一种液化富甲烷气的工艺流程的制作方法

文档序号:4768349阅读:248来源:国知局
专利名称:一种液化富甲烷气的工艺流程的制作方法
技术领域
本发明涉及一种液化富甲垸气的工艺流程,提出一种将经过脱酸、脱水、脱汞等预处理后的富甲烷气, 例如天然气液化的工艺,包括富甲垸气中重烃的分离、富甲垸气的液化、脱氮、提供冷量的纯组分制冷循 环系统。
背景技术
富甲烷气,这里定义为包括天然气、煤层气、天然水合物的气化物,做为一种清洁燃料正在日益广泛 地被使用,但是大多数富甲垸气源地远离终端用户,在环境条件下很长距离地运输气体并不经济,当需耍 跨越大洋时,甚至无法做到,并且以气体状态储存大量的富甲烷气也很不经济。
将富甲垸气,冷却至液体状态,获得液态产品,即液化天然气,并采用非管道运输是一种经济的方式。 富甲烷气的液化过程需要制冷系统,制冷系统一般采用一个或几个制冷循环,富甲垸气依次经过冷却、液 化、过冷的过程对应着预冷、液化、过冷的温度逐步降低的制冷循环。
制冷系统组成主要包括制冷剂,分为纯单一组分和混合组分;低温热交换器,有板翅式热交换器、 绕管式热交换器、管壳式热交换器;压縮机驱动机,有蒸汽透平、燃气透平(双轴和单轴)、电机、航改发 动机;制冷压縮机;液体膨胀机。
从1964年世界上第一个液化天然气贸易开始,在天然气需求增长和工业化实践的基础上,国外对天 然气液化技术,主耍是制冷循环技术,已进行了多年的研究和实践,天然气液化生产线的规模从儿十万吨 已达近千万吨,支持了天然气在全球范围的广泛使用。
天然气液化的主要技术有纯组分制冷剂复迭技术,处理过的天然气逐步经纯丙烷,乙烯和甲烷制冷 剂冷却和冷凝,而这三种制冷剂分别用在构成复迭的三个独立制冷循环中;单循环混合制冷剂工艺技术, 这种技术在单一的制冷剂循环中放入包括氮、甲烷、乙垸、丙烷、丁垸,有时还有戊垸的混合制冷剂进行 循环;单循环多压混合制冷剂技术;丙烷预冷混合制冷剂技术,使用丙烷制冷循环和混合制冷剂循环阶联, 这是目前世界上的主流技术,根据具体技术特点,又有分体丙垸技术、并行混合制冷技术、附加氮膨胀机 深冷循环技术等;双循环混合制冷系统,第一级循环用于预冷,而另一级循环用于液化;混合制冷剂复迭 技术,这一工艺与普通复迭工艺类似,但是几个制冷循环中的纯组分换成了混合组分,可分为二阶混合制 冷剂循环技术、三阶混合制冷剂循环技术;氮膨胀循环技术。
预冷和液化分别采用不同的低温热交换器,预冷过程一般使用鼓式热交换器或铝制板翅式热交换器, 液化和深冷过程使用铝制板翅式热交换器或专有绕管式热交换器。
由于对富甲垸气能源的需求日益旺盛,开发和提供富甲垸气资源日益紧迫,市场对富甲垸气液化技术 的需求随之增加,但目前国内还没有针对大型液化天然气工厂的富甲垸气液化技术,所有液化技术和专有 设备均需从国外获得,这对于国家尽快获得富甲烷气资源、增强富甲烷气能源企业的国际竞争力极为不利, 此发明正是在此背景下开发的大负荷、经济、高效、易于操作维护的富甲烷气(例如天然气)液化技术。

发明内容
此发明提出了一种将经过脱酸、脱水、脱汞等预处理后的富甲烷气,例如天然气液化的工艺流程,包 括富甲垸气中重烃的分离、富甲烷气的液化、脱氮、提供冷量的纯组分制冷循环系统,此过程可靠性好、 对富甲垸气的原料组成的变化适应性好,可比较灵活地根据原料气的组成、流量的变化进行冷剂的流量和 配比的调整,对所用设备的要求较低,可获得较高的效率和低的投资。
液化富甲烷气的工艺流程,包括富甲烷气中重烃的分离、富甲烷气的液化、脱氮、提供冷量的制冷循 环系统
(a) 富甲垸气流首先在多个预冷器中与各纯组分冷剂换热;
(b) 预冷却后的富甲垸气在重烃分离塔中将重烃分离,重烃去分馏单元; (C)富甲垸气在第一主换热器中被乙烷冷剂进一步冷却;
(d) 富甲烷流体进入分离罐析出剩余的重烃,气相去下一个主换热器;
(e) 富甲烷气在第二主换热器中被乙烷冷剂继续冷却并部分冷凝;
(f) 富甲烷气在第二主换热器中被甲垸冷剂全部冷凝;
(g) 富甲垸气在第四主换热器中被氮冷剂过冷;
(h) 过冷的富甲烷流体经膨胀机后进入填料塔脱氮,塔底液化甲垸经泵输往储罐,塔顶甲垸气增压作为燃 料气;
(i丙烷冷剂被压縮,级间冷却和后冷及冷凝采用外部冷的流体,如空气;丙垸冷剂在多级换热器中闪蒸到 较低的压力和温度以冷却乙垸冷剂;
(j)乙烷冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过丙烷冷剂的多级换热器冷凝;冷 凝的乙烷冷剂在第一主换热器较高压力下部分蒸发以冷却富甲烷气,乙烷两相流离开第一主换热器经气液 分离后,液相流体进入第二主换热器在较低压力下全部蒸发以进一步冷却富甲垸气,气相流体和从第二主 换热器引出的乙垸气体分别去各自预冷器与富甲烷气进料换热,复热后分别引到乙垸压縮机一级入口缓冲 罐和二级入口;
(k)甲垸冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过第二主换热器和第三主换热器进 一步冷却和冷凝;冷凝的甲烷冷剂在第三主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分 气化,从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完 全气化后引到甲烷压縮机入口缓冲罐;
(1)氮冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过第三主换热器和第四主换热器进一 步冷却和冷凝;冷凝的氮冷剂在第四主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分气化, 从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完全气化 后引到氮压縮机入口缓冲罐。
如上所述,富甲垸气进料的压力和温度是不高于10MPa, 5CTC。
如上所述,富甲院气在各预冷器中与各主换热器出口纯组分冷剂换热,富甲垸气冷却,纯组分冷剂完 全气化并复热去压縮机入口 ,预冷器出口可设置控制阀调节换热负荷和纯组分冷剂气化压力。 如上所述,纯组分冷剂的流量可以根据富甲烷气的组成和各预冷器的压力和温度进行调节。 如上所述,富甲烷气的液化过程由四个闭式回路,采用纯组分冷剂的制冷循环提供冷量
(a) 丙垸冷剂在四级换热器中逐步闪蒸到较低的压力和温度以冷却乙烷冷剂;
(b) 乙烷冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过丙垸冷剂的多级换热器冷凝;冷 凝后的乙垸冷剂在第一主换热器较高压力下部分蒸发以冷却富甲烷气,乙烷两相流离开第一主换热器经气 液分离后,液相流体进入第二主换热器在较低压力下全部蒸发以进一步冷却富甲烷气,气相流体和从第二
主换热器引出的乙烷气体分别去各自预冷器与富甲烷气进料换热,复热后分别引到乙烷压縮机一级入口缓 冲罐和二级入口;
(c) 甲烷冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过第二主换热器和第三主换热器进 一步冷却和冷凝;冷凝的甲烷冷剂在第三主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分 气化,从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲垸气进料换热,复热或完 全气化后弓I到甲烷压縮机入口缓冲罐;
(d) 氮冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过第三主换热器和第四主换热器进一 步冷却和冷凝;冷凝的氮冷剂在第四主换热器内蒸发以冷却冷凝富甲垸气,在提供冷量的过程中部分气化, 从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完全气化 后弓I到氮压縮机入口缓冲罐。
如上所述,纯组分冷剂是氮、甲垸、乙烷或乙烯、丙烷。
如上所述,纯组分冷剂压縮机是多级离心或轴流压縮机或组合式。
如上所述,纯组分冷剂压縮机是电机驱动或燃气透平机驱动或蒸汽透平机驱动。
如上所述,纯组分冷剂压縮机是电机驱动时,变速装置是变频器或液力耦合式。
如上所述,纯组分冷剂压縮机可采用均分负荷的并列双压縮机。
如上所述,富甲垸气的液化过程可使用各种换热器(包括绕管式换热器,板翅式换热器,釜式换热器)。 如上所述,纯组分冷剂在第一、第二、第二、第四主换热器冷凝引出主换热器后,可采用节流阀或膨 胀机减压降温,再回到各换热器。
如上所述,富甲垸气的液化过程使用的换热器可采用均分负荷的多换热器。 如上所述,当冷剂压縮机采用燃气透平机驱动时,配置废热回收装置。
如上所述,从第四主换热器出来的液化富甲垸流体经液体膨胀机减压降温后,进入气液分离罐闪蒸, 分离罐的气相、液相分别引入填料塔,从上游引入一股流体作为上升气体,塔底液相经低温泵输往LNG储 罐,塔顶气相经增压后作为燃料气提供,其中冷量可通过换热利用。
如上所述,液体膨胀机轴功输出提供燃料气增压的动力,旁路可设置节流阀。
如上所述,在采用燃气透平驱动冷剂压縮机时,液体膨胀机和燃料气输出流量可与纯组分冷剂压縮机 驱动机燃气透平的轴功输出设置为整个液化过程负荷调节的机制。 如上所述,富甲烷气的进料处理能力可达每年6百万吨。
如上所述,富甲烷气液化流程的各系统可由多个并行的子系统组成,各个子系统具有执行相同工艺过 程的能力。
本发明的优点
此液化富甲垸气工艺流程可靠性好、对富甲烷气的原料组成的变化适应性强,可比较灵活地根据原料 气的组成、流量的变化进行纯组分冷剂的流量调节,对所用设备的要求较低,可获得较高的效率和低的投 资。并且降低换热器设计和制造难度,可采用非专有设备;可调节压縮机入口气体温度,压縮机可常温设 计;易于调节冷剂流量和蒸发压力,减少能耗。


附1是表明本发明的一个实施方案的示意性流程图。
具体实施例方式
实施例为了阐明本发明的一个实施方案,通过对富甲垸气到液化甲烷的工艺流程的热量和物料平衡 计算,模拟本发明的优化实施方案,每年生产500万吨的LNG生产线。参见图l。
经预处理合格的富甲烷原料气36000kmol/h,在压力6. OMPa,温度50。C下从管线1顺序经过预冷器 ElOl、 E102、 E103、 E104、 E105、 E106,富甲烷气被预冷至-33°C。
含有冷凝液的原料气流经管线7进入脱甲垸塔T101,大部分重烃组分在脱甲烷塔中被分离,塔顶的富 甲垸气在压力5. 5MPa,温度-35'C下,通过管线8进入第一主换热器E800,被乙烷冷剂冷却后,温度-66°C , 引出第一主换热器E800,进入气液分离器V100进行闪蒸分离,全部重烃在此被分离,离开分离器V100的 气相流体通过管线10进入第二主换热器E801,与乙烷冷剂换热后,富甲垸气进一步冷却;压力5.2MPa, 温度-8CTC的富甲垸流体从第二主换热器E801出来后经管线11引入第三主换热器E802,在此换热器中富 甲烷流体与甲垸冷剂换热,继续降温,离开第三主换热器E802的富甲烷流体经管线12引入第四主换热器 E803,在此换热器中富甲垸流体与氮冷剂换热,离开第四主换热器E803的富甲垸流体在温度-160'C下经 液体膨胀机EXIOI降温到-163t:,膨胀后的甲垸流体进入填料塔T102,大部分氮气在此脱出,甲烷液体在 压力O. 13MPa,温度-162'C下从填料塔底部引出,其中氮含量低于lmol%,填料塔底的液体甲烷由低温泵 输送到液体甲垸储罐;填料塔顶出来的气相经与膨胀机EX101同轴的增压机C101增压后做为燃料气或再 生气使用。
气液分离器V100中的液相经管线18进入脱甲垸塔T101作为塔顶回流,脱甲烷塔底液相部分经再沸 器回到塔内,大部分去重烃分馏系统。
丙垸经压缩至1.7MPa并在4(TC下冷凝后依次在四个压力下蒸发,为乙垸冷剂提供冷量,四个蒸发压 力和温度分别是0. 70MPa、 10°C, 0. 37MPa、 -8°C, 0. 24MPa、 -23°C, 0. 12MPa、 -36°C。从各个丙烷蒸发器 来的不同压力的丙烷蒸气分别进入丙烷压縮机C201各级进口 。
乙烷冷剂经压縮至2. lMPa并冷却到4(TC后,顺序经过丙垸循环的多级蒸发器E202、E203、E204、E205, 乙烷冷剂被过冷。冷凝后的乙烷冷剂经管线35进入第一主换热器E800,在换热器中向上流动被进一步冷 却,在温度-66'C时,引出换热器,经节流过冷后从顶部再次进入换热器,在换热器中凝液向下流动,在 较高压力下部分蒸发以冷却富甲烷气;乙烷两相流离开第一主换热器经气液分离器V302后,液相流体进 入第二主换热器E801,在换热器中向上流动被进一步冷却,在温度-8(TC时,引出换热器,经节流过冷后 从顶部再次进入换热器,在换热器中凝液向下流动,在较低压力下全部蒸发以冷却富甲烷气和甲烷冷剂; V302气相流体和从第二主换热器引出的经V303的乙烷气体分别去预冷器E101和E102与富甲垸气进料换 热,复热后分别引到乙垸压缩机入口缓冲罐V301和压縮机二级入口。
甲烷冷剂经压縮至3. 2MPa并冷却到40'C后,经管线51进入第二主换热器E801被乙烷冷却冷凝,接 着经管线51进入第三主换热器E802,在换热器中向上流动被进一步冷却,在温度-145。C时,引出换热器, 经节流过冷后从顶部再次进入换热器,在换热器中凝液向下流动,大部分蒸发以冷却冷凝富甲垸气;从第 三主换热器引出的经V502的甲烷液体和气体分别去预冷器E103和E1024富甲烷气进料换热,复热后引到 甲烷压縮机入口缓冲罐V501 。
氮冷剂经压縮至3. 5MPa并冷却到4(TC后,经管线61进入第三主换热器E802被甲烷冷却冷凝,接着 经管线62进入第四主换热器E803,在换热器中向上流动被进一步冷却,在温度-16(TC时,引出换热器, 经节流过冷后从顶部再次迸入换热器,在换热器中凝液向下流动,大部分蒸发以冷凝富甲烷气;从第四主 换热器引出的经V602的氮液体和气体分别去预冷器E105和E106与富甲烷气进料换热,复热后引到氮压 縮机入口缓冲罐V601。
以上所述,对于本领域的技术人员来说,可以根据本发明的技术方案和技术构思作出其它各种相应的 改变和变形,而所有这些改变和变形都应属于本发明的权利要求的保护范围。
权利要求
1. 一种液化富甲烷气的工艺流程,包括富甲烷气中重烃的分离、富甲烷气的液化、脱氮、提供冷量的纯组分制冷循环系统(a)富甲烷气流首先在多个预冷器中与各纯组分冷剂换热;(b)预冷却后的富甲烷气在重烃分离塔中将重烃分离,重烃去分馏单元;(c)富甲烷气在第一主换热器中被乙烷冷剂进一步冷却;(d)富甲烷流体进入分离罐析出剩余的重烃,气相去下一个主换热器;(e)富甲烷气在第二主换热器中被乙烷冷剂继续冷却并部分冷凝;(f)富甲烷气在第三主换热器中被甲烷冷剂全部冷凝;(g)富甲烷气在第四主换热器中被氮冷剂过冷;(h)过冷的富甲烷流体经膨胀机后进入填料塔脱氮,塔底液化甲烷经泵输往储罐,塔顶甲烷气增压作为燃料气;(i丙烷冷剂被压缩,级间冷却和后冷及冷凝采用外部冷的流体,如空气;丙烷冷剂在多级换热器中闪蒸到较低的压力和温度以冷却乙烷冷剂;(j)乙烷冷剂被压缩,级间冷却和后冷采用外部冷的流体,如空气;通过丙烷冷剂的多级换热器冷凝;冷凝的乙烷冷剂在第一主换热器较高压力下部分蒸发以冷却富甲烷气,乙烷两相流离开第一主换热器经气液分离后,液相流体进入第二主换热器在较低压力下全部蒸发以进一步冷却富甲烷气,气相流体和从第二主换热器引出的乙烷气体分别去各自预冷器与富甲烷气进料换热,复热后分别引到乙烷压缩机一级入口缓冲罐和二级入口;(k)甲烷冷剂被压缩,级间冷却和后冷采用外部冷的流体,如空气;通过第二主换热器和第三主换热器进一步冷却和冷凝;冷凝的甲烷冷剂在第三主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分气化,从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完全气化后引到甲烷压缩机入口缓冲罐;(l)氮冷剂被压缩,级间冷却和后冷采用外部冷的流体,如空气;通过第三主换热器和第四主换热器进一步冷却和冷凝;冷凝的氮冷剂在第四主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分气化,从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完全气化后引到氮压缩机入口缓冲罐。
2.如权利要求l所述的工艺流程,富甲垸气进料的压力和温度是不高于10MPa, 50'C。
3. 如权利要求所述的工艺流程,富甲烷气在各预冷器中与各主换热器出口纯组分冷剂换热,富甲垸气冷 却,纯组分冷剂完全气化并复热去压缩机入口 ,预冷器出口可设置控制阀调节换热负荷和纯组分冷剂气化 压力。
4. 如权利要求3所述的工艺流程,纯组分冷剂的流量可以根据富甲烷气的组成和各预冷器的压力和温度进 行调节。
5. 如权利要求l所述的工艺流程,富甲烷气的液化过程由四个闭式回路,釆用纯组分冷剂的制冷循环提供冷量(a) 丙烷冷剂在四级换热器中逐步闪蒸到较低的压力和温度以冷却乙烷冷剂;(b) 乙烷冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过丙烷冷剂的多级换热器冷凝;冷 凝后的乙烷冷剂在第一主换热器较高压力下部分蒸发以冷却富甲烷气,乙烷两相流离开第一主换热器经气 液分离后,液相流体进入第二主换热器在较低压力F全部蒸发以进一步冷却富甲垸气,气相流体和从第二 主换热器引出的乙院气体分别去各自预冷器与富甲烷气进料换热,复热后分别引到乙垸压縮机一级入口缓 冲罐和二级入口; (c) 甲烷冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过第二主换热器和第三主换热器进 一步冷却和冷凝;冷凝的甲烷冷剂在第三主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分 气化,从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完 全气化后弓I到甲烷压縮机入口缓冲罐;(d) 氮冷剂被压縮,级间冷却和后冷采用外部冷的流体,如空气;通过第三主换热器和第四主换热器进一 步冷却和冷凝;冷凝的氮冷剂在第四主换热器内蒸发以冷却冷凝富甲烷气,在提供冷量的过程中部分气化, 从换热器出来的两相流经气液分离器,气、液相分别引入预冷器中与富甲烷气进料换热,复热或完全气化 后引到氮压縮机入口缓冲罐。
6. 如权利要求5所述的工艺流程,纯组分冷剂是氮、甲垸、乙烷或乙烯、丙垸。
7. 如权利要求5所述的工艺流程,纯组分冷剂压縮机是多级离心或轴流压縮机或组合式。
8. 如权利要求7所述的l:艺流程,纯组分冷剂压縮机是电机驱动或燃气透平机驱动或蒸汽透平机驱动。
9. 如权利要求8所述的工艺流程,纯组分冷剂压縮机是电机驱动时,变速装置是变频器或液力耦合式。
10. 如权利要求7所述的工艺流程,纯组分冷剂压縮机可采用均分负荷的并列双压縮机。
11. 如权利耍求5所述的工艺流程,富甲垸气的液化过程可使用各种换热器(包括绕管式换热器,板翅式 换热器,釜式换热器)。
12. 如权利要求5所述的工艺流程,纯组分冷剂在第一、第二、第三、第四主换热器冷凝引出主换热器后, 可采用节流阀或膨胀机减压降温,再回到各换热器。
13. 如权利耍求5所述的工艺流程,富甲垸气的液化过程使用的换热器可采用均分负荷的多换热器。
14. 如权利要求8所述的工艺流程,当冷剂压縮机采用燃气透平机驱动时,配置废热回收装置。
15. 如权利耍求1所述的工艺流程,从第四主换热器出来的液化富甲烷流体经液体膨胀机减压降温后,进 入气液分离罐闪蒸,分离罐的气相、液相分别引入填料塔,从上游引入一股流体作为上升气体,塔底液相 经低温泵输往LNG储罐,塔顶气相经增压后作为燃料气提供,其中冷量可通过换热利用。
16. 如权利要求l所述的工艺流程,液体膨胀机轴功输出提供燃料气增压的动力,旁路可设置节流阀。
17. 如权利要求16所述的工艺流程,在采用燃气透平驱动冷剂压縮机时,液体膨胀机和燃料气输出流量可 与纯组分冷剂压縮机驱动机燃气透平的轴功输出设置为整个液化过程负荷调节的机制。
18. 如权利要求1所述的工艺流程,富甲烷气的进料处理能力可达每年6百万吨。
19. 如权利要求1所述的工艺流程,富甲垸气液化流程的各系统可由多个并行的子系统组成,各个子系统 具有执行相同工艺过程的能力。
全文摘要
本发明公开了一种液化富甲烷气,例如天然气的工艺流程,包括富甲烷气中重烃的分离、富甲烷气的液化、脱氮、提供冷量的纯组分制冷循环系统。工艺流程可靠性好、对富甲烷气的原料组成的变化适应性强,可比较灵活地根据原料气的组成、流量的变化进行冷剂的流量和配比的调整,对所用设备的要求较低,可获得较高的效率和低的投资。
文档编号F25J1/02GK101392982SQ20081017589
公开日2009年3月25日 申请日期2008年11月10日 优先权日2008年11月10日
发明者陈文煜 申请人:陈文煜;初燕群
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1