用于啤酒和其它用途的零氧气渗透塑料瓶的制作方法

文档序号:4164595阅读:528来源:国知局
专利名称:用于啤酒和其它用途的零氧气渗透塑料瓶的制作方法
技术领域
本发明涉及具有改进的耐氧气渗透性的多层塑料容器,以及用于生产多层塑料瓶的组合物和方法。
本发明的背景技术为了在技术上得到认可,啤酒容器(玻璃、金属、或塑料)应该使其中所盛装的啤酒保持在近无氧的环境中。据认为,通常接受的工业标准是在瓶装啤酒的预定保藏期内,最多有1ppm的氧气进入该瓶中。还有,不仅氧气要被隔绝于瓶装啤酒之外,而且还要消除二氧化碳从啤酒中经由瓶壁的逸散作用或至少将其控制在一定程度下。
氧气可通过至少三种不同的途径存在于瓶装啤酒中。有时,在灌瓶步骤中,没有将非所需氧气(来自空气)从啤酒瓶的液面以上部分中完全除掉。通过这种途径产生的氧气称作液上氧气。即使包装在罐中的啤酒也容易存在液上氧气。在常规封口的玻璃啤酒瓶中,通过渗透作用,氧气可透过用作弯曲瓶头垫圈的介质进入瓶中。瓶装啤酒中氧气的第三种来源是使用塑料瓶所特有的。空气中的氧气能够透过许多常规的制瓶聚酯而最终进入瓶腔内。另外,对于塑料瓶来说,氧气可溶解或吸附于塑料中。溶解或吸附于塑料瓶壁的氧气可通过解吸附而进入瓶内。这种解吸附氧气一旦进入瓶内就与液上氧气没有任何区别,只是应该将其看作一种必须消耗掉或耗尽的可能的连续氧气源。就此而言,可将解吸附氧气看作对增加液上氧气有影响的一个因素。无法将试图透过塑料瓶壁的氧气与溶解在塑料瓶壁中的氧气区别开。因此,溶解在塑料瓶壁中的氧气与试图透过塑料瓶壁的氧气是一样的。因此,总的来说,包装在金属罐中的啤酒一般只受来自液上氧气的影响。玻璃瓶中的啤酒则受来自液上氧气、以及透过瓶密封装置,尤其是弯曲瓶头垫圈的氧气的影响。塑料瓶中的啤酒所受的氧气影响不仅来自上述两种途径,还有氧气经由瓶壁进入瓶腔的渗透作用。这些观点同样适用于包装在罐和瓶中的其它产品,尽管这种氧气影响可根据该产品的氧气敏感度而有着显著变化。
尽管将啤酒包装在塑料瓶中尚处于其初期,但以上所列举的作为非所需氧气存在于塑料瓶中的这些方式已在本领域中有大量的记载,这不仅针对具有与啤酒一样严格的氧气要求的装瓶应用,而且也针对不如瓶装啤酒那样严格的应用场合。为克服塑料瓶带来的这些问题而进行的尝试通常包括多层瓶的使用,在所述多层瓶中,与通常为聚对苯二甲酸乙二醇酯(PET)的制瓶聚酯相比,其中至少一层包含具有优异被动耐氧气渗透性的聚合物(如乙烯-乙烯醇共聚物,EVOH)。这些方法存在以下缺点(1)由于存在第二种不相容聚合物(EVOH),这些瓶不再适于与其它聚酯(PET)瓶一起回收;(2)这些瓶易在PET/EVOH界面上层离,尽管可通过使用粘合剂粘结层(引起额外费用)而在某种程度上减少这种层离作用;(3)在瓶的制造过程中,PET和EVOH在熔点和其它物理性能上的差异可引起各种问题;和(4)被动氧气隔绝层,如EVOH层的使用常将液上氧气束缚在瓶腔中,而不是将其消除掉。
通过解决在已有技术中所遇到的这些以及其它相关的问题,本发明制造出零和近零氧气渗透塑料瓶。
本发明的综述及对已有技术的回顾广义上,本发明涉及新的瓶、以及一种用于生产基本上零氧气渗透的多层塑料瓶的方法。“基本上零氧气渗透”是指在用仪器测量这种渗透性时,设法进入瓶装产品的氧气量仅仅是可测得量的。在没有氧气具体量的情况下,可认为对于瓶装产品的目标保藏期来说,基本上零氧气渗透是1ppm氧气(以瓶装产品的重量计)。本发明多层塑料瓶适用于与其它聚酯瓶一起回收,具有优异的刚性,在需要透明性时具有良好的透明度,耐层离,不需粘结层,不仅有隔绝氧气(来自空气)的能力,而且还具有消耗瓶腔中已有非所需氧气的能力。在结合使用(多层塑料瓶的)至少一层的基础上,制备本发明的这种新瓶涉及采用现代多层瓶制造技术和设备,所述至少一层包含作为活性氧气清除剂的共聚酯氧气清除配方。活性氧气清除剂可消耗掉或耗尽来自给定环境中的氧气。如待审专利申请中所提到的,零氧气渗透多层瓶具有足够的氧气清除能力以消耗掉瓶腔中的所有非所需(液上)氧气;而且在灌装瓶的必要保藏期内还留有足够的能力,能够以氧气从外部空气进入容器清除剂层的速率消耗氧气。
申请人的氧气清除剂体系是嵌段共缩聚物,其中包含占大多数的低聚物链段和氧气清除量的聚烯烃低聚物链段。“占大多数的”是指,至少50重量%的共缩聚物属于低聚物链段。尤其用于装瓶的优选低聚物链段为聚酯链段。对于其中某些层为PET或改性聚酯如PETI、PETN、APET、PETB和/或PEN的多层瓶中的各层来说,具有相同聚酯的嵌段共聚物部分是特别优选的。其主要原因是,该共聚物最仿似其聚酯链段所衍生自的聚酯。上述聚酯以及在21CFR§177.1630中所列的、被认为可安全地与食品一起使用的各种改性制瓶聚酯,是由于其透明度、刚性、以及可长期用于食品和饮料储存而选用于瓶子的各种聚酯。可以理解在本说明书中有关PET制造的许多参考内容应该(除非另有所指)不仅包括PET,而且还应包括常用于瓶的各种改性PET,其中包括,但不限于,上述以及随后在本说明书中更详细限定的各种改性聚酯。
通过首先用能够进入缩聚反应中的端基来官能化聚烯烃低聚物链段,可以制备出用于共缩聚的聚烯烃低聚物链段。这是一个重要的特征,因为聚烯烃低聚物实际上是加成聚合物。通过用端基来官能化聚烯烃低聚物,可以产生一种用于向共缩聚物中引入加成聚合物部分的简单方法。优选的聚烯烃低聚物是聚丁二烯(PBD),因为它具有良好的氧气清除能力,而且尤其在过渡金属催化剂如钴的存在下,以及在二苯甲酮、或钴与二苯甲酮的存在下,能够与氧气迅速反应。
本发明氧气清除用共聚酯的一个显著特征是,它能够在存在或不存在水或甚至湿气的情况下清除氧气。尽管本公开内容中的许多讨论针对于零氧气渗透啤酒瓶,但许多其它物质也适于瓶装和/或包装在本发明所预想和包括的零和近零氧气渗透包装环境中。除了啤酒,需要零氧气渗透瓶、罐、或特殊容器的易腐败食品和饮料的其它例子是熟知的,其中包括葡萄酒、果汁、饮料浓缩物、等渗物、增香茶、番茄基产品如调味番茄酱、沙拉、和烤肉酱、醋、蛋黄酱、婴儿食品、坚果、和各种干粮。需要零氧气渗透包装的非食品类物质可包括氧敏电子元件。
在食品和饮料工业中,为消费者提供有关产品鲜度方面的数据是最新潮流,而本发明产品具有适当时机的一个原因就与此有关。在食品和饮料工业中,无论由于立法抑或自愿,提供清楚印刷在瓶或包装上的未加密、易看懂的“销售截止”、“使用截止”或“灌装”日期已日益成为标准做法。满足消费者对食品鲜度的关注是一种长期存在的需求,这可由美国主要啤酒商最近所进行的宣传活动加以证实,这此活动的特点是它们所谓的瓶装啤酒“生产”日期。包装和瓶上提供给消费者的这些信息数据有助于消费者确定产品的稳定性和鲜度。这些数据在本发明的应用中也是有价值的,这是因为,通过有关给定产品目标保藏期方面的知识,可以容易地计算出为达到最大预期保藏期而保持零(或近零)氧气渗透所需的氧气清除能力。
为了保证零氧气渗透,可以调节本发明瓶的氧气清除能力,这不仅由产品所决定,而且还可在给定产品范围内变化。在“Future-Pak“96”会议上,Miller Brewing Company的Dr.Nick J.Huige递交了一篇题为《塑料啤酒包装的要求》的论文,其中披露,对于美国国内啤酒,通常认可的工业标准是当在120天保藏期内储存于75°F(24℃)时,(氧气)最大进入量为1000ppb(1ppm)。通常做法是将任何120天(即,从灌装开始120天)以上的啤酒从零售商处收回,然后加以消毁。对许多美国啤酒来说,这样做不仅由于可能存在氧气,而且还由于在灌装啤酒时所产生的其它变化,尤其是出现发霉或变臭特征。Huige还估计,来自主要美国啤酒商的约95%啤酒在灌装60天内可到达消费者手中。但为了与工业标准保持一致,对零氧气渗透下的预定保藏期来说,在75°F下达到120天是来自主要美国啤酒商的瓶装啤酒的一个现实目标。
对于美国小啤酒商和欧洲啤酒制造商来说,这些要求可以是完全不同的。对美国小啤酒商来说,95%的产品在装瓶后60天内到达消费者手中是不大可能的。另外,欧洲啤酒制造商(以及在较少程度上,美国小啤酒商)认为,理想的瓶装啤酒应具有一种与瓶中啤酒的至少部分氧化有关的特性,啤酒品尝者称之为“纸/纸板”风味。对于酒质更淡、更仔细调配的美国啤酒,严格来说这不是一种理想特性。从这几点可以显然看出,可接受的氧气渗透速率(包括零氧气渗透保藏期要求)的设定并不总是一件简单的事。但这在大多数情况下可估计和计算出来,而在其它情况下可根据经验推理出来。一旦知晓,调节瓶所需的氧气清除能力和/或零氧气渗透保藏期的方法,可通过本发明几种方法之一或几种结合而得到,以下对此进行详细描述。
已出版的PCT申请(WO96/18686,1996年6月20日出版)公开了脂族聚酮作为氧气清除剂的应用。该参考文件没有制造零氧气渗透瓶的任何实施例。除了主要脂族聚酮的渗透性系数,该参考文件中没有任何实验数据,因此不清楚这些数据是实验性的还是由树脂制造商提供的。在保持零氧气渗透方面,该参考文件中所描述的氧气清除剂性能相差几个数量级,即,在氧气通过渗透由PET外层进入清除剂层的速率下,清除剂能力不足以消耗掉氧气。
91年12月6日公开的日本专利文件3-275327描述了一种吹制瓶,其瓶壁包括“氧气不可渗透的”的“甲氧基亚芳基二胺”层。该参考文件中的数据表明,氧气渗透值下降到仅使用PET作瓶壁所通过的量的28%。该量与本发明的零氧气渗透目标是不相符的。
1990年8月8日公开的欧洲专利申请EP380830公开了一种单层(匀质的和整体的)氧气清除瓶壁。该参考文件公开了OXBAR瓶壁(根据教导,适于制造啤酒瓶)。OXBAR是一种含有约96重量%PET、约4重量%MXD6的混合物,并采用具有约10重量%金属钴的C8-C10羧酸钴溶液,这样可产生约50ppm钴(以混合物的重量计)。MXD6是一种由等摩尔量的己二酸和偏二甲苯二胺制备的聚酰胺。按照该参考文件,MXD6不仅可用作氧气清除剂,而且还可提高PET延缓CO2由瓶腔通过瓶壁外溢的能力。按照该参考文件制造的所有瓶子存在一些严重的缺陷,其中包括(1)失去了回收的可能性;(2)由于整个瓶子由氧气清除剂物质组成,因此成本较高;(3)由于匀质瓶壁与瓶装产品相接触,因此无法使用回收的PET;(4)钴可能过多地浸析到瓶装产品中;(5)无法高效地以及成本上有效地使瓶的氧气清除能力满足保藏期的要求;和(6)由于空气中的氧气直接对氧气清除剂部分进行显著进攻,氧气清除能力迅速丧失(即使在预成型阶段)。尽管在该参考文件中没有公开,申请人已推测了包括PET外层、OXBAR中间层和PET内层的瓶的有效性。在该实施方案中,仍然存在成本(产生必要氧气清除能力所需的OXBAR层很厚)和回收问题。
使用多层瓶壁的唯一显著缺点是,需要更复杂的瓶制造设备才能形成多层。由使用多层瓶壁而产生的优点,远超过与匀质单层瓶壁有关的唯一优点(即,较简单的加工工艺)。通常,本发明的瓶壁实施方案是三层结构(层A-B-C)。层A是构成瓶外部的外层,并与外部空气接触。层B是氧气清除剂层。层C是内层,它界定了瓶腔。这种多层结构的优点有(1)能够在层A中使用回收的PET;(2)能够将回收或原PET掺入(在限度内)清除剂层,这样可根据产品的预期保藏期,容易且成本上有效地调节零氧气渗透能力;(3)通过层C(层C是普通的原PET),将(瓶装)产品与氧气清除剂层中隔离开来;(4)由于存在外层A,可将氧气清除剂层从空气中的氧气隔离开来;和(5)作为本发明实施方案的多层瓶,回收能力通常保持在99.6%以上(PET和PET部分)。另外,可以想见,使用5层瓶壁A/B/A’/B/A,其中A为PET,B为未掺杂或掺杂的清除剂层,而A’也为PET,尤其是回收PET。
附图的简要说明

图1是优选的零氧气渗透多层瓶壁结构的横截面示意图。
图2是三种不同结构瓶的理想化零氧气渗透数据的图。
图3所示的图与图2相似,它表示氧气渗透速率与瓶保藏期的关系。
图4是实施例1-6的瓶的氧气渗透数据图。
图5所示图中的数据表明即使当用作A/B/A或A/B/C瓶壁结构中的B层时,共聚酯消耗液上氧气的能力。
图6所示的数据与图5中的相似,它进一步表明即使当用作A/B/A或A/B/C瓶壁结构中的B层时,氧气清除用共聚酯消耗液上氧气的能力。
图7所示图中的数据表明当与稀释剂混合用作A/B/A或A/B/C瓶壁结构中的B层时,氧气清除用共聚酯在氧气清除能力上的增加值。
优选实施方案的详细描述就本发明而言,有必要定义“基本上零和近零氧气渗透瓶”。“基本上零氧气渗透瓶”是指这样的瓶子在特定储存条件下,在瓶装产品的目标保藏期内,没有确实可测的氧气进入该瓶中。在不存在该产品所能容许的氧气渗透特定量的渗透氧气的情况下,“基本上零氧气渗透”可定义为在瓶装产品的保藏期内,不超过1ppm(以瓶装产品的重量计)的氧气渗透到该产品中。就本发明而言,在不存在特定目标保藏期的情况下,本文的目标保藏期是指通常在约30-365天的范围内,更具体地在约60-365天的范围内,最具体地在约60-180天的范围内的某段时间。另外,在不存在特定储存条件的情况下,本发明的特定储存条件是指室温(约4℃-25℃)。近零氧气渗透瓶是这样的瓶子其所延缓氧气进入瓶腔中的程度等于或小于,在特定储存条件下,给定应用和/或瓶装产品目标保藏期所规定的量。对近零氧气渗透瓶而言,目标保藏期可在约30天-2年的范围内,而其特定储存条件与以上定义“基本上零氧气渗透瓶”时的相同。
一般来说,为了得到具有以上所定义的氧气渗透品质和性能的瓶子,本文的大多数实施方案结合了几种创造性要素。现已发现通过使用商业上可得到的加工设备,新的氧气清除用共聚酯组合物易适于制造零和近零氧气渗透多层瓶和容器。在制造本发明耐氧气渗透瓶的过程中,该创造性要素包括,用于多层瓶制造工艺的已知设备、装置和机器的使用。另一创造性要素涉及氧气清除剂共聚酯组合物作为多层瓶中一层(或至少一层)的应用。另一创造性要素包括简单但有说服力的技术,通过采用成本上最有效的方式,该公开技术可用于调节用于预期用途的所造瓶的氧气清除能力。通过结合这些创造性要素,可以定义本发明的新的零氧气渗透多层塑料瓶的各种实施方案。
本发明的基本上零和近零氧气渗透瓶的尺寸(体积)范围为0.03-约4升。容积约为0.03升的小体积瓶可用于,例如瓶装常用于航班的单个开味品。容积约为4升的大体积瓶可用于,例如瓶装约3升的酒。尺寸在该范围内的瓶适用于啤酒、以及各种其它的氧敏产品,本说明书其它部分对此进行了描述。尽管本发明瓶主要用于储存食品,但本发明的这些瓶也适用于能够在常温和常压下储存的大多数氧敏性非腐蚀产品。作为一个极端的情况,如本发明瓶不适于储存液氧,这不仅由于它在可用储存压力和温度范围之外,而且还由于液氧可在非常短的时间内消耗掉瓶的所有氧气清除能力。为了在经济上可行,用于本发明瓶的物质的量应该与用于常规聚酯瓶的数量相当。该量直接与瓶的总壁厚有关,这通常在约0.1-2毫米(4-80密耳)的范围内。因此,在一优选实施方案中,本发明公开了一种可用于储存食品的基本上零氧气渗透热塑性容器,其容积在约0.03-4升的范围内,而其多层壁的总厚度在约0.1-2毫米的范围内。本发明的容器和瓶还可包括底部,该底部可选地为整体结构,而且还可选地比瓶壁要厚,这样可使得非层状底部具有氧气隔绝性能。本发明的容器和瓶还可包括适于连接密封装置或瓶盖的部分。该部分可选地为整体结构,而且还可选地比瓶壁要厚,这样可使得非层状部分具有氧气隔绝性能。
在另一优选实施方案中,本发明公开了一种具有食品储存腔的近零氧气渗透热塑性瓶,所述瓶包括可界定瓶腔底的底部、以及连接到底部并从底部延伸开来形成瓶腔壁的多层(通常是圆柱状的)侧壁,这样可使瓶腔具有必要的容积;所述侧壁终止于瓶腔上部,在瓶腔上部界定出一个适于连接到瓶盖上的开口;其中侧壁的内层是由共聚酯氧气清除剂配方制成的,该配方包括占大多数的聚酯链段和氧气清除量的聚烯烃低聚物链段,而且其中所述瓶在灌装和盖盖以后,具有足够的氧气清除能力,这样可以(a)消耗掉瓶腔内的氧气;(b)消耗掉可经瓶盖开口进入的氧气;和(c)以大约与氧气从空气中进入清除内层的相同速率,消耗掉氧气;其中在(a)、(b)和(c)下对氧气的几乎完全消耗作用可至少使氧气保持在这样一个消耗水平上,即,能够满足在特定储存条件下目标瓶装产品保藏期的需要。
在另一优选实施方案中,本发明公开了一种用于制造氧气清除多层瓶的方法,其中包括以下步骤(ⅰ)使用多层瓶制造装置制成第一树脂层,(ⅱ)使用多层瓶制造装置制成第二树脂层,(ⅲ)使用多层瓶制造装置制成第三树脂层,和(ⅳ)使用多层瓶制造装置将所述第一、第二和第三树脂层变成多层瓶成品;其中所述装置可以(A)独立加工至少两种不同的树脂,和(B)制成具有至少三层的多层瓶,而且其中瓶的至少一层包括共聚酯氧气清除剂树脂配方,该配方包含占大多数的聚酯链段和氧气清除量的聚烯烃低聚物链段。
优选实施方案不仅涉及包装制品,而且还涉及制造制品的步骤、用于制造制品的组合物和成本上有效地调节制品氧气清除能力的方法。因此,就本说明书而言,最为方便的是按序公开以下这些创造性要素(Ⅰ)本发明所包括的多层瓶制造工艺;(Ⅱ)本发明所包括的共聚酯氧气清除剂组合物,它可用于多层瓶的至少一层;和(Ⅲ)可最经济地用于调节瓶的氧气清除能力以适合预期用途的各种技术和实施方案。
Ⅰ.多层瓶制造设备和方法在所有情况下,包含共聚酯氧气清除剂组合物的层是瓶的内层。对于本公开内容来说,内层可定义为瓶壁的内层。内层不直接与空气接触。另外,内层不是界定瓶腔的层,因此它不与瓶内容物接触。在本发明的大多数实施方案中,三层是优选的。
术语“通过共挤制进行的多层吹塑”是指通过以下步骤来制造吹塑产品使用两个或多个挤出机,将热熔树脂置入模具中,并于模具中或在模具外将它们混合在一起。最简单地说,唯一必要的是将辅助挤出机和多层模具连接到常规的吹塑机器上。相同物质(树脂)的共挤出产生的问题很少,如果有的话。然而,在通过共挤制不同树脂进行瓶模塑的过程中,存在许多困难之处。这些困难包括(1)较不稳定树脂的热分解;(2)较差的可模塑性;(3)不足的层间粘附强度;(4)由于热熔树脂的不同熔融温度和不同流变性能,在夹断区熔合不好;和(5)由于在模塑后,以及在瓶的热灌装后进行冷却的过程中,层间的收缩力不同而发生层离作用。其中,最大的问题是层间的粘附性差。
用作氧气清除多层瓶中一层的典型配方包括共聚酯,其中含有约96重量%PET部分和约4重量%聚丁二烯(PBD)低聚物链段。该典型配方可选地与PET稀释剂一起进行共挤制,成为通常夹在两层PET之间的瓶壁中间层。PET树脂和PET/PBD共聚物树脂实际上是相同的,除了百分比较少的PBD链段。因此,它们也具有非常相似的性能,而且当PET和PET/PBD共聚物经过共挤制生产多层瓶时,就不存在上述有关共挤制不同树脂的许多问题。因此,当其中一层包含本发明的共聚酯氧气清除配方时,缺少以下实施方案所描述的某些或许多特征的工艺和设备也适用于生产多层瓶。当然,对于生产操作来说,本发明多层瓶可在适当的目前技术水准多层瓶制造设备上制造,即使制造具有PET/共聚酯清除剂/PET层的瓶的工艺可弥补不够完善的制瓶设备,尤其依据这样的事实,即,在注塑瓶和瓶预型件的过程中,不怎么需要对树脂温度进行分别控制。制瓶(包括瓶预型件的生产)设备包括各种装置,为了在对两种树脂大约相同的树脂温度下制造层状瓶或瓶预型件,这些装置可用于分开注射两种不同的树脂;因此制瓶设备构成了本发明的一般实施方案,只要其中一种树脂是本发明的共聚酯清除树脂配方。在此,将以下13个美国专利作为参考整个地并入本发明US4717324(Schad等人) US5141695(Nakamura)US4710118(Krishnakumar等人)US4990301(Krishnakumar等人)US5028226(De’ath等人) US4957682(Kobayashi等人)US5232710(Miyazawa等人)US4107362(Valyi)US5520877(Collette等人)US5474735(Krishnakumar等人)US5533881(Collette等人)US5032341(Krishnakumar等人)US4979631(Krishnakumar等人)实施方案Ⅰ-A多层共挤制(树脂共注射或顺序注射)吹塑瓶,包括瓶预型件的使用美国专利4717324(Schad等人)公开了一种进行同步注射的方法。Schad等人的专利的主要特征是从树脂进料处到模具腔为每种树脂提供独立的热流道(runner)系统,分别在加工选定树脂的最优温度下保持和控制这些系统。另一特征是提供一种喷嘴结构,通过构造和排列,该喷嘴可为相对各种树脂独立的通道提供不同的加热装置,这样可以使每个通道保持在对树脂经过该通道最为满意的温度下。还公开了多模塑腔的使用,这样模塑腔可同时填充了各种树脂以同时生成多个多层制品。该方法特别适用于三层和五层瓶预型件的生产,所述预型件包含通常夹在PET层之间的EVOH内层。对于本发明,申请人使用共聚酯氧气清除剂层代替EVOH层或除了EVOH层外另外还使用共聚酯氧气清除剂层。
在US5141695(Yoshinori Nakamura)中,公开了一种用于多层瓶的顺序或同步注射方法。Nakamura的专利描述使用来自具有三个流动通道的喷嘴的最多三种不同树脂,生产五或四层底的预型件。随后通过吹塑或取向模塑,将该预型件制成中空容器。Nakamura列举了许多树脂,它们适于制成包括PET和EVOH的吹制瓶中的各层。对于本发明,申请人使用共聚酯氧气清除剂层代替具有PET的EVOH层或除了使用具有PET的EVOH层外还另外使用共聚酯氧气清除剂层。
在US4710118(Krishnakumar等人)中,公开了另一个用于制造多层瓶预型件的顺序注射方法的实施例。Krishnakumar的专利包括通过形成具有树脂层A-B-C-B-A的五层瓶预型件,制成五层瓶。层A和C可以相同,且通常为PET。在某些实施方案中,层C可以是回收和/或再生的制瓶聚酯。层B通常是EVOH,且通常比仅具有单EVOH层的结构要薄很多。两薄层EVOH比单个较厚的EVOH层的隔绝性能要好。Krishnakumar等人的专利还公开了新的管路和阀系统,该系统可对所注射的每层进行不同控制,而且还对原料管路温度进行不同控制。对于本发明,申请人使用共聚酯氧气清除剂层代替具有PET的EVOH层或除了使用具有PET的EVOH层外还另外使用共聚酯氧气清除剂层。
对于具有氧气清除用共聚酯层的多层瓶来说,特别优选方法中的清除(氧气)的共聚酯层并不位于瓶壁的中央,即,两等厚PET层之间。通过指定,这些瓶和瓶预型件的瓶壁可包括树脂层A1-B-A2。层A1为PET或另一种制瓶聚酯,而且可形成瓶的外部表层。层A1的聚酯可以是原生的(Virgin)、回收的、再生的或前述这些的混合物。层A2也可以为PET或其它制瓶聚酯,且可界定瓶腔。层B是共聚酯清除剂。一般来说,PET层A1的厚度为PET层A2的厚度的约2-10倍。这种结构使得共聚酯清除剂层容易消耗掉瓶腔中的非所需氧气,因为氧气只要通过很薄的PET层A2就能进入清除剂层以被消耗。相反,来自瓶外空气中的氧气必须通过很厚的PET层A1才能进入清除剂层以被消耗。因此,朝向瓶外的较厚PET层有助于防止氧气进入清除剂层,这样可延长清除剂的有效寿命。美国专利4990301(Krishnakumar等人)公开了这种瓶和瓶预型件结构。Krishnakumar的’301专利公开了(居中或偏中)夹在PET层之间的EVOH层的应用。在’301专利中,还公开了多通道同轴喷嘴和供料装置的应用,这样可分别向喷嘴通道供给不同的树脂,所述喷嘴通道可将不同树脂分步或同步注射到瓶预型件模具中。PET外层和EVOH内层的应用也被公开。对于本发明,申请人使用共聚酯清除层代替具有PET的EVOH层或除了使用具有PET的EVOH层外还另外使用共聚酯清除层。
在美国专利5028226(De’ath等人)中,公开了一种包括相似的共注射模具的注模装置,其中每个所述共注射模具都具有共同的供料源,并在中等压力下由多个挤出机供给不同的树脂料。在De’ath等人的专利中,每种树脂由注射机直接注射到相连喷嘴中并仅通过注射机操作来控制,而没有在注射机和喷嘴之间使用任何控制阀。该方法可提供最多七层的预型件,但通常是五层和仅用两或三种树脂。对于本发明,申请人使用了层结构A-B-C-B-A,其中A和C为PET层,而且至少有一B层包含氧气清除用共聚酯组合物。
在美国专利4957682(Kobayashi等人)中,公开了一种注模方法,其中多层瓶预型件在制造过程中处于垂直状态。Kobayashi的专利公开了三层容器和预型件,即具有层A-B-A的瓶壁的制造。主要不同之处在于注射是按序的,而且公开了树脂注射之间的时延。在Kobayashi专利的典型方法中,(1)注射外树脂层A;(2)在最多延迟三秒之后,注射中间层B;和(3)在再延迟最多一秒之后,注射第二层A。通过延迟进行的顺序注射可提高B层的均匀性。所公开的树脂为PET(A层)和EVOH(B层)。对于本发明,申请人使用了氧气清除用共聚酯层作为B层以代替具有PET(通常构成A层)的EVOH层,或另外使用氧气清除用共聚酯层。
在美国专利5232710(Miyazawa等人)中,公开了一种通过多层模塑热流道模具来制造多层瓶预型件的方法,为了形成多层产品,所述模具包括用于注射多种不同树脂的多个喷嘴。热流道模具包括多个热流道单元,其中每个单元都具有一个用于将每种树脂传输到相应树脂腔中的流道。热流道单元相互叠积在一起,其中热绝缘层位于所叠积的流道单元之间。每个热流道单元都有其不同的温度控制,这样可将每种树脂保持在优化加工温度下。通常,三层瓶包括PET-EVOH-PET树脂层。对于本发明,申请人使用了氧气清除用共聚酯层以代替具有PET的EVOH层,或另外使用氧气清除用共聚酯层。实施方案Ⅰ-B用于制备多层瓶和瓶预型件的过模塑(Overmolding)/层压方法已出版的PCT专利申请(国际公开号WO95/00325,出版日为1995年1月5日)公开了三层PET-EVOH-PET瓶和瓶预型件。PET外层是由“使用后的”(回收的)PET组成。可界定瓶腔并与瓶内容物接触的PET内层为原PET。当没有必要赋予多层容器以氧气隔绝性能时,可以省略EVOH层。原PET层中的环形凸缘,是在接受封瓶装置的预型件端部(即,预型件的开口端)模塑成的。凸缘充分延伸,这样封闭衬里只与原PET接触,同时封闭线结合到由回收PET层所形成的线上。这样,原PET内层被模塑到回收PET外层之上。对于本发明,申请人使用了氧气清除用共聚酯层以代替具有PET层的EVOH层,或另外使用氧气清除用共聚酯层。
日本专利文件JP3275327(出版于1991年12月6日)公开了一种可用于热饮的拉吹模制容器,它包括一种PET叠层结构,其特征也在于具有PET和耐热树脂(具有高热变形温度)的底部。该拉吹模制容器由瓶口、瓶肩、瓶体和瓶底构成。瓶体是由PET制成的。瓶底为PET与耐热树脂(其热变形温度在100℃以上)的叠层结构。在叠层结构中,瓶体和瓶底优选包含氧气隔绝树脂层,如EVOH。耐热树脂,例如为芳族聚酯如PEN。该饮料容器特别适用于热灌装应用,因为,可以消除常见于热灌装常规多层瓶过程中的热变形作用。对于本发明,申请人使用了氧气清除用共聚酯层以代替具有PET和/或PEN层的EVOH层,或另外使用氧气清除用共聚酯层。
在美国专利4107362(Emery I.Valyi)中,公开了一种具有改进气体隔绝性能的多层塑料容器,其中使用了一种活性氧气清除剂(或吸气剂层)树脂。为了形成瓶或瓶预型件中的各层,某些层可通过与共注射或顺序注射不同的过模塑技术而制成。另外,将两层塑料置于模芯的周围,然后通过吹塑使其膨胀成容器。最后,在两层套筒周围加压模塑上第三层。其最终结果制成了无缝的多层塑料容器。该容器有三层,而且该专利公开了在内层有吸气剂的实施方案、以及在中间层有吸气剂的实施方案。吸气剂是一种存在于塑料层中的添加剂,它能够与非所需的渗透气体结合。对于本发明,申请人使用了氧气清除用共聚酯层作为三层实施方案中的中间层,以代替含非聚酯基吸气剂的中间层,或另外使用氧气清除用共聚酯层。实施方案Ⅰ-C改进的制瓶工艺美国专利5520877(Collette等人)公开了一种制瓶方法,该瓶具有高度结晶的瓶壁以及很少结晶的瓶底。按照该公开内容,这些瓶特别适用作可再灌装的容器,所述容器耐高温腐蚀性洗涤且其气味转移作用得到降低。另外,按照该公开内容,Collette等人的这些瓶还适用于热灌装用途。该瓶可通过预型件由单PET层构成,其中首先膨胀预型件的侧壁形成部分,加热至收缩和结晶,然后再进行膨胀。预型件的底部形成部分不经过热处理,而在热处理步骤之前或之后进行膨胀。对于本发明,仅利用了热灌装能力这种特性,而且PET单层被三层结构(PET/清除剂共聚酯/PET)所代替。
在美国专利5474735(Krishnakumar等人)中,公开了另一种用于生产热灌装塑料瓶的方法。Krishnakumar等人的’735专利公开了一种用于制造塑料容器的方法和装置,通过提高塑料容器的结晶度,其热稳定性也得到了提高。在最终膨胀到最大容器尺寸之前,通过进行脉冲吹制工艺,将在分子取向温度下基本上无定形的透明预型件经一次或多次膨胀成中间制品。脉冲吹制步骤是在较高应变率下进行的然后收缩以缓和无定形取向,这样可加强晶体成核部位的形成;而最终的膨胀步骤是在低应变率下进行的,这样可减少无定形取向作用。所得容器具有较高的热变形温度和降低的热收缩率,因此它特别适用作热灌装饮料容器。该专利提供了一种吹塑和流体供料装置,其中包括计量腔和活塞,这样可交替进行高和低应变率膨胀。对于本发明,申请人使用三层结构(PET/清除剂共聚酯/PET)作为瓶壁,以代替单聚酯层瓶壁。
美国专利5533881(Collette等人)公开了一种用于生产带柄瓶的方法。Collette等人的’881专利公开了一种由可应变硬化的聚合物制造吹塑容器的工艺和装置。所述容器具有深槽,这样可保证在“模塑后”连接上柄。该容器是在具有可收缩叶片的改进的吹模中制成的。叶片部分伸展以吹塑出部分凹槽,然后进一步伸展以机械地制成深的手柄凹槽。这种机械制造操作可克服由塑料在吹塑时的应变硬化作用而产生的拉伸限度,而与已知的“模塑中(in mold)”手柄形成操作相比,手柄的“模塑后”连接可减少周期时间并减少缺陷。对于本发明,申请人使用三层结构(PET/清除剂共聚酯/PET)来代替单聚酯层瓶壁。
美国专利5032341(Krishnakumar等人)公开了一种用于制造三和/或五层瓶预型件的方法。Krishnakumar等人的’341专利公开了一种可由其吹塑成塑料容器的塑料预型件。作为一种可代替三层预型件的预型件,其底部形成部分具有一种五层结构,其中通过第三次注射物料,形成三层预型件结构中核层的第二种物料可分成内中间层和外中间层。第三次注射的物料优选地与首先注射的主原料相同。这样可降低预型件的成本,而且为了以后在相同预型件注模腔中制造预型件,可将一定量最后注射的物料保留在注射喷嘴中,所述最后注射的物料与首先注射的物料相同。瓶预型件为A-B-A三层型预型件,其中用较廉价的C物质来填充B层的最后部分,这样底部就变成五层(A-B-C-B-A),而壁部为三层(A-B-A)。这可用于减少B层物质在瓶底中的量,因此可降低总的容器成本。对于本发明,A为制瓶聚酯如PET,B为氧气清除用共聚酯树脂配方,而C为比B层较廉价的物质,如制瓶聚酯或回收/再生的制瓶聚酯。实施方案Ⅰ-D减少层离的方法美国专利4979631(Collette等人)公开了一种透气多层容器。Collette等人的’631专利公开了吹塑塑料容器,其中至少该容器的本体具有一种叠层结构,该结构包括,例如在容器盛装充碳酸产品时可为气体隔绝层的隔绝层。现已发现这种瓶确实可发生层离作用,但现在这可通过选择性地为容器本体提供微小透气口而解决,所述透气口并不完全地延伸穿透容器体,而是延伸到发生层离的部位,其中,来自瓶腔中所含碳酸饮料的渗透物,如CO2有可能在那聚集。通过针刺或使用激光,可在容器的外壁上形成这种微小透气口。在针刺的情况下,将针放入用于由预型件吹塑出容器的吹模中,它通常沿着吹模的分界线放置且位于瓶壁的中心部分。针刺的这种结构和操作可具有几种形式。对于使用典型共聚酯配方而得到的具有三层(PET/清除(氧气)的共聚酯/PET)瓶壁的瓶来说,层离不是它们本身的问题,因为这两种树脂的性能相似。然而,在加入了高含量聚烯烃低聚物链段(如,12重量%以上自聚烯烃低聚物链段衍生的共聚酯)的氧气清除剂共聚酯的情况下,申请人可利用特殊的减少层离现象的技术,如本实施方案所公开的微小透气口。
减少层离的其它技术,如粘合剂的使用是本领域所已知的。制造耐层离的多层预型件的另一方法包括趁预型件还在模芯上时,将其冷却。在该实施方案中,尽快将模芯和预型件从模腔中移开,这样预型件就没有明显的物理变形。然后在一段有利的时间内,将预型件在模芯上冷却,这样可防止预型件的层离作用。当得到用于多个模芯的装置如旋转车床时,在模腔之外冷却预型件也是较快的,因此可加快循环时间。申请人可以预想到粘合剂或预型件冷却步骤的使用,使所制瓶能够得益于这种附加处理。
Ⅱ.氧气清除用共聚酯配方如前所述,氧气清除剂组合物是嵌段共缩聚物,其中包含占大多数的低聚物链段和氧气清除量的聚烯烃低聚物链段。“占大多数的”是指,至少50重量%的共缩聚物属于低聚物链段。低聚物链段、尤其是用于制瓶的缩聚物优选为聚酯链段。对于其中某些层为PET和/或PEN的多层瓶中的各层来说,具有PET和/或PEN的嵌段共聚物的部分是特别优选的。其主要原因是,该氧气清除共聚物最仿似其聚酯链段所衍生自的聚酯。PET和PEN是可选用于制瓶的聚酯,因为它们具有透明度、刚性、而且可用于长期储存食品和饮料。在A/B/C(A为外层)层状瓶结构中,除PET和/或PEN之外的其它聚酯在A层中的应用,可保证在瓶B层的共聚酯配方中使用衍生自层A聚酯的聚酯链段。A/B/C层状瓶结构中的A和C层通常是相同的,除了A层可以使用回收的聚酯,因为它与瓶腔中的内容物隔绝。共聚酯的聚烯烃低聚物链段具有氧气清除能力。
尽管不想受任何理论的局限,但申请人仍持有以下观点据信,烃类物质如聚烯烃低聚物吸收氧气的机理是,通过形成羟基基团或氢过氧基,将氧气固定在烃类物质上。另外据信,这些基团是通过自由基步骤形成的,其中包括中间体过氧基部分的形成。在烃类物质中,仅连有一个氢(所谓的叔氢)的碳原子比连有两个氢(所谓的仲氢)的碳原子更容易形成自由基,而后者比连有三个氢原子的碳原子更容易形成自由基。申请人还相信,烯丙位氢原子(连接到双键邻位碳原子上的氢原子)也可以形成自由基。申请人认为烃类如聚烯烃,尤其是聚二烯可较好地提供仲氢原子和叔氢原子以及烯丙位活化的氢原子。据此,申请人设计了通过使用末端官能化聚烯烃低聚物形成共聚酯,而将这些氧气清除烃部分引入制瓶聚酯中的方法。在1996年9月23日递交的待审美国专利申请№08/717370中,已完全公开了该共聚酯氧气清除剂组合物体系及其组成,在此将其作为参考完全并入本发明。
用于共缩聚反应的(包含瓶层所用配方的嵌段共聚酯的)聚烯烃低聚物链段,可通过首先用能够进入缩聚反应的端基官能化聚烯烃低聚物链段而制备。这是这些配方的一个新的重要特征,因为聚烯烃低聚物实际上是引入缩聚物中的加成聚合物链段。通过用端基来官能化聚烯烃低聚物,可得到一种将加成聚合物链段引入共缩聚物中的简单方法。有许多可进入缩聚反应的端基,但优选的端基为羟基(-OH)和羧基(-COOH),因为,通过使用这些端基,可得到在聚酯链段和聚烯烃低聚物链段之间都具有聚酯键的共聚酯。例如,氨基(-NH2)端基是非常可取的,但它可在共聚酯中聚烯烃低聚物链段的邻位上形成某些聚酰胺型键。本领域熟练技术人员可以看出,端基中的一些或所有氢原子可由其它部分来取代,而且仍然能够导致相同的共聚酯结构。
优选的聚烯烃低聚物是聚丁二烯(PBD),因为它具有良好的氧气清除能力,且能够在过渡金属催化剂如钴的存在下与氧气迅速反应。特别优选的是分子量为约1000-3000的二羟基官能化封端的聚丁二烯低聚物,这是因为,当它进入具有占大多数的PET、PEN或其它制瓶聚酯链段的嵌段共缩聚物中时,可得到高透明度的共聚酯;而且还因为可以买到具有所需形态和纯度的该物质。聚烯烃低聚物链段可产生共聚酯清除剂体系的氧气清除能力,且其所存在的量只需达到能够提供所需氧气清除能力的程度。聚烯烃低聚物链段通常小于共缩聚物的50重量%,其中聚烯烃低聚物链段的优选重量百分比范围为共缩聚物的约2-12重量%。特别优选的共聚酯包含约2-12重量%聚丁二烯链段,其余重量为PET、PEN和/或其它制瓶聚酯链段(包括PETB、PETG和APET),这是因为这些共聚酯的透明度较高,因为它们容易进行双轴取向,而且还因为它们的玻璃化转变温度就在室(储存或环境)温之上。PETG是改性PET,其中最多约40摩尔%的聚乙二醇(作为单体)被等摩尔百分比的环己烷所代替,所述环己烷在其环上1,4-或1,3-位被羟甲基基团所取代。APET是可得自于Eastman的无定形PET。PETB是改性PET,其中最多约40摩尔%的对苯二甲酸被4,4’-二羧基联苯所代替。本领域普通技术人员应该理解为了优化氧气清除和/或其它性能,可以与共聚酯氧气清除剂一起使用另外的氧气清除剂、催化剂(如钴)和其它添加剂。清除(氧气)的共聚酯可通过直接缩聚反应工艺而制备,其中包括引入所需量的羟基封端聚烯烃低聚物,并阻止等量的二羟基单体(如,乙二醇)参与直接缩聚反应步骤。申请人已经确定,实施本发明的优选方式是,在反应性挤出机中,使用制瓶聚酯(如,PET)和二羟基封端PBD作为起始原料,通过酯基转移作用(而不是直接缩聚反应)制备出共聚酯配方。以下实施方案也在本发明的范围内,其中清除(氧气)的共聚酯是通过与制瓶工艺同时,或作为制瓶工艺一部分而就地制备的。
如下表1中所列,用于实施方案Ⅱ-A至Ⅱ-J的清除氧气的共聚物组合物都是按照本发明所描述的方式,以实验工厂的规模制备的。ZSK-30挤出机配有在氮气层下的失重(loss-in-weight)PET颗粒加料机。羟基封端的PBD保留在装有粘液的容器中,在此PBD可通过正位移泵独立地传输到挤出机管路中的抽真空区。PET(Shell Clear Tuf7207)是在约8磅/小时的加料速率下挤出的,这样可产生约4分钟的停留时间,同时将温度保持在260-270℃的范围内。在可变速率下,将羟基封端PBD(Elf Atochem RLM20-分子量为1230,或RHT45-分子量为2800)抽到挤出机中,使得羟基封端聚丁二烯在挤出机混合区中的重量百分比为2-12%。在开启模具之前,使用熔合密封设计以产生在混合区之前的真空区。挤出物是干燥和无烟的,在水浴骤冷后容易造粒。在水浴中没有看到任何表面膜(烃平滑面),这一点提示在反应性挤出过程中,通过酯基转移作用形成了共聚物。水浴中的膜可表示存在未反应的聚烯烃低聚物。当所用的羟基封端PBD为2重量%时,在足以产生50PPM钴的处理率下使用辛酸钴(Hulls NuodexD.M.R,钴60%);而当所用的羟基封端PBD为8重量%时,钴的浓度为200PPM。通过上述方法制备的所有清除共聚物都具有在范围为62.0℃-72.9℃内的一个玻璃化转变温度(Tg)。通过上述方法制备的共聚物适用于熔融加工,而且按照本发明优选的三层瓶壁实施方案,能够加工成瓶和/或多层瓶中的层。在需要较高特性粘度(I.V.)共聚酯的场合中,可以使用提高分子量的技术。例如,通过直接缩聚反应(而不是酯基转移作用)制备共聚酯可导致该共聚酯具有较高的分子量。另外,为了使共聚酯的分子量得到提高,可将熔融流变改性剂加入通过酯基转移作用制备的共聚酯中。
如下表1中所列的用于实施方案Ⅱ-K至Ⅱ-N的共聚物组合物,也都通过反应性挤出法,于ZSK-30双螺旋挤出机中制备。首先,在125℃的干燥炉中,干燥PET颗粒(Shell Tray Tuf1006)至少8小时。然后,通过氮气保护下的失重颗粒挤出机,将颗粒加入挤出机的加料区。将粘稠的低分子量(分子量约为1230)聚丁二烯二醇(Elf Atochem的R20LM)放入压力容器中,用氮气加压。然后通过正位移泵,由挤出机上的注射区,将该液体独立地传输到PET熔融物中。将PET加料速率设定在约14.4lb/hr,而PBD二醇则以约0.6lb/hr的速率进行输送。所用停留时间为约4分钟,这样共聚反应可在挤出机中完成。反应的温度可保持在250-270℃的范围内。通过真空泵,将反应所产生的挥发物由挤出机的一个开口排出。骤冷该共聚酯挤出物,然后造粒。将成品颗粒包装在耐湿度和气体的铝箔袋中。为了使成品不受氧气污染,整个加工挤出管路都用氮气来保护(包括储存袋的洗涤)。
向实施方案Ⅱ-K中,加入PMDA作为链增长剂,它可用于提高共聚酯的分子量,由此可提高共聚酯的特性粘度(I.V.)。例如,PET-4重量%PBD(分子量为1230)共聚酯(实施方案Ⅱ-B)的I.V.为0.57,该共聚酯仍适用于制瓶。加入0.2重量%PMDA,可将I.V.提高到0.7;而加入0.3重量%PMDA,可将I.V.提高到为0.74。这种物质在粘度方面与原PET非常相当(如,Shell 7207 PET的I.V.标称为0.72)。
对于啤酒瓶,有必要消除或至少减少二氧化碳(CO2)透过瓶壁的损失。申请人所作实验的结果表明其中某些对苯二甲酸单体已被间苯二甲酸(或相当的衍生物)代替和/或其中某些对苯二甲酸单体已被萘二甲酸(或相当的衍生物)代替的改性PET,可产生具有优异CO2渗透隔绝性能的制瓶聚酯。表1中的PETI和PETN可表示这些配方。因此,合适的改性PET通常可用于啤酒瓶,这样可提高瓶的CO2隔绝性能。特别优选的是PETI和PETN的掺和物和/或混合物。为了取得最大的CO2隔绝效果,类似改性的PET也可在氧气清除用共聚酯中用作聚酯链段,而且也可在瓶的氧气清除剂层中用作稀释剂。
表1清除(氧气)的共聚酯配方
<p>Ⅲ.零氧气渗透的优化在本发明中,另一创造性要素与所公开的各种方法有关,它们可根据用途而用于将氧气清除能力调节到基本上零和近零氧气渗透水平上。所公开的这些方法不仅可以变化,而且通过清除能力的精调而使这些方法极易实施和有一定的能力,在几种情况下适于制瓶,而在另一情况下适于瓶的灌装。当然,可以使用更多的氧气清除剂和/或较厚的清除剂层。但是,一个目的是为了制造具有商业价值的瓶,采用成本上最有效的方式来达到所需程度的氧气清除能力。一旦确定了所需的氧气清除程度,就可通过以下公开的实施方案之一或几种的组合方式,而得到调节瓶所需氧气清除能力和/或基本上零/近零氧气渗透保藏期的方法。实施方案Ⅲ-A清除(氧气)的共聚酯中PBD链段的分子量作为一项技术,通过变化用于制造氧气清除剂共聚酯的PBD链段的分子量,可以调节共聚酯的氧气清除能力,这已在1996年9月23日递交的待审母申请(申请号为08/717370)中公开。在那项申请中,实施例12和14为包含4重量%PBD链段和96重量%PET部分的共聚酯配方。在室温下和在没有催化剂钴的情况下,实施例12(具有分子量为2800的PBD)是一种比实施例14(具有分子量为1230的PBD)更为有效的氧气清除剂。在所有公开的方法中,通过这项技术来改变氧气清除能力或保藏期可能以往是最常用的,因为在制造共聚酯氧气清除剂共聚酯体系之前应该作出决定。实施方案Ⅲ-B清除(氧气)的共聚酯中PBD链段的重量百分比作为另一项技术,改变共聚酯配方中PBD链段的重量百分比,已在1996年9月23日递交的待审母申请(申请号为08/717370)中公开。该一系列相关申请所包括和预想的共聚酯包含最多50重量%PBD链段,余量为聚酯链段。上表1公开了,具有2、4、6、8、10和12重量%PBD链段的清除(氧气)的共聚酯组合物的配方。下表2中的数据可证实,PBD链段百分含量较高的那些组合物同样具有较高的氧气清除能力。表2中的数据是通过待审母申请No.08/717370中实施例12-15的方法来获取的。
表2几种共聚酯配方的氧气清除能力(数据在22℃下采集-使用了150ppm钴催化剂
在本发明所公开的那些方法中,通过这项技术来改变氧气清除能力或保藏期也是以往较为常用的,因为在制造共聚酯清除剂时应该作出决定。
实施方案Ⅲ-C其它氧气清除剂与共聚酯清除剂在瓶壁中的共同使用在图1中,层30表示本发明优选多层瓶壁结构的中间氧气清除层。尽管该氧气清除层在某些实施方案中可包含接近100%的清除(氧气)的共聚酯,但申请人已经发现了利用稀释共聚酯的各种优点。其一,更容易将清除体系均匀地分布在整个瓶壁中。稀释剂通常是图1中瓶壁外层26或瓶壁内层28的聚酯。在某些情况下,层26和28的聚酯是相同的,除了层26的聚酯可以是完全或部分回收的物质。用于层30中的任何稀释剂也可为完全或部分回收的物质。
对层30进行稀释的另一优点在于,该技术适用于事先制备用作层30的配方,也适用于事先制备在制瓶时可构成层30的单和/或多种浓缩物。因此,层30的事先配方或浓缩物可简化另外的氧气清除剂在层中的掺杂,这些另外的氧气清除剂共聚酯可与层30中氧气清除剂共聚酯同时用于清除氧气。优选的是光活性物质,它们在瓶的储存过程中可保持氧气吸收惰性,直到用足以活化它们的UV光进行辐射,才可提高其对氧气吸收的速率。特别优选的光活性清除剂为二苯甲酮。通常,仅在运输或使用(灌装)所制瓶之前,才进行这种活化辐射处理。实施方案Ⅲ-D共聚酯在氧气清除层中的稀释程度如上Ⅲ-C所述,大多数实施方案包括,向多层瓶的氧气清除用共聚酯层中加入稀释剂。作为另一有效方法,共聚酯在氧气清除层中的稀释程度可用于调节瓶的氧气清除能力。通常,稀释剂占清除剂层的0-约95重量%。在几种极端的实施方案中,使用了99重量%以上的稀释剂。稀释剂通常为原生或回收的PET,但也可以是任何低成本的相容物质。因此,通过将共聚酯仅稀释到给定应用所需的水平上,就可真正降低该瓶的成本。实施方案Ⅲ-E氧气清除剂层的偏心放置的程度在包含清除(氧气)的共聚酯层的多层瓶的特别优选实施方案中,瓶的清除剂层并不位于瓶壁中央,即两等厚PET层之间。通过参考图1,可对此有进一步的理解。层26,形成瓶外部24的瓶的PET外层,实际上比层28(形成瓶内部22的瓶的PET内层)要厚。实际上,PET外层26的厚度通常在PET内层28厚度的0倍-约10倍的范围内。对于任何给定的总厚度(即,层26和28的总和是恒定的),偏心程度在确定瓶的氧气清除能力和保藏期上起作用。当PET外层较厚,较少氧气可进入清除剂层,因此针对消耗这种氧气的保藏期得以延长。当PET内层较薄时,瓶内的更多氧气(液上氧气,或来自其它途径如通过密封装置进入的氧气)可通过这种薄PET内层渗透到清除剂层。这样,薄PET内层可使存在于瓶腔中的氧气更快和更完全地消耗掉。在典型的实施方案中,包含稀释剂(如果有的话)的(氧气)清除层(图1中的30)通常占总瓶重的约10重量%,而且根据稀释程度,该层中的共聚酯清除剂可占瓶重的约0.5-10%。通常,共聚酯清除剂与约4重量%PBD链段一起用于共聚酯。因此,本发明瓶包含99.6-99.98重量%的聚酯和聚酯链段,更为典型的是约99.92重量%的聚酯和聚酯链段。
本领域普通技术人员可以理解,瓶的氧气清除能力和/或保藏期也可通过仅变化PET内层(图1中的28)或PET外层(图1中的26)而调节。这些PET内层和外层可单独变化。甚至没有必要让这两层在加在一起的总厚度上保持恒定,除非为了比较而保持给定量的PET/瓶、和/或确定中间层的最优放置。尽管较厚的PET外层似乎更为合理,但通常出于经济上的考虑,对PET外层的厚度进行了限制,由此按照相应的方式,对用于瓶的PET量也进行限制。实施方案Ⅲ-F氧气清除剂催化剂的使用待审专利申请08/717370中的实施例23-26清楚地表明,共聚酯的氧气清除效率可在过渡金属催化剂如钴的存在下得到显著提高。因此,催化剂的利用(或不利用)及其利用程度代表了,用于控制本发明瓶的氧气清除能力和保藏期的另一方法或实施方案。优选的过渡金属催化剂为钴,因为它对清除(氧气)的共聚酯效力的作用最为显著。钴通常以羧酸钴的形式使用。辛酸钴是优选的,因为它在低使用量下也有效,而且也可买到在合适溶剂中的和纯净态的该物质。以共聚酯的重量计,钴的使用量通常为约50-300ppm;或(如下进一步解释)以共聚酯加上用于瓶中共聚酯清除层的稀释剂的总重量计,为50-300ppm。
本发明瓶通常为三层,但只有PET(不是氧气清除层)直接与瓶装产品接触。用于制造玻璃瓶的大多数玻璃中包含一些可进入瓶装啤酒中的钴。钴也存在于PET中,这些钴是从由钴催化的PET的聚合反应中剩下的痕量的催化剂。几十年前,一种常见的作法是向啤酒中加入少量钴以提高和保持泡沫稳定性。通常,钴在瓶装啤酒中的量为约0.1毫克/升,这大约是几十年前的检出极限。向其中加入钴以产生泡沫稳定性的啤酒,具有约1.0毫克/升的钴。最近,在80年代中期,有迹象表明,钴的存在可引发某些啤酒饮者的心肌病。只有饮酒过度且在其工作中也接触大量钴的这些人才会有某些健康危险。尽管如此,大约在那个时期,没有延续向啤酒中有意加入钴这种做法。
在以前讨论的PET/MXD6单层瓶中,使瓶装啤酒直接与同样包含50ppm钴的PET/MXD6混合物接触,因此催化剂钴有可能从瓶材质浸出而进入到啤酒中。对于本发明的多层瓶,啤酒仅直接与PET内层接触(如同在PET瓶中装任何饮料时的情形),而不与由钴催化的氧气清除层接触。进行对比实验,结果发现在120°F(约50℃)的升高试验温度下,在储存于10重量%共聚酯B层瓶(在B层中有100ppm钴)中28天后,其中所装的啤酒包含约0.127毫克/升的钴,该值接近于类似储存条件下在玻璃瓶中的对比啤酒(其中包含约0.086毫克/升的钴)。
为了通过用PET稀释B层来满足所需的清除和保藏期要求,可确定优化的(最小的)催化剂钴的加入量以产生有效的B层氧气清除作用,申请人惊奇地发现,B层中共聚酯的稀释实际上可提高其自身的效率,这可通过单位重量上的氧气清除作用来表示。另外,在足够和恒定重量百分比的催化剂钴的存在下,1克清除(氧气)的共聚酯在膜中进行4倍稀释时,可提高效率30%以上。在成品瓶组合物中,通过在共聚酯层中进行4倍稀释,清除能力可在84天以上加倍,且在168天以上其功效提高50%。尽管不想受理论局限,但申请人相信,(存在于清除层中的)共聚酯起着钴吸引物的作用。因此,大量的钴(用作催化剂)最终在需要它的地方(在共聚酯中)其量均在本发明的使用限度范围内,而不论其使用量如何。申请人还相信,这种性能是由于使用了带有脂族基团的钴催化剂。这样,优选的催化剂为脂族羧酸钴。辛酸钴是特别优选的,因为它可表现出这些性能,它使得共聚酯能够最佳地进行氧气吸收,而且还因为在商业上可得到在溶剂中的、本发明实施方案所需浓度和纯度的该物质。实验发现,经稀释的共聚酯具有较高的清除能力,申请人注意到,作为该效果的负面作用,共聚酯在达到其完全清除能力之前有较长的诱导期。实施方案Ⅲ-G清除氧气的瓶盖衬里的共同使用如上所述,氧气进入啤酒瓶的一种可能途径是透过瓶盖衬里材质。通过使用具有氧气清除能力的瓶盖衬里,可很好地防止这种可能的氧气污染途径。另外,由于瓶盖衬里直接与瓶中的液上氧气接触,因此清除氧气的瓶盖衬里可用于产生附加清除能力以消除液上氧气。这种瓶盖衬里也可含有在干燥和潮湿条件下都具有氧气清除能力的本发明共聚酯氧气清除剂。然而,瓶盖衬里的环境可允许使用仅在潮湿条件下具有氧气清除能力的其它清除剂,如铁基氧气清除剂。美国专利No.4840240公开了一种包含铁基氧气清除剂的瓶盖衬里。氧气清除剂在瓶盖衬里中的任选使用和氧气清除剂的含量代表用于控制本发明多层瓶的氧气清除能力和/或保藏期的另一实施方案。用于本发明的优选瓶盖衬里在瓶盖外(金属或塑料)层和内衬之间包含氧气清除剂,所述内衬是氧气可渗透的(而且对于铁基清除剂来说,也是水蒸气可渗透的)。前述内衬可用于将清除剂与瓶装产品隔绝开来,同时让液上氧气进入清除剂中以被消耗掉。这种包括金属或塑料外层、氧气可渗透内衬/层和在该两层之间的氧气清除剂的瓶盖可事先制造和储存(于低氧气环境中,如果必要的话),这样在灌装瓶时可立即使用。因此,通过使用清除氧气的瓶盖衬里,可最终调节适于灌装瓶工艺的氧气清除能力和/或保藏期。实施方案Ⅲ-H多氧气清除层的应用尽管本公开内容大多涉及在瓶壁中仅具有单氧气清除层的瓶,但也可预见多氧气清除层的应用。例如,具有结构A/B1/A’/B2/A(其中A为PET,B1为清除剂外层,A’为原生或回收的PET,B2为清除剂内层)的五层瓶壁可很好地使用回收的PET。该实施方案还有这样一种结构,其中B1层可最适于清除由瓶外渗入的氧气,且B2层可最适于清除瓶腔内的氧气。氧气渗透速率与保藏期之间的关系显然,氧气在特定储存条件下进入瓶腔的速率与瓶装产品的保藏期之间存在一个相互关系。本公开内容的前述部分已公开了各种方法,它们可简单地且成本上有效地将氧气渗透速率调节到所需水平上,这样可保证所需的瓶装产品保藏期。参考图2和3,可有助于进一步理解氧气渗透速率与保藏期之间的关系。图2所示的理想数据可代表塑料瓶的氧气渗透模型。在图2中,Y轴表示氧气渗透速率(以任何合适单位的体积/瓶壁单位面积来表示),X轴表示时间。所有数据都针对具有给定总厚度的瓶。对于实际的本发明瓶而言,其总厚度通常为约10-25密耳。因为PET在给定条件下具有固定的O2渗透速率,所以具有PET壁的瓶的(氧气)渗透速率是恒定的。具有PET/EVOH/PET壁的瓶的(氧气)渗透速率也是恒定的,但通常小于PET的,因为固定厚度瓶壁的EVOH层部分比PET的被动O2隔绝性能要好。如以上部分(Ⅲ-D)所描述的,给出了在几种不同的共聚酯清除剂中间层稀释水平下,具有PET/清除剂共聚酯/PET壁的瓶的情形。因为共聚酯是一种优异的氧气清除剂,所以其消耗氧气的速率比氧气透过瓶的PET外层的速率要快。共聚酯的这种特征即使在高稀释剂含量下也可存在。仅为了本讨论的缘故,图2中显示出,在中等以上稀释剂水平下,不再存在完全氧气消耗作用。按照类似方式,可以看出,更高稀释剂水平是氧气更加可渗透的,这与以上Ⅲ-D部分的本公开内容一致,其中使用了一定量的可调节氧气清除能力(以及速率和瓶保藏期)的稀释剂。在图2中,所示共聚酯瓶的渗透速率最初与PET瓶大约相同,因为,在共聚酯的清除能力达到其完全氧气清除能力之前,存在一个活化期(延迟期)。这种延迟作用并不重要,而且容易通过各种技术加以克服。一种克服这种延迟作用的简单方法是事先制造该瓶,然后在灌装之前将该瓶储存几天(在活化期内)。在共聚酯的清除能力完全消耗之后,清除(氧气)的共聚酯曲线最终回到PET水平上。
通过渗透经由瓶壁进入瓶的氧气量等于渗透速率(图2中的Y轴)与这种渗透速率持续时间的乘积。这样,对于图2中三条曲线任何一条来说,通过渗透经由瓶壁进入瓶的氧气量是该曲线下的面积。对于任何给定的应用(瓶装产品),其耐氧气的允许量通常为氧气进入瓶腔中的最大量。产品对氧气的耐受值可以在一个相对基础上给出,如每百万份的份数,但这种数据容易转化成基于瓶尺寸或瓶装产品重量的最大氧气量。图3所示曲线下的面积与图2曲线相似。对于三条曲线中的每一条来说,每条曲线下的面积是相同的,且等于给定产品的最大氧气允许值。再次参考图3,可以看出,一旦在坐标轴上显示出最大氧气耐受值(每条曲线下的面积),那么就容易确定每种瓶的保藏期。
实施例制瓶在Nissei 250TH一步注射拉伸吹模机上,制造出12盎司瓶(容量为433毫升,31.1克重量)。仅使用双面机器的一面。在前述美国专利№5141695中,有对Nissei 250TH机器的更完整描述,在此将其并入本文作为参考。该装置的24毫米直径的A面螺旋体据估计可耐受对所用模具的16次冲击。当A-B-A瓶结构中B层的目标含量为总预型件的10重量%时,压缩比为2.4∶1的B面螺旋体据估计也能经受16次冲击。使用Shell 5900 PET作为试验B层以确立各种条件,因为它在粘度上与包含约96重量%PET和约4重量%PBD的清除(氧气)的共聚酯相似。使用PET来稀释共聚酯(具有4重量%PBD的PET)配方,这样该清除(氧气)的共聚酯可组成25-100重量%的B层。如果使用催化剂,所用催化剂为100ppm钴;如果使用二苯甲酮,二苯甲酮为100ppm,两者都基于B层的总重(即,共聚酯和稀释剂)。将钴和二苯甲酮加到以前制备得的混有活性层物料的浓缩物颗粒装置中。
以下描述所用工艺条件的具体实施例。将Shell 7207级PET装入层挤出机中。使用该B层挤出机来熔化以下颗粒的干混物a)97份清除剂共聚酯PET和4重量%PBD(实施方案Ⅱ-B)b)2份蓝色促进剂,其为0.5重量%钴(辛酸盐的形式)在PET中的浓缩物c)1份白色促进剂,其为1.0重量%二苯甲酮在PET中的浓缩物以上b)和c)中的浓缩物可这样制备在双螺杆挤出机中,熔融混合适当量的每一组分,然后收集颗粒产品。从加料口至喷嘴,设定A面(层)挤出机的外套温度如下265、265、265和265℃。相应的B面(层)温度为250、250、270和260℃。热流道单元都设定为270℃,模温度为~10℃。总循环时间大约为32秒/部件。对瓶组合物的显微分析表明,B层厚度大约为瓶壁的11%(目标值为10%)。三层厚度在瓶的各个位置上有变化,靠近瓶颈处较厚,靠近密封底部处较薄。对于希望得到不同的三层厚度分布的本领域技术人员来说,显然可以调节工艺设定值或顺序。实施例1-6制造出一系列瓶(表示为实施例1-6),这些瓶的总侧壁厚为约20密耳,分别重约31克,其容积适于盛装约12盎司饮料,且具有三层(A/B/C)瓶壁结构。对于每个实施例瓶,(PET)外层A为约15密耳,中间层B(清除剂层)为约2密耳,而(PET)内层C为约3密耳。对于实施例1-6中的每一个来说,所用清除(氧气)的共聚酯包含约4重量%的分子量为1230的PBD链段以及约96重量%的聚酯链段。下表3进一步描绘了每一实施例的中间(B)清除剂层的组成。
在图4中,图示了实施例瓶1-6的氧气渗透数据。该数据是通过用氮气清洗实施例1-6瓶中的所有空气而得到的。氧气渗透性是使用MOCON Oxtran试验装置,在室温下(约22℃)于几天内测定的。结果(图4)表明,清除(氧气)的共聚酯瓶的氧气隔绝性能随着时间逐步提高。在约三周的共聚酯活化期之后,具有足够的氧气清除能力(即,在中间层B中至少有50重量%的共聚酯)和约100ppm钴的瓶表现出优异的氧气隔绝性能,即,零氧气渗透。这种优异性能可保持120天以上,而在300天时试验终止后,没有迹象表明在零氧气渗透方面的变化。在B中间层中具有较低共聚酯百分比(如,在实施例2中为25重量%)的瓶所产生的氧气清除能力不足以达到零氧气渗透,但得到了低(近零)稳定态值。应该注意,图4中Y轴的渐进量以千分之几毫升氧气/每天·每瓶计,这样,非常小的错误和/或误读就可表现出经放大的变化值。
表3三层清除剂瓶实施例1-6
实施例7-14作为另一系列瓶,实施例7-14的瓶经过了不同的工艺步骤。作为一种模仿液上氧气的方法,每个瓶都灌装了含有2重量%氧气的气体,然后通过将间隔装配的铜板粘合到瓶上,以气密方式进行密封。这应该看作一种严重的液上氧气条件,因为整个瓶的氧含量为2重量%,而不象已灌装瓶的情形那样,仅为液面上少量的空间。在22℃和100%的相对湿度下,使用MOCON Oxtran试验装置,监测这些系列瓶的氧气重量百分比几天以上。实施例7-14所有的瓶都在B层中包含100ppm钴和100ppm二苯甲酮。实施例7-14的瓶将在表4中得到进一步表征。
表4三层清除剂瓶实施例7-14
图5描绘了实施例7-14的数据,这些数据表明(除了在B层中没有清除(氧气)的共聚酯的实施例7和8的对照外),来自瓶腔内的氧气被消耗掉了。图5中的数据是在22℃和100%相对湿度下得到的。图6也描绘了实施例7-14的数据。图6中的数据是在60℃和0%相对湿度下得到的。同样,这些数据显示,来自瓶腔内的氧气被B层中的清除(氧气)的共聚酯消耗掉了。实施例15-18如上所述,可以看出,当以单位重量共聚酯为基础进行描述时,稀释剂如PET对清除(氧气)的共聚酯的稀释作用可提高氧气清除能力。实施例15-18的数据可用于说明这种效果。实施例15-18的共聚酯膜都含有4重量%的PBD链段,余下的共聚物为聚酯链段。对于所有的实施例15-18,还使用了100ppm二苯甲酮和100ppm钴。二苯甲酮和钴的ppm是基于膜的总重,即,清除(氧气)的共聚酯加上稀释剂的总重量。下表5将进一步表征这些膜。
表5清除(氧气)的共聚酯膜实施例15-18<
使用与美国专利申请No.08/717370(递交于1996年9月23日)中实施例12-15的类似方法,测定实施例15-18四种膜的氧气清除能力。使用5克膜样品,将干燥剂放入每个500毫升罐中以产生和保持0%的相对湿度环境。结果在图7中给出。从图7显然可看出,当共聚酯与稀释剂混合作为A/B/A瓶壁结构中的B层使用时,清除(氧气)的共聚酯具有较高的氧气清除能力(以单位重量共聚酯所清除的量计)。
本发明的说明书和实施例主要公开了制造氧气清除多层瓶的方法。本领域普通技术人员可以认为,其它各种容器,如杯子、碗、盘子等都可得益于本发明的应用,因此应该看作在本发明的范围之内。另外,清除(氧气)的共聚酯在0%相对湿度下的效力(参见实施例15-18)表明,它即使在干燥环境中也是一种有效的氧气清除剂,这使得它适用于这种环境,如用于包装氧敏电子元件。
权利要求
1.一种用于储存食品的容积约0.03-4升的基本上为零氧气渗透的热塑性容器,它具有总厚度约0.1-2毫米的多层器壁。
2.根据权利要求1的容器,其中所述容器在约30-365天内,在环境储存条件下,在约4-25℃的温度范围内,允许以产品重量计1ppm以下的外部大气氧气渗透到产品中;而且其中所述时间期限是从灌装和密封该容器之时开始算起的。
3.根据权利要求2的容器,其中所述时间期限在约60-365天的范围内。
4.根据权利要求2的容器,其中所述时间期限在约60-180天的范围内。
5.根据权利要求1的容器,其中所述多层瓶壁的至少一层包含氧气清除用共聚酯,所述氧气清除用共聚酯包含占大多数的聚酯链段和氧气清除量的聚烯烃低聚物链段。
6.根据权利要求5的容器,其中所述共聚酯包含约2-12重量%的分子量约1000-3000的聚丁二烯低聚物链段和约88-98重量%的聚酯链段。
7.根据权利要求1的容器,其中所述容器还包括底部,该底部可选地比器壁要厚且可选地为整体结构。
8.根据权利要求1的容器,其中所述容器还包括用于连接密封装置的部分,其中所述容器的该部分可选地比器壁要厚且可选地为整体结构。
9.根据权利要求1的容器,其中所述容器为瓶。
10.根据权利要求9的瓶,其中所述多层瓶壁的透明度至少等于具有类似总壁厚的整体聚酯瓶壁透明度的70%。
11.一种具有食品储存腔的近零氧气渗透的热塑性瓶,所述瓶包括可界定瓶腔底的底部、以及连接到底部并从底部延伸开来形成瓶腔壁的通常为圆柱状的多层侧壁,这样可使瓶腔具有必要的容积;所述侧壁终止于瓶腔上部,形成可界定出一个适于连接到瓶盖上的开口;其中侧壁的内层是由共聚酯清除剂配方组成的,该配方包括占大多数的聚酯链段和氧气清除量的聚烯烃低聚物链段,而且其中所述瓶在灌装和盖盖以后,具有足够的氧气清除能力,这样可以(a)消耗并耗尽瓶腔内的氧气,(b)消耗并耗尽可经瓶盖开口进入的氧气,和(c)以大约与氧气从空气中进入清除(氧气的)内层的相同速率消耗掉氧气;其中在(a)、(b)和(c)下对氧气的几乎完全消耗作用至少保持这样一个氧气消耗水平上,即,在特定储存条件下目标瓶装产品保藏期所要求的水平。
12.根据权利要求11的瓶,其中通过一种选自以下的方法,可最大地且成本上有效地调节所述氧气清除能力和保藏期以满足产品要求,所述方法是(a)改变聚烯烃低聚物链段的分子量,(b)改变聚烯烃低聚物链段在清除(氧气)的共聚酯中的重量百分比,(c)在瓶壁和瓶底中可选地同时使用另外的氧气清除剂,(d)在清除剂内层中稀释所述清除(氧气的)聚酯,(e)改变清除剂内层偏心放置的程度,(f)在瓶壁内使用氧气清除剂催化剂,(g)可选地同时使用具有氧气清除能力的瓶盖,(h)使用多层氧气清除层,(i)改变所用氧气清除剂的量,(j)改变清除剂层的厚度,和(k)前述方法的结合。
13.根据权利要求11的瓶,其中所述共聚酯包含约2-12重量%的分子量约1000-3000的聚丁二烯低聚物链段和约88-98重量%的聚酯链段。
14.根据权利要求13的瓶,其中所述聚酯链段选自PET、PETI、PETN、APET、PEN、PETB、其共聚物、其掺和物、以及前述物质的混合物。
15.根据权利要求11的瓶,其中所述瓶底也具有侧壁一样的氧气清除多层结构。
16.根据权利要求11的瓶,其中所述产品的目标保藏期约为30-365天,而且其中所述储存条件包括在约4-25℃范围内的温度。
17.一种用于制备多层氧气清除瓶的方法,它包括以下步骤(ⅰ)使用多层瓶制造设备制成第一树脂层,(ⅱ)使用多层瓶制造设备制成第二树脂层,(ⅲ)使用多层瓶制造设备制成第三树脂层,和(ⅳ)使用多层瓶制造设备将所述第一、第二和第三树脂层转变成多层瓶成品;其中所述设备具有可以独立加工至少两种不同的树脂的装置(A),和制成具有至少三层的多层瓶的装置(B),而且其中所述瓶的至少一层包括共聚酯氧气清除剂树脂配方,该配方包含占大多数的聚酯链段和氧气清除量的聚烯烃低聚物链段。
18.根据权利要求17的方法,其中所述第一、第二和第三层是同时形成的。
19.根据权利要求17的方法,其中所述第一、第二和第三层是按序形成的。
20.根据权利要求17的方法,其中所述共聚酯包含约2-12重量%的分子量为约1000-3000的聚丁二烯低聚物链段和约88-98重量%的聚酯链段。
21.根据权利要求20的方法,其中所述聚酯链段选自PET、PETI、PETN、APET、PEN、其共聚物、其掺和物、及其混合物。
22.根据权利要求17的方法,其中首先制成所述多层瓶的预型件,然后再将该预型件扩展至最终的瓶容积。
23.根据权利要求22的方法,其中对所述瓶预型件进行特殊温度处理以提高所得瓶的性能。
24.根据权利要求22的方法,其中所述共聚酯包含约2-12重量%的分子量为约1000-3000的聚丁二烯低聚物链段和约88-98重量%的聚酯链段。
25.根据权利要求24的方法,其中所述聚酯链段选自PET、PETI、PETN、APET、PEN、其共聚物、其掺和物、及其混合物。
26.根据权利要求17的方法,其中对所述瓶进行特殊温度处理以提高其性能。
27.根据权利要求17的方法,其中所述成品瓶在使用前储存在与空气中氧气含量相比氧气减少了的环境中。
28.根据权利要求17的方法,其中所述瓶是具有层结构A/B/C的三层瓶,其中界定瓶腔的C层由原生制瓶聚酯组成,B层由权利要求17的共聚酯氧气清除剂组成,而A层由选自原生聚酯、回收的聚酯、再生聚酯、及其混合物的制瓶聚酯组成。
29.根据权利要求28的方法,其中A层比C层厚约2-10倍。
30.根据权利要求17的方法,其中所述瓶是具有层结构A/B/C/D/E的五层瓶,其中界定瓶腔的E层由原生制瓶聚酯组成,B和D层由权利要求17的共聚酯氧气清除剂组成,C层由制瓶聚酯组成,A层由制瓶聚酯组成,而且其中C和A层的聚酯独立选自包括原生聚酯、回收的聚酯、再生聚酯、及其混合物的聚酯组。
31.一种多层热塑性容器,其中至少一层包含具有以下组成的组合物(a)包含占大多数的聚酯链段和氧气清除量的聚丁二烯低聚物链段的共聚酯,(b)相对其中存在钴的那层的重量,约50-500ppm的钴,其中所述钴是以脂族羧酸钴的形式提供的。
32.根据权利要求31的容器,其中所述组合物还包含相对其中存在二苯甲酮的那层的重量,约50-500ppm的二苯甲酮。
33.根据权利要求31的容器,其容积为约0.03-4升,且总壁厚为约0.1-2毫米。
全文摘要
本发明公开了具有氧气清除能力的多层塑料瓶,该瓶在特定储存条件下,在瓶装产品的预定保藏期内,足以在瓶腔中保持基本上零或近零(根据产品要求)的氧气量。该瓶的特征在于具有包含氧气清除剂的层,因此可用于将啤酒、以及在目标产品保藏期内几乎需要完全不存在氧气的其它产品装瓶。
文档编号B65D1/02GK1231642SQ97198151
公开日1999年10月13日 申请日期1997年9月22日 优先权日1996年9月23日
发明者保罗·詹姆斯·卡希尔, 唐纳德·F·阿克利, 小罗曼·F·巴斯基, 江伟龙, 戴维·C·约翰逊, 沃尔特·M·尼德雷克, 乔治·埃德蒙·罗特, 陈瑞祥 申请人:Bp阿莫科公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1