陶瓷连续微波干燥设备和方法

文档序号:4735952阅读:198来源:国知局
专利名称:陶瓷连续微波干燥设备和方法
技术领域
本发明涉及制造陶瓷材料的方法和设备。具体地说,本发明涉及一种陶瓷连续微波加热及干燥的基本上无微波辐射的设备和方法。
2.有关技术的讨论常规的加热或干燥一般地包括对流或者对流与辐射组合的燃气或电流加热,在陶瓷材料制造中普遍地应用。不过,与这些常规加热方法相关联的缓慢的加热速率和不良温度控制导致高能量耗费和不一致的产品质量。此外,采用这两种加热模式一般会造成陶瓷物体内部温度差别,因为这两种加热模式只施加在表面上并依靠陶瓷物体的导热率,从而影响从表面以下到物件中心的温度。
用微波辐射进行工业性加热已经成功地应用在加速传统陶瓷的干燥上。与常规的加热相比,在具有足够吸收率时微波加热提供较高的加热率,并具有较好的温度控制,因此导致较低的能量消耗和潜在较佳的产品质量。此外,利用微波能量可提供对陶瓷制品施加均匀的能量,而不是如上述常规的对流和辐射模式加热情况中对制品表面加热。最后,由于陶瓷体是直接通过微波能量与陶瓷体互相作用而加热,因此微波加热比常规干燥快得多。
虽然微波加热比常规对流和辐射加热更快和有效,但微波加热的一个缺点是产生微波辐射排放。这些微波辐射排放必须加以控制(即从大气中屏蔽),以便符合有关规章制度机构(例如,OSHA,FCC,CEPT)所制订的排放规章。理想地,任何微波干燥器操作应该使环境保持接近于零排放。一般而言,在微波干燥操作中微波的屏蔽是通过使用衰减隧道或水捕集器(water traps)而完成的,并且另外也曾附加地采用铝隔板以对逃离衰减隧道的微波排放提供衰减。虽然使用衰减隧道、水捕集器和铝隔板可对微波辐射排放提供足够的屏蔽,但对于陶瓷制品的尺寸以及需要干燥的陶瓷制品的总装载量均有限制。此外,使用衰减隧道、水捕集器和铝隔板迫使干燥操作不能连续进行,因为在陶瓷制品干燥时干燥腔(室)必须与大气机械密封隔绝,而在一旦微波干燥完成后必须打开。
PCT申请WO 93/17449披露了一种利用微波设置(或加速干燥)形成生陶器器皿制品的连续生产方法,它综合一种典型的不连续干燥操作。干燥步骤是通过切断微波和和开启微波炉门,当在炉中移出含有已经干燥的器皿的微波货盘后将含有陶瓷制品(生陶器)的货盘放入,并在此后关闭微波炉门。该关闭/密封和开启/切断微波(即非连续干燥)操作是为了当微波运行时将微波隔离于大气,当不产生微波时开启微波炉,由此防止微波辐射外逸。
发明概述因此本发明的目的是提供可以克服上述常规微波加热的短处而对陶瓷进行连续微波加热的一种设备和一种方法。具体地说,提供一种能够连续干燥陶瓷制品的设备,而产生很少或没有微波辐射排放。
本发明因此提供一种微波加热陶瓷的设备,它包括一个加热陶瓷的、具有入口和出口端以及一个陶瓷制品沿其传输的流水轴线的微波加热室。邻近微波加热室的入口和出口端分别定位有第一和第二衰减室,各衰减室均有入口和出口端。一个具有材料流动通道的进口室连接于第一衰减室的入口端,其中部分材料流动通道与流水轴线成一个角度。连接在第二衰减室的出口端的是具有第二材料流动通道的出口室;又是至少部分材料流动通道与流水轴线成一个角度。较佳地,闸门机构把各入口和出口室分别与各自的第一和第二衰减室隔开;这些闸门机构是用来防止微波辐射外逸。最后,干燥设备包括传输陶瓷制品的传输系统,以使陶瓷制品顺序地通过入口和第一衰减室、微波加热室和第二衰减室以及出口室。
本发明的第二方面涉及一种干燥陶瓷材料的方法,它包括把陶瓷制品放置在空气支承支架上使陶瓷制品支承在空气垫上。支承的陶瓷制品然后放在传输系统上(例如传送带),并使陶瓷材料相继地先通过入口室,然后通过第一衰减室。陶瓷材料然后进入微波加热室,并通过一个可调节的微波动力源发出的电磁微波辐射的照射使其承受预定的初始热量。此后陶瓷材料相继地通过第二衰减室,最后通过出口室。
附图简要说明

图1示意地示出在此描述的本发明干燥设备的实施例;图2a~2c示出在此描述的干燥设备的闸门机构的工作顺序;图3示意地示出在此描述的本发明干燥设备的第二实施例;图4A示意地示出在此描述的本发明图1中的干燥设备的改型实施例;图4B示意地示出在此描述的本发明图3中的干燥设备的改型实施例;图4C示意地示出在此描述的本发明干燥设明的第三实施例;图5为在图1,3和4A~C设备中使用的空气支承成形支架的剖面图。
发明的详细说明在图1中显示的本发明,即一种连续干燥陶瓷材料的干燥设备10包括一个微波加热室12,其中陶瓷材料承受微波,并随后予以干燥。微波加热室12包括一个入口区域14和一个出口区域16,和用微波不可透过的及非磁性材料制成的顶部18及侧壁20,较佳地这种材料显示高导电性和在200℃温度范围中抗氧化性。加热室的各顶部及侧壁具有内、外壳,并在二者中间设置绝缘层(例如玻璃纤维)。微波加热室的配置使一块陶瓷66能够在其被加热及干燥过程中,沿着微波加热室材料流水轴线,即标志为A-B的线,连续地通过加热室12内部。该流水轴线大约是陶瓷材料通过微波加热室的方向。换言之,在此描述的干燥设备为一种连续通过的微波加热室。
用于引导微波功率进入微波加热室的微波源22连接于微波加热室。较佳地,微波源22为一个可调节的微波产生器或源,它直接或间接连接于微波加热室12。此外,该设备还可包括微波功率控制系统(未示)作为连续控制和调节微波功率之用。该控制系统更详细的描述在共同待批、共同转让的申请中,即美国专利申请No.60/142,610。另外,加热室最好是多模态的,即它可在一个给定的频率范围内支持大量的共震模态,在一个更佳的实施例中,加热室包括一个模态搅拌器(mode stirrer),以便在微波加热室中提供更均匀的电场分布。
邻近微波加热室12的入口端14和出口端16各自定位有第一和第二衰减室24、26,各衰减室均有入口端28和出口端30。在所示实施例中,第一和第二衰减室24、26的定位使其成为微波加热室12的材料流水轴线(A-B线)的直线延伸。可以考虑各衰减室能够相对材料流水轴线形成角度地定位。
这些衰减室的设计形式和包含的材料使其尽量减少微波加热室中的微波能量的排放,即衰减。如同微波加热室,衰减室由非磁性材料的内壳和外壳构成,并在其间设置一层绝缘材料。此外,衰减室设计成为在平均加热速率25℃下可抵御大约200℃的最高温度。
衰减室可以包括由能吸收微波能量的材料制成的衰减设备(未示)并由此加热和散发能量。在一个实施例中,该衰减设备包括水捕集器,它简单地包括一个其中有连续流动的水的连续盘绕软管。在水捕集器的另一个可替代实施例中包括一低损耗材料的连续通道,水可流过该连续通道,材料的一个例子是特氟龙(Teflon)或类似材料块。在任何一个这些可替代的水捕集器实施例中,水可以通过添加诸如氯化钠(NaCl)一类的可溶性盐使吸收微波能量的能力变得更加有效。此外,在任何一个实施例中,水通过冷却环路进行再循环是可以接受的。
在另一个实施例中,衰减设备简单地包括设置在衰减室的壁上的部分碳化硅材料。
作为替代,衰减设备包括钉状陷阱(spike trap)衰减设备,它包括多个非磁性材料(例如铝)棒安装在衰减室的壁上。钉状陷阱衰减设备的功能在于为微波能量提供曲折的反应路线,使微波能量的逃逸尽量减少。
在一个较佳实施例中,各第一及第二衰减室包括钉状陷阱及水捕集器,其中相应地披露的钉状陷阱设备邻近微波加热室,而设置的水捕集器设备邻近衰减室的入口及出口端。
干燥设备10还包括一个具有材料流水路线(flow path)、即标志为C-D线的入口室34。与流水路线联合一起的入口室连接到第一衰减室24的入口端,使至少一部分流水路线C-D相对于上述流水轴线A-B成一角度(α1);角度在0到90°之间。此外,干燥设备包括具有第二材料流水路线、即标志为E-F线的出口室36。与第二流水路线联合一起的出口室连接到第二衰减室26的出口端。如同入口室一样,出口室的连接使至少一部分第二流水路线E-F相对于上述流水轴线A-B成一角度(α2);角度也在0到90°之间。较佳地,对应于入口室和出口室的流水路线相对于流水轴线A-B的角度(α1及α2)应该至少是45°而更好是90°。其中至少部分入口室和出口室的流水路线相对于微波加热室的流水轴线A-B成一角度,这一结构的功能与标准微波系统相比为微波辐射的逃逸提供更加曲折的路线。换言之,即与那些包括入口室和出口室区域而整个流水路线形成0°的系统,和那些不具有入口室和出口室的系统相比。通过提供第一及第二流水路线而其中至少有部分流水路线与微波能量必须沿之通过的流水轴线形成角度,微波能量必须通行而达到大气的距离长度增加。由于电磁能随着能量行程的平方而衰退,这种配置的结果使从干燥设备逃逸的能量尽量减少。
较佳地,干燥设备包括闸门机构32a、32b,它们设置在各入口室和出口室34、36之间并使入口室34和出口室36分别与第一及第二衰减室24、26分隔。如同具有其一部分流水路线相对于流水轴线A-B形成角度的流水路线的入口室和出口室一样,当陶瓷材料66进入或离开衰减室24、26时,这些闸门机构的功能也是防止微波辐射排放的逃逸。闸门机构包括一对旋转闸门,即第一闸门38和第二闸门40。图2a~2c示出了闸门机构作用的顺序。第一闸门38沿陶瓷材料66在入口室34的通行路线滑动,直到陶瓷材料66通过闸门机构并进入衰减室24,于是第一闸门38向上旋转并离开陶瓷材料路线(箭头标记A),于是第二闸门40向下旋转并进入陶瓷材料路线(箭头标记B)。这些闸门由非磁性材料制成,在较佳实施例中第一及第二闸门由柔软的铜金属带制成。
在如图3所示的较佳实施例中,干燥设备10包括同样的加热室和第一及第二衰减室的配置,其唯一附加的特征是包含两个相继的入口室34A、34B和出口室36A、36B,分别被附加的闸门机构42A、42B隔开。由于唯一与图1中实施例的差别是增加附加的入口室及出口室和附加的一对闸门机构,图3中类似的零件用图1中详细示出的干燥设备的零件的同样参考数字标识。该实施例的好处在于在该实施例采用的闸门可以用简单气动的,或者在一较佳实施例中,伺服或级进控制及操作的非磁性材料(例如铝质)制成的闸门,这些闸门具有在完全关闭或开启位置之间的操作范围;例如,完全上、下的位置或完全左、右的位置。在此实施例中,两闸门机构32A和42A、32B和42B的操作对于各入口区域34A、34B和出口区域36A、36B在它们的开放/关闭位置之间是交错的;即当入口闸门中一个处于完全开放位置时另一个是完全关闭的。这种使各入口/出口室保持闸门交错开放/关闭的能力保证了微波操作只有在门关闭状态下才能进行。换言之,因为在微波操作的整个过程中至少干燥设备的入口和出口的一个门是关闭的,并由此阻碍任何微波辐射排放,因此可以保持接近于零排放的标准。应该注意,上述闸门机构32A、B和42A、B可以在此实施例中采用。
图4A示出一种图1所示的干燥设备实施例的改型,其中各入口及出口室位于接近它们各自的第一及第二衰减室;附加的特征是入口室一第一衰减室和出口室-第二衰减室各自形成蜿蜒的材料流水路线。由于这些入口/出口室和衰减组合的蜿蜒配置,因此不必使入口和出口室如上述图1中所详细描述的那样相对于衰减室和材料流水轴线呈90°角。该实施例的优点在于空间效率,如图1中实施例一样,它提供等同的微波能量向大气逃逸的最小限度,而在占用空间方面更加有效。对于图4A相似的零件用与图1中详细描述的干燥设备零件相同的参考数字标识。
图4B示出一种在图3中所示的干燥设备实施例的改型。在该实施例中,成对的单独入口和出口室邻近各自的第一和第二衰减室设置。各对入口及出口室显示为曲折的材料流水路线。如同图4A中先前的实施例,该实施例的一个优点在于其空间效率,因为如同图3中的实施例,它提供同样最小限度的微波能量向大气的逃逸;而在空间方面更加有效。与前面一样,对于图4B相似的零件用与图3中使用的干燥设备零件相同的参考数字标识。
图4C是干燥设备实施例的侧视图,它示出了如图4B所示干燥设备的改型实施例。各对入口及出口室分别连接于其相应的第一及第二衰减室设置,并一个垂直地堆放在另一个的顶上而形成垂直的曲折路线。同样,在空间设计方面更加有效,而同时仍提供必需的最小化的微波能量向大气的逃逸。对于图4C相似的零件用与图3中使用的干燥设备零件相同的参考数字标识。
上述各实施例还包括传输系统,以便运送陶瓷制品相继地通过各入口室、第一衰减室、微波加热室、第二衰减室和出口室。该传输系统包括传送装置和多个陶瓷材料支架,支架由传送装置传送通过干燥设备。合适的传送装置包括皮带和或链条驱动的传送装置。较佳的材料支架包括多个空气支承成形支架(air bearing contoured support),这些支架能够把陶瓷材料支承在空气垫上。图5示出一种空气支承成形支架68的实施例,其中空气供应到支架下面,并能经由一系列输送流道穿过支架,从而支承陶瓷制品;箭头70代表对陶瓷材料提供空气垫的空气。
利用具有部分流水路线相对于微波加热室的流水轴线形成角度的、较佳地用非磁性材料闸门与第一和第二衰减室隔开的入口室和出口室的配置,其功能是获得一种连续的干燥设备,它能够产生很少或没有微波排放;即低于工业容许极限10mW/cm2的水平。
在本发明的一个较佳实施例中,加热室14的最佳尺寸为65.5英寸宽、51.5英寸高、71英寸长。选用1/8英寸厚度的铝板作为微波加热室12的内外壳的材料,而玻璃纤维作为设置在内、外壳之间的绝缘层。较佳的衰减室尺寸为总长87.5英寸(钉状陷阱部分为36英寸和水捕集器为51.5英寸)、宽48英寸和高51.5英寸。钉状陷阱区域包括平行的5排共25只钉,各由3/8英寸圆头的铝棒构成。铝棒安装成在各排上的铝棒的中心线相隔约1.75英寸;配置的钉状陷阱设备安装在衰减室壁上从顶部到底部大约为12.5。
用来产生微波的微波源可包括任何常规的具有可调功率特征的磁电管。较佳地,使用的入射微波频率应大于约1GHz,较佳的是采用的频率在约1GHz到2.45GHz之间的范围内,即在美国指定的工业频率带。在其它国家,可以使用从100到10,000MHz的波长。此外,如上所述,入射微波的功率不需要大于如下的程度,即足以使陶瓷制品的温度上升到有效干燥陶瓷制品所需的温度的程度。具体地说,微波功率源应该具有可变的功率级别,其范围在1到75kW之间,更好的是在10到50kW之间。此形式的磁电管能够在体内产生足够热量,以使温度迅速提高到干燥水平,例如在小到1至10分钟内提高到约150℃。
在操作中,陶瓷材料放置在空气支承支架上并由空气垫支承。支承陶瓷制品的空气支承支架然后放置在传输系统上(例如传送带),并使陶瓷材料相继地通过入口室,然后通过第一衰减室。此后,陶瓷材料通过微波加热室,并在可调节的微波源发出的电磁微波幅射照射下经受预定的初始热能量。初始热能量定义为微波幅射量足以使陶瓷制品温度上升到有效干燥陶瓷制品所需的温度。此后陶瓷材料相继地通过第二衰减室,最后通过出口室。
在一个较佳实施例中,在实施干燥操作中所处的环境湿度范围从0.1到100%;利用该湿度含量环境的优点在于可以消除一般形成在薄壁陶瓷体表面上的干燥纹路。
已经考虑干燥设备可配置成为包括一个或更多的附加微波加热室,其位置邻近原有的微波加热室12,各具有同样的功率输出能力。包括附加的微波加热室可以用一个“加热时间分布线”(heating profile)加热陶瓷制品;即,迅速固化陶瓷制品外层或表皮需要的快速加热室,然后在第二微波加热室中进行正常而较低的加热,或与之相反(缓慢/快速加热)。
对于本技术领域熟练者应该知道在合理时间以内干燥制品所需的微波幅射量;即,对每一个陶瓷体所需合理干燥循环。在设定足以达到合理干燥循环的干燥过程的参数时应考虑包括陶瓷成份、陶瓷体的几何形状和干燥器的能力等因素。例如,对长度范围为9到36英寸、直径从3.0到7.0英寸的圆筒形薄壁陶瓷体,这种陶瓷体具有厚度小于4密耳(千分之一英寸)的蜂房状深坑并且蜂房密度范围为400到1600个/平方英寸,其干燥循环涉及使陶瓷体经受初始功率为在35到60kW范围之间的50kW,频率为915MHz的微波辐射。较佳地,对于这类薄壁体的总共干燥时间大约为5分钟或更少。
在此描述的方法特别适宜于在干燥薄壁陶瓷体中应用。在此用到的干燥系指把物体内液体含量减少到要求值,较佳地,干燥进行到某一程度,此时陶瓷制品可以搬运而不至于造成任何损坏或由此造成不可接受的变形。例如,薄壁圆筒形的陶瓷制品,作为已干燥的制品并干燥到足可以搬运,是水分少于其原始生坯状态水分的5%,而最好是小于1%的陶瓷制品。
虽然已经示出和描述了本发明的实施例,应该清楚地理解,本发明不限于这些,还可以在下列权利要求范围内多种多样地予以实施。
应该理解,本发明已经对于某些例证性的和具体实施例进行详细说明,应该认为本发明并不限制于这些,因为在不离开如所附权利要求定义的本发明的基本精神和范围前提下,可做出许多变型。
权利要求
1.一种对陶瓷微波加热的设备,它包括一个具有入口端及出口端和具有陶瓷材料流水轴线的微波加热室,陶瓷沿该轴线进行加热;一个引导微波功率进入微波加热室的微波源;一个设置在靠近微波加热室入口端的第一衰减室和一个设置在微波加热室出口端的第二衰减室;一个具有材料流水线和位置靠近第一衰减室的入口室,其中至少部分材料流水线相对于流水轴线成一角度;一个具有第二材料流水线和位置靠近第二衰减室的出口室,其中至少部分第二流水线相对于流水轴线成一角度;一个把陶瓷制品相继地传送通过入口室、第一衰减室、微波加热室、第二衰减室和出口室的传输系统。
2.按照权利要求1所述的设备,其特征在于,微波源的最大功率大于约1kW但小于约75kW,而陶瓷制品所承受的微波能量频率范围大于约1.0GHz。
3.按照权利要求1所述的设备,其特征在于,第一及第二衰减室包括由能够吸收微波能量和消散微波能量的材料制成的衰减设备。
4.按照权利要求3所述的设备,其特征在于,衰减设备包括或者水捕集器系统或者钉状陷阱系统或者二者的组合。
5.按照权利要求4所述的设备,其特征在于,钉状陷阱衰减设备的位置设置在靠近微波加热室,而水捕集器衰减设备分别靠近入口或出口室处。
6.按照权利要求1所述的设备,其特征在于,至少入口室和出口室的部分材料流水线相对于流水轴线成一角度,角度值至少大于45°。
7.按照权利要求1所述的设备,其特征在于,至少入口室和出口室的部分材料流水线相对于流水轴线成一角度,角度值为90°。
8.按照权利要求1所述的设备,其特征在于,入口室和出口室的材料流水线是曲折形。
9.按照权利要求1所述的设备,其特征在于还包括闸门机构,该机构把各入口室和出口室与相应的第一和第二衰减室隔开,以防止微波辐射排放的逃逸。
10.按照权利要求9所述的设备,其特征在于,闸门机构包括一对用柔性铜材料制成的旋转闸门。
11.按照权利要求1所述的设备,其特征在于,各入口室和出口室由连续的腔室构成,这些腔室彼此靠近接并被一包括一个闸门的闸门机构隔开,该闸门能够经过从完全地开启至关闭的位置并由非磁性材料制成。
12.按照权利要求9所述的设备,其特征在于,闸门用铝制成。
13.按照权利要求1所述的设备,其特征在于,传输包括传送装置和设置在其上的多个空气支承成形支架,该支架把陶瓷材料支承在空气垫上。
14.按照权利要求1所述的设备,其特征在于,第一和第二衰减室具有材料流水线,其中至少部分材料流水线相对于微波室材料流水轴线形成一角度。
15.按照权利要求1所述的设备,其特征在于,第一和第二衰减室具有曲折形的材料流水线。
16.一种干燥陶瓷材料的方法,它包括;把陶瓷制品支承在空气支承成形支架上,该支架提供空气垫以支承陶瓷制品,使陶瓷材料相继地通过入口室和第一衰减室;此后,使陶瓷材料进入微波加热室,并通过一可调节的微波功率源的电磁微波辐射对陶瓷材料进行照射使陶瓷材料受到预定的热能初始量,热能初始量为一个足以使陶瓷制品的温度上升到有效地干燥陶瓷制品的温度的微波辐射量,并在此后传送陶瓷材料相继地通过第二衰减室和出口室。
17.按照权利要求16所述的方法,其特征在于,微波加热室包括材料流水轴线和各有材料流水线的入口及出口室,至少部分材料流水线相对于材料流水轴线成一角度。
18.按照权利要求16所述的方法,其特征在于,在微波加热室中照射一段时间,足以使制品干燥,由此至少除去生坯状态水分约95%。
19.按照权利要求18所述的方法,其特征在于,在微波加热室中照射一段时间,足以使制品干燥,由此至少除去生坯状态水分约99%。
全文摘要
本发明系指一种能够连续干燥陶瓷制品的设备(10),该设备产生很少或没有微波辐射排放。该干燥设备包括一个为加热陶瓷用的微波加热室(12),它具有入口端(14)及出口端和一条沿之传送陶瓷制品的材料流水轴线。在微波加热室的入口端及出口端邻近各自具有第一和第二衰减室,这些衰减室各自具有入口端及出口端。一个具有材料流水线的入口室被连接到第一衰减室的入口端,其中部分材料流水线相对于流水轴线形成一角度。连接到第二衰减室的出口端是一个具有材料流水线的出口室,同样其中部分材料流水线相对于流水轴线形成一角度。
文档编号F26B25/00GK1360674SQ00809947
公开日2002年7月24日 申请日期2000年6月16日 优先权日1999年7月7日
发明者C·R·阿拉亚, R·A·博伊哥 申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1