重量的空气动力升力和/或提供推力以抵消向前飞行中的空气动力学阻力。在电机控制器、电机或旋翼的故障的情况下,相应的推进通道可能会丢失。如果推进通道丢失,则控制逻辑配置网(环形拓扑结构)以隔离故障推进通道,并且所有未故障的电池供应所有剩余的未故障电机。在这种故障情况的期间,所有剩余的电机和相应的旋翼都在过载运行。然而,如图9所示,总可用能量与每个电池放电率保持相同。特别地,电池1的容量没有被浪费,而是被连接以帮助剩余电机2-n供电。同时,这些剩余电机2-n中的一些或全部可能需要提供比正常情况更多的功率以补偿电机1的丢失。

在内部母线短路的情况下,控制逻辑可以通过断开连接短路的母线的所有开关,将短路的母线、相应电池和相应推进通道隔离,如图10所示。这种隔离配置具有禁用电机2和电池2的效果。因此,与图1设计相比,所提出的图10解决方案中的一个母线短路的影响导致丢失一个电池(具有1/n的可用能量)和一个推进通道(总功率的1/n),而不是一个电池(具有一半的可用能量)和4个电机(具有一半的安装功率)。结果是使用图1设计的e-vtol可能会崩溃,而使用图10设计的e-vtol将能够安全着陆。

示例非限制电池充电

示例非限制性实施例还考虑了特定布置,其中在充电条件期间流向电池的电流根据最大单个电池组容量而受到限制。

此外,该非限制性实施例克服了图2设计的缺点,其中(如现有技术图11所示)母线的尺寸和连接该母线和电池的馈电电缆非常庞大,带来了与安装有关的挑战,例如电缆弯曲比、支架、母线隔离等。

如图12所示,本文的示例性实施例提供的所提出的架构可以根据电池组分开充电电缆并减小每个电缆和母线的尺寸,从而便于安装。特别地,充电站能够通过较小的单独充电电缆单独地向每个电池组1-n供电。充电电缆连接到相应的dc母线1,2,...n-1,n,其继而在充电期间隔离电机并且选择性地连接相关联的电池组1,2,...,n-1,n。控制逻辑可以监视充电状态,一旦特定电池充电,控制相关联的母线将电池与充电器断开,以避免过度充电。如图13所示,在替选配置中,充电电缆选择性地直接连接到电池组,并且控制逻辑控制每个电池组的各个开关以避免过充电。

示例

图14和图15表示所描述技术的非限制性实施例,其具有用于悬停和用于使用直接驱动和固定间距进行巡航的八个推进通道。换句话说,在这种配置中,八个推进通道中的每一个都用于悬停和巡航操作两者。图15示出了定位连接在环形拓扑结构中的左侧推进通道,使得电机1和3给同轴旋翼r(1)、r(3)供电,并且电池1和3在环中相邻等,并且类似地电机2和4给同轴旋翼r(2)、(4)供电,并且电池2和4在环中相邻等。这种示例配置允许每个旋翼r由相关联的电机/电池对操作,而且如果需要还允许旋翼r(1)、r(3)共享(多个)电池。类似地,该示例布置能够将左侧通道与右侧通道隔离,但是如果需要可以将左侧通道电池与右侧通道电机共享,反之亦然。

图16和图17表示所描述技术的非限制性实施例,其具有用于悬停的八个推进通道和用于使用直接驱动和固定间距进行巡航的一个额外推进通道。在这种配置中,八个通道和相关联的旋翼r用于使飞机保持在高处,并且一个通道(在尾部上)用于向前推进飞机。图17示出了在环形拓扑结构中的左侧和右侧通道之间定位推式螺旋桨电机(没有相关联的电池,因为该电机仅在飞行器向前行进时被供电),使得其在需要时可以由左侧通道电池和/或右侧通道电池供电。每个悬停旋翼r和相关联的电机由其自己的电池供电,但环形拓扑结构可以适应共享电池以给相邻旋翼供电,并在需要时允许分配给飞机一侧的旋翼的电池给飞机的另一侧的旋翼供电。

图18和图19表示所描述技术的另一个非限制性实施例,其具有用于使用变速箱和可变桨距(集体)进行悬停和巡航的4个推进通道。在该示例中,每个推进通道还包括变速箱,该变速箱将一对电机机械地耦合到公共旋翼。在这种配置中,一个电机的故障可以通过连接到公共变速箱的另一个电机来补偿。电配置的结构使得当电机故障时,控制逻辑将一对电池连接到该对的非故障电机;当电池故障时,电池被隔离,并且该对的至少非故障电池(以及根据需要的一个或多个其他电池)连接到仍然工作的电机。因此,环形拓扑结构根据需要灵活地适应电池供应配置到电机/变速箱/旋翼单元,以确保e-vtol飞机保持飞行并且可以在任何通道的任何部分发生故障时执行紧急着陆。

虽然已经结合目前被认为是最实用和优选的实施例描述了本发明,但是应该理解,本发明不限于所公开的实施例,而是相反意图覆盖在所附权利要求的精神和范围内包括的各种修改和等同布置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1