太阳能光伏、光热发电系统的制作方法_3

文档序号:9198641阅读:来源:国知局
考图4,一种准槽式点聚光太阳能利用装置300,包括支撑装置320、多个点聚光元件340以及多个光电转换装置360。
[0071]其中,支撑装置320包括支架322和底座324,底座324对称分布在支架322的两侦牝多个点聚光元件340对称分布在上述支架322两侧的底座324上,形成准槽式结构;多个光电转换装置360,位于支架322与底座324相对的一端,光电转换装置360与点聚光元件340数量相等并与点聚光元件340 —一对应,光电转换装置360的受光口朝向所对应的点聚光元件340并位于所对应的点聚光元件340的聚光焦点处。
[0072]上述准槽式点聚光太阳能利用装置300,点聚光元件340接收并汇聚太阳光,与上述点聚光元件340相应的光电转换装置360将上述点聚光元件340汇聚的太阳光转换为电能。将上述准槽式点聚光太阳能利用装置的太阳光接收部位,即上述点聚光元件340的整体结构设置为准槽式结构,针对每个点聚光元件340设置了相应的光电转换装置360,在改善后续清洗工作的同时,进一步降低了系统成本。将槽式结构与点聚光技术相结合,使得更多的点聚光元件340可以公用同一支撑装置320,让开了点聚光元件340上方空间,方便后续通过使用自动清洁装置(图未示)对点聚光元件340进行清洁,并且方便进行更换点聚光元件340等操作,上方支架322使各光电转换装置360横向连接,这方便布置导线和散热回路(图未示)。
[0073]图5所示,为另一实施例的准槽式点聚光太阳能利用装置示意图。
[0074]参考图5,一种准槽式点聚光太阳能利用装置400,包括支撑装置420、多个点聚光元件440以及多个光电转换装置460。
[0075]其中,支撑装置420包括支架422和底座424,底座424对称分布在支架422的两侦牝多个点聚光元件440对称分布在上述支架422两侧的底座424上,形成准槽式结构;多个光电转换装置460,位于支架422与底座424相对的一端,光电转换装置460与点聚光元件440数量相等并与点聚光元件440 —一对应,光电转换装置460的受光口朝向所对应的点聚光元件440并位于所对应的点聚光元件440的聚光焦点处。
[0076]其中,支架422每侧包括至少2排上述点聚光元件440,即至少2组点聚光元件组442 (参考图5)。图5所示实施例中,包括2排点聚光元件440,即2组上述点聚光元件组442。上述支撑装置420 —侧,与上述支架422相邻的点聚光元件440构成上述一排点聚光元件,即一组点聚光元件组442 ;与上述一组点聚光元件组442相邻的一排点聚光元件构成另一组点聚光元件组(图未标)。
[0077]在其他实施例中,上述准槽式点聚光太阳能利用装置400也可仅在支架422的一侧设置一排或者多排上述点聚光元件。
[0078]图6所示,为图5所示实施例支架一侧点聚光元件排布俯视图。
[0079]图7所示,为图5所示实施例接收口示意图。
[0080]参考图6,上述每组点聚光元件组442,每组之间相邻的点聚光元件440错开预定距离L,相应的,与上述错开的相邻的点聚光元件440对应的光电转换装置460可设置于支架422上的同一个接收口 4222内,上述同一接收口 4222内的光电装换装置460的受光口分别朝向相应的点聚光元件440,并分别位于相应点聚光元件440的聚光焦点处(参考图7)。参考图5所示实施例,通过在支撑装置420每侧设置2排点聚光元件440,使用上述一个准槽式点聚光太阳能利用装置400,可完成两个一侧只设置一排点聚光元件的准槽式点聚光太阳能利用装置300 (参考图4)共同工作时的发电量,减少了准槽式点聚光太阳能利用装置300的制造成本。
[0081]具体的,上述预定距离L可根据需要设定不同的值。在本实施例中,该预定距离L设定为10mm。
[0082]在其他的实施例中,也可设置支架422每侧的点聚光元件组442的组数,并相应设置接收口 4222内的光电转换装置460的个数以及相应的朝向及位置关系。如果设置的组数大于2,则每一组之间相邻的点聚光元件440沿一个方向进行错位排列,以保证在同一接收口 4222内能够容纳上述每一组之间相邻的点聚光元件440所对应的光电转换装置460。
[0083]图8所示,为图5所示实施例点聚光元件相对于对应的光电转换装置的入射角示意图。
[0084]图5所示实施例中,点聚光元件440为反射式点聚光元件。上述点聚光元件440的焦距为0.8m-1.5m,每个点聚光元件440相对于对应的光电转换装置460的入射角小于30°。其中,入射角为每个点聚光元件440的法线与相应的入射光的夹角。参考图8,第一排点聚光元件440相对于相应的光电转换装置460的视图平面上的入射角为α,第二排点聚光元件440相对于相应的光电转换装置460的入射角为β,其中α、β的角度均小于30°,且大致相同。通过设置上述点聚光元件的特征参数,包括点聚光元件的焦距,并进一步设置点聚光元件的入射角度,可进一步提高太阳能的利用率。进一步的,上述点聚光元件的焦距为lm,入射角均小于20°,上述设置采用现有的砷化镓光伏电池产品(三节砷化镓光伏电池的光电转换效率约为40%)可达到太阳能的实际利用率约为25%?30%。具体的,当上述砷化镓多级光伏电池的效率超过50%,则本系统的实际发电效率接近40%。
[0085]具体的,参考图5,上述反射式点聚光元件为抛物面反射镜。上述抛物面反射镜的受光面积为0.2m2-0.75m2,抛物面反射镜在光电转换装置460的受光口形成的入射光斑面积小于35mm*35mm,受光面积与入射光斑的面积之比大于250。上述参数设置,保证了点聚光入射光斑的入射光强,使光能转换为电能的转换效率更高。具体的,上述抛物面反射镜的受光面积为0.4m2,上述抛物面反射镜的焦距与受光面积的平方根之比大于1.2且小于3。具体的,上述比值为1.5。通过设置上述比值,可使通过抛物面反射镜到达光电转换装置460的入射光斑的面积更小,光强更集中,满足高倍聚光光伏电池的理想工作范围。
[0086]图9所示,为图5所示实施例光电转换装置示意图。
[0087]图10所示,为另一实施例中光电转换装置示意图。
[0088]参考图9、图10,图5所示实施例中光电转换装置460包括多个光伏电池462、多个导热电路板464、多个导电片466、散热器468、外壳(图未不)以及安装板469。
[0089]其中,上述多个光伏电池462分别设于相应的导热电路板464上,用于将点聚光兀件440发射的太阳光转换为电能,导热电路板464用于固定上述光伏电池462,并传导光伏电池462工作时产生的热量;多个导电片466,分别设于上述导热电路板464上,并分别连接上述光伏电池462,用于向外部电路导出光伏电池462产生的电能;散热器468,通过热管467连接上述导热电路板464,用于导出光伏电池462工作时产生的热量;外壳,用于容纳上述导热电路板464、光伏电池462、导电片466、散热器468、安装板469和热管467,并设有受光口,光伏电池462通过上述受光口接收点聚光元件440汇聚的太阳光。其中,安装板469用于承载上述多个光伏电池462、多个导热电路板464、多个导电片466等。
[0090]具体的,上述散热器468和热管467构成散热装置(图未标),导电片466构成导电结构(图未标),安装板469构成支撑机构(图未标)。通过设置点聚光元件440的特征参数以及相应的光电转换装置460、散热装置、导电结构、支撑结构等的参数数据,进一步提高了太阳能的利用率,降低了制造成本和维护成本。
[0091]上述多个光伏电池462通过上述受光口接收点聚光元件440汇聚的太阳光,并将接收到的入射光斑的能量转换为电能,并通过上述连接每个光伏电池462的导电片466向外部电路(图未示)分别导出每个光伏电池462产生的电能;上述光伏电池462并不能将全部的光能转化为电能,在上述光伏电池462将光能转化为电能的同时,一部分不能被光伏电池462转换的光能变成热能,上述导热电路板464传导上述多个光伏电池462工作时产生的热能,并通过散热器468导出上述热能。上述散热器设有冷却液入口 4682和冷却液出口 4684,分别连接低温换热装置212进行梯级散热。
[0092]具体的,上述冷却液入口 4682和冷却液出口 4684分别通过管路连通上述低温换热装置212的冷却液出口 f和冷却液入口 e。进一步的,上述冷却液入口 4682通过泵206连通上述冷却液出口 f.。具体的,上述管路为包覆有保温材料的管路,防止上述防冻冷却液循环时防冻冷却液的温度受到外界温度的影响。
[0093]具体的,上述光伏电池462为多结砷化镓光伏电池。上述光伏电池462的数量为4个,每个光伏电池462布置在独立的导热电路板464上,各导热电路板464呈四方形矩阵排列,形成光伏电池组(图未标)。其中,对角布置的光伏电池462相互并联并连接保护电路(图未示),两组对角位置的并联光伏电池462组相互串联;或者,上述4个光伏电池462相互并联并共用一个保护电路。并且,在上述准槽式点聚光太阳能利用装置400中,不同的点聚光元件440所对应的光电转换装置460的光伏电池462组之间相互串联,使得各聚光元件440输出电压相加,而电流相等,这样可以不需要增加导线截面积
当前第3页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1