利用分离空气的三塔系统和粗氩塔制备氩的方法及装置的制作方法

文档序号:4772459阅读:278来源:国知局
专利名称:利用分离空气的三塔系统和粗氩塔制备氩的方法及装置的制作方法
技术领域
本发明涉及一种利用空气分离的三塔系统和粗氩塔制备氩的方法。在该方法中,空气在三塔系统中被蒸镏,该三塔系统包括高压塔、低压塔和中压塔。中压塔将来自高压塔的第一富氧馏分进行分离,特别是用来生产氮,氮则以液态形式作为回流液导入低压塔或作为产品取出。从三塔系统流出的含氩的馏分,特别是从低压塔中流出的馏分,被导入粗氩塔中;在粗氩塔中,氧和氩彼此分离。
具有附加的粗氩塔的三塔系统可以从上述的Latimer论文中以及从US 4433989、EP 828123 A或EP 831284 A中等获知。
在上述的用来分离氮-氧和氧-氩的四塔装置中,还可以进一步附加其他的分离装置,例如一个用来分离氩-氮的纯氩塔或一个或多个用来制备氪和/或氙的分离塔,或者非蒸馏分离的装置或后净化装置。
上述任务可按如下解决,即用于粗氩塔的回流液的产生和用于中压塔的上升蒸气的产生是在一个单独的热交换过程中进行的。另一个特征是粗氩-冷凝器同时作为中压塔的塔底气化器。这样,一个单独的冷凝器-气化器就可以起二种功能。在本发明中,一方面装置费用特别小;另一方面,本发明的方法特别节能,例如通过降低热交换的损耗。
在回顾氩制备法的历史时,人们也许首先会认为在WO 8911626中已经提出了一种类似的方法。在该专利申请中,提出了一种具有粗氩塔的双塔系统,在该系统中粗氩-冷凝器具有在较小的理想塔板范围内的传质面(Stoffaustauchabschnitt)。然而,这个传质面是在如低压塔中的工作压力下工作,出于这个原因,其已经没有本发明意义上的中压塔了。
优选地,至少有一部分从中压塔馏出的第二氮-塔顶气,通过与冷却液的间接热交换,至少部分地被冷凝,优选全部被冷凝。这样所产生的液氮可以作为液态回流液回流入中压塔中;在这种情况下,这种间接的热交换起到了作为中压塔的塔顶冷凝器的作用。从该第二氮-塔顶气得到的冷凝物可以作为液态产品取出和/或作为回流液流入低压塔中。原则上,每种已知的馏分,例如从高压塔、中压塔或低压塔中流出的富氧液体,都能作为用于冷凝第二氮-塔顶气的冷却液。
在本发明的方法中,如果粗氩-冷凝器采用降膜蒸发器,那么就更为有利。这样,从中压塔中流出的第二富氧液体,在粗氩-冷凝器中只是部分地被蒸发。所生成的二相混合物被导入相分离装置,在此,富氧蒸气和液态成分互相分离。所说的富氧蒸气输送回中压塔,而液态成分输送到低压塔。采用降膜蒸发器作为粗氩-冷凝器,使得液化室和气化室之间的温差特别小。这种性能有助于粗氩塔和中压塔工作压力的优化。
然而,如果第二原料空气流被液化,接着该液化空气作为用于冷凝从中压塔流出的第二氮-塔顶气的冷却液,那么就更为特别有利。在相应的冷凝器-气化器中,液化和导入之间不进行相分离,也不采取其它的改变浓度的措施。这种根据本发明方法的实施方式特别适用于对空气进行强力预液化的装置,而且对于生产高的液态产品和/或内压缩也是特别适用。对于内压缩方法,至少有一种产品是以液态形式从三塔系统的一个塔或与这样的塔相连的冷凝器中取出的(例如从高压塔和/或中压塔流出的氮,从中压塔和/或低压塔流出的氧),并在液态的形式下将其提高到更高的压力,与第二原料空气流进行间接热交换而被气化或(在超临界压力下)假气化,最后获得气态压力产品。在这个过程中或在接着的膨胀步骤(Entspannungsschritt)中液化了的空气被用作冷却液。蒸发了的第二原料空气流优选被导入低压塔中。所必需的液态空气(第二原料空气流)也可在液化装置里没有内压缩的情况下产生,例如在空气循环中产生。
第二原料空气流可以在其被用作冷却液的上游处进行高效膨胀(即减压)。然后以液态或超临界的状态而被导入液体涡轮机,从该涡轮机出来的是完全液态的或基本上是完全液态的。
从高压塔中流出的液体,尤其是从高压塔的中间位置处流出的液体,可以替代第二原料空气流,作为冷凝从中压塔流出的第二氮-塔顶气的冷却液。通过上述从中间位置取出冷却液,可有目的地选择其浓度,这样就能最佳地调节在与冷凝的中间塔-氮的间接热交换时的气化温度。这种调节的可能性是特别优越的,因为在本发明的方法中,不但中压塔的工作压力(通过热交换而与粗氩塔有关),而且要被气化的冷却液的压力(至少为大气压或低压塔的压力),可以只在较小范围内变化。
优选地,中压塔在第一富氧馏分的注入处之上至少7块理想塔板的范围内设有传质单元,例如在所述注入处之上理想塔板数为7至50之处,优选为16至22块理想塔板。
中压塔在第一富氧馏分的注入处以下没有传质单元,例如或在1至5个理想塔板范围内没有传质单元。
在许多情况下,中压塔中导入第二加料馏分(Einsatzfraktion)是有利的。为此,与第一富氧馏分成分不同的添加馏分(Zusatz-fraktion)可以从高压塔中抽出而注入中压塔中。如果从高压塔流出的中间位置液体作为冷却液,就可以分流一部分作为进一步的加料馏分而导入中压塔中。在这种情况下,中压塔的第一加料馏分(第一富氧馏分)如可以通过高压塔的塔底液而形成。
此外,本发明还涉及一种如权利要求9所述的制备氩的装置。在权利要求10至13中则描述了该装置的优选实施方式。


图1-7给出了本发明的方法或装置的流程示意图。
在图1所示出系统中,大气空气1在具有后冷却器3的空气压缩机2中被压缩。被压缩了的原料空气4被导入净化装置5中,该净化装置由一些分子筛-吸附器构成。被净化了的空气6的第一部分7在主热交换器8中冷却到露点。被冷却了的空气的第一部分9与另一气态空气流67混合。该混合气流在本实施例中形成“第一原料空气流”,其没有节流地通过管道10而被输送入三塔系统的高压塔11中。三塔系统除了高压塔还有中压塔12和低压塔13。
在本实施例中,高压塔11总的塔顶产物(“第一氮-塔顶气”)通过管道14被导入主冷凝器15中,在此被完全地或基本完全地冷凝。在此所形成的液态氮16的第一部分17作为回流液回流到高压塔11中,第二部分18在底部逆流冷却器19中冷却,并通过管道20、节流阀21和管道22被输送到低压塔13的顶部。
高压塔11的塔底中产生第一富氧液体,其通过管道23、底部逆流冷却器19、管道24、节流阀25和管道26作为“第一富氧馏分”注入中压塔12中。在本实施例中,中压塔12在第一富氧馏分26注入处以下没有传质单元,在注入处上方通过所安置的填料而形成传质单元,其相当于总数为22个理想塔板。
中压塔的塔底产物(“第二富氧液体”)通过管道27和控制阀28而导入粗氩-冷凝器29的气化室中,在此部分地被蒸发。这样所形成的二相混合物30被导入分离器(相分离器)31中。蒸气部分32作为“富氧蒸气”流回到中压塔12中,在中压塔中作为上升蒸气。所留下的液体33被节流(34),作为富氧加入液35注入低压塔13中。
在中压塔12塔顶生成的第二氮-塔顶气,在本实施例中通过管道36而被全部取出,在中压塔-塔顶冷凝器37的液化室中被全部冷凝。在此所形成的液态氮38的第一部分39作为回流液回流到中压塔12中;第二部分40通过节流阀41和管道42-22输送到低压塔13的顶部和/或直接作为制备的液态产物(没有图示出)。
在低压塔13的上部区域取出的气态氮43-44-45和不纯氮46-47-48,在底部逆流冷却器19和主热交换器8中加热,并作为产品(GAN)或余气(UN2)而取出。
从低压塔13的塔底中流出的液态氧49的第一部分50-52用泵51输送入主冷凝器15的气化室并在此部分地气化。在此生成的二相混合物被输送回低压塔13的塔底液49的其余部分在内压缩泵55中被压缩到所期望的产品压力,通过管道56而输送到主热交换器8中,在此被气化或假性气化和加热,最后通过管道57作为气态压力产品(GOX-IC)而输出。用内压缩法可以达到任一所期望的产品压力,例如可达到3-120 bar的压力。
用于(假性-)蒸发内压缩了的氧56所必需的热量可由原料空气的第二部分62所提供,这部分空气是通过管道58从已净化了的空气6中分流出来的,其在一个具有后冷却器60的后压缩机59中压缩到所需的高压,通过管道61而输送到主热交换器8中。原料空气的第二部分至少部分地作为“第二原料空气流”通过管道75、底部逆流冷却器19、管道76、节流阀77和管道78而被输送入中压塔的顶部冷凝器37的气化室,而不用预先采用相分离或其他的改变浓度的措施。其在中压塔-冷凝器37部分地被蒸发。所形成的二相混合物79被导入分离器(相分离器)中。蒸气部分81流入低压塔13。留下的液态部分82通过阀83也被注入(84)低压塔13中。注入口位置低于不纯氮气取出口46,并高于中压塔塔底液的注入口35。
深冷了的高压空气62的其余部分被调节(63)到高压塔-压力,通过管道64而导入高压塔11。注入气态空气10的注入口优选为位于高于高压塔塔底上方数个理想塔板的地方。
净化了的原料空气6的一部分65与第二部分62一起被后压缩并且被导入主热交换器8中(58-59-60-61),然后又在中间温度下被取出而被输入一膨胀机66中,在本实施例中该膨胀机为发电机-涡轮机。被有效膨胀了的原料空气的第三部分67与第一部分9一起作为“第一原料空气流”10而导入高压塔11。
低压塔13通过气体管道68和液体管道69与粗氩塔联接。通过管道68,气态的含氩馏分被导入粗氩塔中,在此,粗氩塔顶馏分和富氧的塔底液互相分离。在本实施例中,气态的粗氩塔顶馏分71的第一部分72作为粗氩的制成产品(GAR)。该粗氩还可以进一步纯化,例如在纯氩塔(未图示出)中纯化。其余部分73在粗氩-冷凝器29中完全地或基本完全地被液化,通过管道74作为回流液而回流到粗氩塔70的塔顶。
在本实施例中,所用的三个冷凝器-气化器15、29、37都是降膜蒸发器。在本发明中,其中每个都可用其他类型的气化器代替,例如循环气化器(吸热气化器)。例如如果将粗氩-冷凝器装备成循环气化器,那么循环气化器就能直接安置在中压塔12的塔底内。这样,粗氩塔70和中压塔12就可能在装置上设置成双塔,并且例如可被安放在一个共同的容器中。
而这正是本发明的主要优点,即在此位置用降膜蒸发器,利用它的小的温差去最佳化塔的压力。如果低压塔13、中压塔12、粗氩-冷凝器29和粗氩塔70以在图中所示那样互相联接安装,那么甚至连对于降膜蒸发器所必需的循环泵(见用于主冷凝器15的泵51)都可省去。液体只基于静力学的压力就能通过管道27、30、33、35从中压塔12流出,通过粗氩-冷凝器流入低压塔13。对于液化方面也不需要泵。
各塔的工作压力(塔顶压力)为高压塔11 例如为4至12bar, 优选为大约6bar中压塔12 例如为1.2至2bar, 优选为大约1.4bar低压塔13 例如为1.2至2bar, 优选为大约1.6bar图2所示的工作流程中,中压塔12有较少的理想塔板,例如12。所以塔顶产物36和在中压塔的塔顶冷凝器37中所形成的液体38、39、40所具有的纯度比高压塔或主冷凝器中流出的氮要低,这种液体通过管道222而流入低压塔顶部。所以在41被节流了的液态中压塔-氮242在中间处导入低压塔,在本图所示的实施例中约在不纯的氮取出口的高度处。
在图3中,总的中压塔-氮40没有作为在中压塔12的回流液39,而是作为液体产物(LIN)通过管道342而取出。所以中压塔的塔板数可根据产品的要求而设定。因为没有中压塔氮导入低压塔,中压塔中产品纯度与高压塔11和低压塔13的塔顶馏分的浓度无关。相反地低压塔的产物也不受中压塔工作时可能的波动的影响。
由于温度差、压力差和浓度,中压塔12塔顶冷凝器37的蒸发侧的压力,可比低压塔13的工作压力低。在这种情况下,如果从分离器80流出的蒸气81用冷通风机485压入低压塔中,如图4所示,那么还是可以采用图2的冷凝器排列布置。
图5所示的实施例示出了另一种根据图1的方法的变化。在此,总的深冷的高压空气通过管道564而输送入高压塔中。用于中压塔的塔顶冷凝器37的冷却液由高压塔的中间液体575构成,该中间液体通过底部逆流冷却器19、管道576、节流阀577和管道578而被输送。塔顶冷凝器37的气化室下游的物流途径(579至584)类似于图1。在本实施例中,中间液体575在稍高于液态空气564的注入口的位置抽取。两处开口之间的距离优选为大约2至10个理想塔板。抽取口也可选择位于液态空气注入口的高度位置或稍低的位置。
在图6中,第二原料空气流676在导入678中压塔的塔顶冷凝器37的气化室之前不是通过节流阀(在图1中的77)膨胀,而是在液体涡轮机677里膨胀。在本实施例中涡轮机所做出的功用发电机转变成电能。在图6的实施例中,所用深冷的高压空气62都被导入液体涡轮机677中,再接着导入塔顶冷凝器37中。没有液态空气流入高压塔11中。
图7中所示出的方法与图5所示的不同,不是从高压塔中流出的总的中间液体775、776都通过777-778而输送入中压塔的塔顶冷凝器37的气化室,而是一部分786-787-788作为“添加馏分”流入中压塔内部。添加馏分788的注入口位于高压塔塔底液的注入口26的上方;总的中间液体775、776也可选择全部流入(788)中压塔12中。用于中压塔-塔顶冷凝器37的冷却液也可以是其他的液体,例如液化了的原料空气(例如见图1)、高压塔-塔底液、高压塔的另一中间位置的液体或中压塔或低压塔的富氧液体。
如专业人员可直接看出的那样,在本发明的范围内,完全可以将这些实施例中所描述的各个特点进行进一步的联合。
权利要求
1.一种用三塔空气分离系统制备氩气的方法,该三塔系统具有高压塔(11)、低压塔(13)和中压塔(12),在该方法中(a)第一原料空气流(10、64、564)被导入高压塔(11)中,在该高压塔中分离出第一富氧液体和第一氮-塔顶气;(b)从高压塔(11)流出的第一富氧馏分(23、24、26)被导入中压塔(12)中,在该中压塔中分离出第二富氧液体和第二氮-塔顶气;(c)从中压塔(12)流出的第二氮-塔顶气的至少一部分(36),通过与冷却液(78、678、778)进行间接热交换(37),而至少部分地被冷凝;(d)从高压塔和/或中压塔(12)流出的第二富氧馏分(33、35)被导入低压塔(13)中,在该低压塔中分离出第三富氧液体和第三氮-塔顶气,(e)从三塔系统中流出的含氩馏分(68)被导入粗氩塔(70)中,在该粗氩塔中分离出粗氩-塔顶馏分和富氧液体;(f)粗氩-塔顶馏分(71)的至少一部分(73)被导入粗氩-冷凝器(29)中,在此与从中压塔(12)流出的第二富氧液体的至少一部分(27)进行间接热交换,而至少部分地被冷凝;(g)第二富氧液体在粗氩-冷凝器(29)中进行间接热交换时,至少部分地被气化,在气化时所形成的富氧蒸气(32)被导回到中压塔(12)中;以及(h)从粗氩塔(70)的上部区域流出的馏分(72)和/或在粗氩-冷凝器下游的粗氩-塔顶馏分的一部分,作为制得的粗氩产品。
2.根据权利要求1的方法,其中,所述的粗氩-冷凝器为降膜蒸发器,从中压塔(12)流出的第二富氧液体在该粗氩-冷凝器中只是部分地被气化,这样所形成的二相混合物(30)被导入相分离装置(31)中,在该装置中富氧蒸气(32)和液体成分(33)被互相分离,分离出的液体成分(33)被导入(34、35)低压塔(13)中。
3.根据权利要求1或2之一的方法,其中,第二原料空气流(62、75、76、676)被液化,接着作为用于冷凝从中压塔(12)流出的第二氮-塔顶气(36)的冷却液(78)。
4.根据权利要求3的方法,其中,第二原料空气流(676)在其被用作冷却液(678)的上游处被有效地减压(677)。
5.根据权利要求1-4之一的方法,其中,从高压塔流出的液体,特别是高压塔(11)中间位置的液体(575、576、775、776)被用作冷凝从中压塔(12)流出的第二氮-塔顶气(36)的冷却液。
6.根据权利要求1-5之一的方法,其中,中压塔(12)在第一富氧馏分(26)的注入口的上方至少7个理想塔板的范围内具有传质单元。
7.根据权利要求1-6之一的方法,其中,中压塔(12)在第一富氧馏分(26)的注入口下面没有传质单元,或没有在1至5个理想塔板范围内的传质单元。
8.根据权利要求1-7之一的方法,其中,具有与第一富氧馏分(26)组成不同的添加馏分(786、788)是从高压塔(11)中取出(775,776)而注入中压塔(12)中。
9.一种用三塔空气分离系统制备氩气的装置,该三塔系统具有高压塔(11)、低压塔(13)和中压塔(12),包括(a)将第一原料空气流导入高压塔(11)的第一原料空气-管道(10、64、564);(b)将从高压塔(11)流出的第一富氧馏分导入中压塔(12)的第一粗氧-管道(23、24、26);(c)将从高压塔和/或中压塔(12)流出的第二富氧馏分导入低压塔(13)的第二粗氧-管道(33、35);(d)将从三塔系统流出的含氩馏分(68)导入粗氩塔(70)的氩流通-管道(68);(e)将至少一部分(73)从粗氩塔(70)流出的粗氩-塔顶馏分(71)予以至少部分冷凝的粗氩-冷凝器(29),所述冷凝是通过与从中压塔(12)流出的富氧液体(27)进行间接热交换而实现的;(f)将从粗氩-冷凝器(29)中流出的富氧蒸气(32)回流导入中压塔(12)的蒸气回流管道(32);以及(g)粗氩-产品管道(73),该管道与粗氩塔(70)的上部区域和/或粗氩-冷凝器(29)相联接。
10.根据权利要求9的装置,其中,所述的粗氩-冷凝器是降膜蒸发器。
11.根据权利要求9或10的装置,其中,还具有中压塔-冷凝器(37),其液化室与中压塔(12)的上部区域相联接,其气化室与用于冷却液的管道(78、678、778)相联接,此处的输入管道特别地与第二原料空气-管道(62、75、76、676)和/或高压塔(11)相联接(575、576、775、776)。
12.根据权利要求9-11之一的装置,其中,所述的输入管道(678)通过液体涡轮机而输入。
13.根据权利要求9-12之一的装置,其中,所述的中压塔(12)在第一富氧馏分(26)注入口上方至少7个理想塔板范围内具有传质单元,和/或所述的中压塔(12)在第一富氧馏分(26)的注入口下面没有传质单元,或没有在1至5个理想塔板范围内的传质单元。
全文摘要
本发明涉及到利用三塔空气分离系统制备氩气的方法和装置,该三塔系统具有高压塔(11)、低压塔(13)和中压塔(12)。第一原料空气流(10、64)被导入高压塔(11)中,在此分离出第一富氧液体和第一氮-塔顶气。从高压塔(11)流出的第一富氧馏分(23、24、26)被导入中压塔中,在此分离出第二富氧液体和第二氮-塔顶气。从高压塔和/或中压塔(12)流出的第二富氧馏分(33、35)被导入低压塔(13)中,在此分离出第三富氧液体和第三氮-塔顶气。从低压塔(13)流出的含氩馏分(68)被输送入粗氩塔(70)中,在此分离出粗氩-塔顶馏分和富氧液体。至少一部分(73)粗氩-塔顶馏分被导入粗氩-冷凝器(29),在此与至少一部分(27)从中压塔流出的第二富氧液体进行间接热交换而至少部分地被冷凝。在此所生成的富氧蒸汽(32)回流入中压塔(12)中。
文档编号F25J3/04GK1375675SQ0210782
公开日2002年10月23日 申请日期2002年3月21日 优先权日2001年3月21日
发明者格哈德·蓬普尔 申请人:林德股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1