基于云计算汽包水位智能测控的锅炉系统的制作方法_3

文档序号:9394435阅读:来源:国知局
门调节装置自动调大排污阀的开度。
[0044]通过上述操作,可以避免排污过大,造成能源的浪费。通过增加汽包水位检测,进一步增加了测量的数据的准确。
[0045]监控诊断控制器20将测量的水位、汽包I中的水单位时间的质量变化、蒸汽产生量、锅炉输入的水量以及蒸汽质量加上锅炉汽包I水的质量变化之和与输入锅炉的水的质量的比值数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。
[0046]客户端14根据得到的数据,可以输入阀门9的开度的数值,通过云端服务器13传递给监控诊断控制器20,通过监控诊断控制器20来手动调节排污阀的开度。
[0047]作为优选策略,监控诊断控制器20可以通过计算蒸汽质量、汽包水的变化质量与排污质量三者之和与输入锅炉的水的质量的比值来计算锅炉的水损失。如果计算的水损失超过上限,监控诊断控制器20则发出报警提示。
[0048]监控诊断控制器20将蒸汽质量、汽包水的变化质量与排污质量及其蒸汽质量、汽包水的变化质量与排污质量三者之和与输入锅炉的水的质量的比值数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。
[0049]如果计算的水损失超过上限,客户端13则发出报警提示。
[0050]作为优选,设置测量汽包中水的温度和汽包压力的装置,所述装置与监控诊断控制器20数据连接,监控诊断控制器20根据测量的温度和压力计算汽包中水的质量变化。通过温度和压力计算水的质量,使得结果更加准确。
[0051]监控诊断控制器20将汽包中水的温度和汽包压力数据传送到云端服务器13,云端服务器13将上述数据传递给客户端14。
[0052]作为优选,汽包中设置测量蒸汽温度和压力的装置,所述装置与监控诊断控制器20数据连接,监控诊断控制器20根据测量的温度和压力以及汽包中水位高度,计算汽包中蒸汽的质量。这样,在前面的计算中,根据汽包中蒸汽的质量变化、输出蒸汽的质量和汽包中水的质量变化三者之合与输入锅炉的水的质量的比值的大小来控制排污阀的开度。这样使得计算结果更加准确。
[0053]同样,计算水的损失的时候也需要将汽包中蒸汽的质量变化、输出蒸汽的质量和汽包中水的质量变化以及排污量四者之和与锅炉输入水量进行对比。
[0054]作为优选,可以在排污管上设置温度计,监控诊断控制器20根据排污的水温、水的成分以及流速计算单位时间的排污的水的质量。
[0055]作为优选,在监控诊断控制器20中预先存储蒸汽的温度压力与密度的关系数据,以便计算蒸汽质量。也可以预先存储水的温度与密度关系数据,一边计算汽包中水的质量。对于污水的温度、成分以及密度的关系也预先存储下监控诊断控制器20中。
[0056]前面提到的所有的测量数据和计算数据都可以通过监控诊断控制器20送到云端服务器13,云端服务器13将上述数据传递给客户端14。客户端及时能够得到系统运行的?目息O
[0057]作为优选,换热器为供暖散热器。当然污水可以直接进入供暖散热器中进行供暖,如图1所示。当然,散热器中的循环水也可以通过换热器与排污水进行换热后,循环到供暖散热器进行供暖。
[0058]所述散热器包括上集管和下集管,所述上集管和下集管之间连接散热管,如图2、3所示,所述散热管包括基管15以及位于基管外围的散热片17-19,如图2、3所示,所述基管的横截面是等腰三角形,所述散热片包括第一散热片17和第二散热片18、19,所述第一散热片17是从等腰三角形顶角向外延伸的,所述第二散热片18、19包括从等腰三角形的两条腰所在的面向外延伸的多个散热片18以及从第一散热片向外延伸的多个散热片19,向同一方向延伸的第二散热片18、19互相平行,例如,如图所示,从等腰三角形第二腰21 (左边的腰)向外延伸的第二散热片18、19互相平行,从等腰三角形第一腰20 (即右边的腰)向外延伸的第二散热片18、19互相平行,所述第一散热片17、第二散热片18、19延伸的端部形成第二等腰三角形,如图2所示,第二等腰三角形的腰的长度为S ;所述基管15内部设置第一流体通道16,所述第一散热片17内部设置第二流体通道24,所述第一流体通道17和第二流体通道连通24。例如,如图2所述,在等腰三角形顶角位置连通。
[0059]—般散热管都是四周或者两边设置散热片,但是在工程中发现,与墙壁接触的一侧的散热片一般情况下对流换热效果不好,因为空气在墙壁侧流动的相对较差,因此本发明将等腰三角形底边22设置为平面,因此安装散热片的时候,可以直接将平面与墙壁紧密接触,与其它散热器相比,可以大大的节省安装空间,避免空间的浪费,同时采取特殊的散热片形式,保证满足最佳的散热效果。
[0060]作为优选,所述第二散热片18、19相对于第一散热片17中线所在的面镜像对称,即相对于等腰三角形的顶点和底边所在的中点的连线所在的面镜像对称。
[0061]作为优选,第二散热片垂直于第二等腰三角形的两条腰延伸。
[0062]等腰三角形的边的长度一定的情况下,第一散热片17和第二散热片18、19越长,则理论上换热效果越好,在试验过程中发现,当第一散热片和第二散热片达到一定长度的时候,则换热效果就增长非常不明显,主要因为随着第一散热片和第二散热片长度增加,在散热片末端的温度也越来越低,随着温度降低到一定程度,则会导致换热效果不明显,相反还增加了材料的成本以及大大增加了散热器的占据的空间,同时,换热过程中,如果第二散热片之间的间距太小,也容易造成换热效果的恶化,因为随着散热管长度的增加,空气上升过程中边界层变厚,造成相邻散热片之间边界层互相重合,恶化传热,散热管长度太低或者第二散热片之间的间距太大造成换热面积减少,影响了热量的传递,因此在相邻的第二散热片的距离、等腰三角形的边长、第一散热片和第二散热片的长度以及散热器基体长度之间满足一个最优化的尺寸关系。
[0063]因此,本发明是通过多个不同尺寸的散热器的上千次试验数据总结出的最佳的散热器的尺寸优化关系。
[0064]所述的相邻的第二散热片的距离为LI,所述等腰三角形的底边长度为W,所述第二等腰三角形的腰的长度为S,上述三者的关系满足如下公式:
Ll/S*100=A*Ln(Ll/W*100)+B* (Ll/ff) +C,其中 Ln 是对数函数,A、B、C 是系数,0.68〈Α〈0.72,22〈B〈26,7.5<C<8.8 ;
0.09〈L1/S〈0.11,0.ll<Ll/ff<0.134mm<Ll<8mm40mm <S<75mm45mm <ff<85mm
等腰三角形的顶角为a,110° <a<160°。
[0065]作为优选,基管长度为L,0.02<ff/L<0.08,800mm〈L〈2500mm。
[0066]作为优选,A=0.69,B=24.6,C=8.3。
[0067]需要说明的是,相邻第二散热片的距离LI是从第二散热片的中心开始算起的距离,如图1所示的那样。
[0068]通过计算结果后再进行试验,通过计算边界以及中间值的数值,所得的结果基本上与公式相吻合,误差基本上在3.54%以内,最大的相对误差不超过3.97%,平均误差是
2.55%o
[0069]优选的,所述的相邻的第二散热片的距离相同。
[0070]作为优选,第一散热片的宽度要大于第二散热片的宽度。
[0071]优选的,第一散热片的宽度为bl,第二散热片的宽度为b2,其中2.2*b2〈bl〈3.1*b2;
作为优选,0.9mm<b2<lmm, 2.0mm<bl<3.2mm。
[0072]作为优选,第二流体通道的宽度为第二散热片的宽度的0.85-0.95倍,优选为
0.90-0.92 倍。
[0073]此处的宽度bl、b2是指散热片的平均宽度。
[0074]优选的,在第一和/或第二散热片上设置孔23,用于破坏层流底层。主要原因是第二散热片主要通过空气的对流进行换热,空气从第
当前第3页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1