在空气分离设备中获得空气产品的方法和空气分离设备与流程

文档序号:11213943阅读:218来源:国知局
在空气分离设备中获得空气产品的方法和空气分离设备与流程

本发明涉及在空气分离设备中获得空气产品的方法和实施此类类型的方法而建立的空气分离设备。



背景技术:

通过在空气分离设备中低温分离空气生产液态或气态的空气产品是已知的,例如在h.-w.(hrsg.),industrialgasesprocessing,wiley-vch,2006中尤其是第2.2.5节“cryogenicrectification(低温精馏)”有描述。

一系列工业使用都需要压缩氧,为了获得压缩氧可以使用具有所谓内压缩的空气分离设备。相应的空气分离设备同样在,例如,haring的一书中描述,并参照那里的图2.3加以阐述。在此类类型的空气分离设备中,深冷液体,尤其是液态氧在深冷状态下液态施加压力,逆着载热体蒸发,并最后作为气态加压产品给出。此外,与已经处于气态的产品额外的压缩相比,内压缩在能量上具有优点。

这时,在超临界压力下不发生原意上的相转换,深冷液体代之以从液态转变为超临界状态。为此使用“伪蒸发”或“去液化”的术语。反之,从液态转入超临界状态的深冷液体,处于高压下的载热体液化(或在给定情况下当它处于超临界压力下时,使之处于“伪液化”)。载热体往往通过送入空气分离设备的一部分空气形成。

以上的阐述相应地对其他空气产品,例如,氮或氩也有效,它们同样可以在使用内压缩的情况下获得气态或超临界状态,并首先作为深冷液体存在。

为了在空气分离设备中提高空气产品的压力,已知所谓增压压缩,并例如,在de676616c和ep0464630a1中描述。例如,正如在us6,295,840b1所公开的,空气产品还可以借助压缩的加入空气的部分流储存在储罐系统中,并在该处施加压力。

存在改善在空气分离设备中,尤其是在具有所阐述的储罐系统的空气分离设备中生产相应的空气产品的可能性。



技术实现要素:

在此类背景下,本发明提出一种在空气分离设备中获得空气产品的方法,和为了实施这样一种类型的方法所建立的具有独立权项特征的空气分离设备。推荐的配置是从属权项的要点,并现将加以描述。

本申请使用术语“压力水平”和“温度水平”来表征压力和温度,由此表达在相应的设备中不必以精确的压力值或温度值的形式使用压力和温度,以实现本发明的方案。但是此类压力和温度通常在一定的范围内波动,例如围绕中值波动±1%、5%、10%、20%或者甚至50%。在此,相应的压力水平和温度水平可以在不连续的范围内或者在相互重叠的范围内。例如压力水平尤其是包括不可避免的压力损失或预期的压力损失,其例如由于冷却效应或传输损失引起。相应的也适用于温度水平。在此以巴给出的压力水平涉及绝对压力。

本发明的优点

本发明建议借助空气分离设备获得空气产品的方法,该空气分离设备包括蒸馏塔系统和具有第一罐和第二罐的储罐系统。

在根据本发明的方法的范畴内,从蒸馏塔系统排出深冷液体,例如纯氧或前述的其他空气产品,至少部分地以液体形式存储在储罐系统中。该深冷液体在从储罐系统排出后可以作为空气产品使用。在此,在本发明的范畴内,使用具有第一罐和第二罐的储罐系统,它们以交替工作的方式输送深冷液体。换而言之,该深冷液体在第一时间段内送入第一罐而不送入第二罐,在第二时间段内送入第二罐而不送入第一罐。交替工作此外还包括,深冷液体在第一时间段内从第二罐排出而不从第一罐排出,在第二时间段内从第一罐排出而不从第二罐排出。还可以规定,使用多于两个罐,它们实施相应的循环。但是总是包括第一罐和第二罐以及在第一或第二时间段内进行相应的进料或出料。

通过使用相应的储罐系统,可能用内压缩方法提供规定纯度的产品,因为该方法允许使用可以不连续进行的分析方法。在借助泵提高压力的传统内压缩方法中,这是不可能的,因为这里在泵下游连续地直接送去加热。在根据本发明的方法的范畴内,例如,可以在第一时间段随后对在第一罐中储存的,并在第二时间段随后对在第二罐中储存的深冷液体进行纯度测试。若纯度符合预定值,则该深冷液体作为空气产品提供。若纯度不符合预定值,则抛弃相应的深冷液体,或优选使其回流蒸馏塔系统。

但是在此类交替工作中,尤其是在罐之间切换时,即在第一时间段和第二时间段之间,或在在第二时间段和第一时间段之间,或当罐内装之物由于纯度不足以作为空气产品提供时,中断从储罐系统提供深冷液体,它们最后造成空气产品生产的不连续。以此可能出现此类问题,即在相应的空气分离设备上连接用户时,对其供应不足,但会对在给定情况下为加热深冷液体而使用的装置,例如,空气分离设备的主热交换器产生不利作用。

因此,本发明建议,作为储罐系统使用具有额外的第三罐的储罐系统,其中将在第一时间段内从第二罐排出的及在第二时间段内从第一罐排出的深冷液体至少部分地(及尤其是至少临时地)未经加热转移至第三罐中。因而,在此还可以规定,将在第一时间段内从第二罐排出的及在第二时间段内从第一罐排出的深冷液体的仅一部分未经加热转移至第三罐中,而该深冷液体的其他部分,如下所述,直接通过旁路作为空气产品提供,或以其他形式使用。这时,第三罐作为前置或缓冲储存器使用,它用足以过渡前面解释的时间间隔的适当的深冷液体数量填充。

当在第一时间段内从第二罐和在第二时间段内从第一罐排出的深冷液体,在排出温度的水平从第二罐或第一罐转入第三罐时,转入第三罐是“未经加热”的。当该深冷液体没有主动地提高温度的措施或不进行加热时,就是此类情况。因而,该深冷液体尤其是不通过热交换器、加热器、逆流器等等加热。但正如就“温度水平”这一术语已经阐述的,这不排除通过不可避免的热量带入而进行的某种但非主动进行的加热。“温度水平”术语考虑到所述排出温度水平仍旧在上述范围内,可以处于加入第三罐的温度水平以下。未经加热转移至第三罐中,尤其是为了防止蒸发损失而进行的。

因而,根据本发明,储存在第一罐或第二罐中的深冷液体不再或者不仅仅导出及作为空气产品使用。更确切地说,至少部分地通过使用未经加热转移至第三罐中的深冷液体或其中一部分提供所述空气产品。但这时,在本发明的范畴内,如上所述,可以设置旁路管道,它使从第一罐或第二罐导出成为可能,从而空气产品还可以部分地在使用在该处储存的,但不转移至第三罐中的深冷液体的情况下提供。例如,这样可以当第三罐完全装满,并保证足够的纯度时,还直接从第一罐或第二罐排出。另外,还可以规定,并非全部未经加热而转移至第三罐中的深冷液体都用于提供空气产品。未经加热而转移至第三罐中的深冷液体的一部分可以以液态从第三罐排出,并以其他方法利用。例如,深冷液体在各罐中蒸发的部分同样可能不用于提供空气产品。

此外,还可以规定,用于提供空气产品的来自第三罐的深冷液体以液态从第三罐排出,蒸发或从液态转变为超临界状态,并从空气分离设备导出,和/或用于提供空气产品的深冷液体以液态从第三罐排出,并以液态以液体形式储存在第四罐中。

该第四罐可以是具有第一至第三罐的储罐系统的一部分,但它也可以是,例如,单独的,作为另一个储罐系统的一部分提供。第四罐可以处于空气分离设备内,例如,在冷箱(coldbox)内,或包括在第一至第三罐以外的绝热外壳内。但第四罐也可以安排在该空气分离设备之外。在本发明的范畴内,空气产品可以指液态或处于超临界状态的空气产品或指液态空气产品。正如液态空气产品还可以是储存在空气分离设备之内或之外的,尤其是储存在相应气罐内的气态空气产品。

该深冷液体优选可以在蒸馏塔系统相应的塔,尤其是纯氧塔,下文中亦称“第二分离塔”的压力水平,从该空气分离设备的蒸馏塔系统排出。该深冷液体在这里称为“第一”的压力水平送入储罐系统的第一罐和第二罐。该第一压力水平对应于当该分离塔和第一或第二罐之间不安排诸如泵等影响压力的装置时,深冷液体从蒸馏塔系统排出时的压力水平。若例如,使用相应的泵,则该第一压力水平也可以处于分离塔压力水平以上。深冷液体在较高的第二压力水平(送入压力)下送入储罐系统的第三罐,该压力水平尤其是可以根据应该在哪个压力(产品压力)提供空气产品来校正。该送入压力优选略高于产品压力,从而无需额外的泵或压缩机便可以导出。该第二压力水平尤其是可以通过在第一罐或第二罐中进行增压蒸发达到。

通过使用所解释的储罐系统和提高压力,本发明把传统内压缩法的优点,即连续生产空气产品,与改善分析的可能性的优点结合起来。通过这个改善了的分析可能性可以在每一时刻保证和记录空气产品的高纯度。

从第三罐(或通过旁路管道从第一罐和第二罐)排出深冷液体随后,当应该生产气态或处于超临界状态的空气产品时,这可以,如上所述,尤其是蒸发或从液态转变为超临界状态。蒸发或转变为超临界状态(为简单起见,在下文中这两种情况都使用“蒸发”的术语)可以在所使用的空气分离设备的内部,例如,在使用主热交换器的情况下进行。对于没有空气分离设备可用的情况,还可以使用具有紧急供应蒸发器的备份系统,该蒸发热不从空气分离设备排出。但深冷液体,正如同样说明的,也可以在从第三罐(或通过上述旁路管道从第一罐和第二罐)排出随后,以液体形式从空气分离设备导出,以液体形式,例如,在罐中输送到用户,并在该处以液态或(蒸发随后)以气态使用。

该第一压力水平,因而深冷液体送入第一罐和第二罐时的压力水平,优选约为1.3至4巴。该第二压力水平,视要求而定,处于2至100巴,但高于该第一压力水平。在本发明的范畴内,在考虑到用户压力要求的情况下,还可以时间上灵活地提高压力。

根据本发明一个实施方案,该深冷液体可以在送入第一罐和第二罐之前,在使用泵的情况下使之处于该第一压力水平。在这个实施例中,本发明在使用泵的情况下,把传统内压缩法的优点与交替地向不同的罐给料的方法结合起来,但该泵由于连续提高压力使实施间断的分析方法成为不可能。

在传统的方法上,在使用具有两个罐的储罐系统的情况下,进行增压蒸发。在增压蒸发时,由于升压需要相应的一部分深冷液体,生产损失是不可避免的。此类生产损失可能高达10%。通过使用泵,此类生产损失缩小了。这里储罐中不可避免的冲刷损失(flashverluste)约为5%,明显地低于增压蒸发造成的损失。尽管相应的泵有额外的能耗,但较高的成品收率在给定情况下抵消了此类额外的能耗。

这时,本发明发挥了对各空气产品,例如,氧,具有非常高的纯度要求的空气分离设备的特殊优点。在此类类型非常高的纯度要求下,可能使传统的快速(常规)分析方法达到检测极限,而必须使用诸如气体色谱分析法等灵敏的分析方法。然而,相应的灵敏的分析方法比传统方法需要长得多的时间来求出测量值,因而必须进行间断的测量。

根据本发明的方法,与只在用户处进行相应的空气产品,例如,氧,蒸发的方法相比,节省为此而用的能量。总共允许达到节省能量每nm3/h氧约1kw。

与本发明相联系的优点,尤其是使容量受最大运输尺寸限制的较小的空气分离设备得到好处。若改善了效率,则相应地提高了产出率。

尽管所解释的借助泵提高深冷液体的压力在一定情况下可能是有利的,但是本发明可以基本上和特别有优点地在相应的储罐系统上使用纯粹的增压蒸发。这样完全可以省去泵,这使成本低廉地建立相应的空气分离设备成为可能。在增压蒸发上拒绝可移动件或驱动部分,使特别节能和无需保养地运行成为可能。特别当空气产品总归要在气态或在超临界状态下提供时,在增压蒸发上不得不造成的蒸发损失下降并非不显著(nichtinsgewicht)。还可以把用泵来提高压力与额外的增压蒸发结合起来。

如前所述,本发明尤其是适用于提供高纯度空气产品,因为可能在加热和在设备边界上给出之前进行间断的分析。换而言之,在本发明的范畴内,优选求出在第一时间段内送入第一罐的和在第二时间段内送入第二罐的深冷液体的纯度。对于相应的分析法,可以使用常用的检测纯度用的方法,例如,光谱分析法和/或气体色谱分析法。

这时,在本发明的范畴内,深冷液体只在其纯度符合预定值时,才在第一时间段内从第二罐转入第三罐,和在第二时间段内从第一罐转入第三罐。因此,该第三罐总是灌入确定纯度的深冷液体,并可以不必进行额外的分析,即可随时用于提供空气产品。

反之,若该深冷液体的纯度不符合预定值,则它优选在第一时间段内从第二罐,而在第二时间段内从第一罐回流蒸馏塔系统。尤其是在此类类型的方法方案中,本发明通过使用第三罐已证实是特别有利的,因为可以通过从第三罐排出深冷液体补偿相应的中断。

因此,优选规定,在第三罐保存的深冷液体数量,至少要像在第一罐和/或在第二罐中可以储存的数量一样多,或大得可以跨越无法从前两个容器排出液体的切换时间,使连续排出成为可能。这样就可以连续地加热深冷液体,并作为空气产品给出,即使由于不符合相应纯度给定值而回流蒸馏塔系统,使第一罐或第二罐的容积被完全装满时,或必须抛弃。

本发明尤其是可以用于在空气分离设备中生产纯氧。在此类类型的空气分离设备中,该蒸馏塔系统有第一分离塔和第二分离塔。在使用该第一分离塔的情况下产生使氧富集至第一氧含量的流体流,并在将其使用于该第二分离塔的情况下产生液态纯氧,它从第二分离塔至少一部分作为深冷液体排出。本发明通过使用第三罐允许连续地提供高纯度氧。

本发明尤其是可以与本申请人的所谓spctra法一起使用,正如在us2009/107177a1描述的。但本发明不限于此。此类方法包括,在使用第一分离塔的情况下还产生使氧富集至第二氧含量的流体流和使氧富集至第三氧含量的流体流。所述使氧富集至第二氧含量的流体流,优选在使氧富集至第一氧含量的流体流下面从第一分离塔排出。因此,它具有较高的氧含量。所述使氧富集至第三氧含量的流体流优选从该第一分离塔从其塔底排出。接着,这两个流体流尤其是在该第一分离塔的塔顶冷凝器中和在主热交换器中加热至不同的温度,其中经加热的使氧富集至第二氧含量的流体流至少一部分在与制冷发动机连接的压缩机中压缩,冷却,并回流该第一分离塔。与此不同,使氧富集至第三氧含量的流体流的一部分用于驱动制冷发动机。相应方法的其他细节参见附图1。相应的方法被证实在能量上是特别有利的。

为了加热接着作为空气产品提供的深冷液体,优选使用该空气分离设备的主热交换器。然而,附带地或作为其替代方案,还可以使用额外的蒸发器。相应的蒸发器尤其是可以在空气分离设备的主热交换器的能力不足时,和/或当应该提供额外的空气产品数量时使用,因为它能够(还临时)提供相应的主热交换器。

本发明还可以延伸到为获得空气产品而建立的空气分离设备。该空气分离设备包括蒸馏塔系统和具有第一罐和第二罐的储罐系统,并具有在相应的装置权项给出的特征。

优选建立一个为实施前面更详细地阐述的方法用的相应的空气分离设备。因此,在这个位置上明确地参见相应的特征的优点。

现将参照阐明本发明推荐的实施方案的附图,对本发明做较详细的说明。

附图说明

图1以示意设备流程图的形式表示根据本发明一个实施方案的空气分离设备;

图2以示意设备流程图的形式表示根据本发明一个实施方案的储罐系统;而

图3以示意设备流程图的形式表示根据本发明一个实施方案的储罐系统。

具体实施方式

在以下的附图中彼此相应的零件以相同的引用符号给出,并为清晰起见不再赘述。这时,图2和3表示各储罐系统,它们如何可以结合在按照图1的空气分离设备中,或结合在与此不同地形成的空气分离设备中。这时,通过在图1给出的零件给出储罐系统的结合。

图1以设备流程图的形式示意地显示根据本发明一个实施例的空气分离设备。该空气分离设备整体用100表示。

大气的空气1(air空气)通过过滤器2被空气压缩机3抽吸,在这里压缩至6至20巴,优选约9巴的绝对压力。流经再冷却器4和水分离器5随后,为了使水(h2o)沉淀在纯化装置7中,纯化压缩空气6,纯化装置有一对用吸附材料,优选分子筛填充的容器。纯化空气8在主热交换器9中冷却至约露点并部分液化。冷却空气10的第一部分11通过节流阀51引入作为单独塔的分离塔12。馈送优选在塔底上面的一些实际或理论的塔板进行。

第一分离塔12的工作压力在塔顶等于6至20巴,优选约9巴。其塔顶冷凝器13用流体流18和流体流14冷却。流体流18从空气送入点上面的一些实际或理论塔板的中间位置或在与此相同的高度排出,而流体流14从第一分离塔12的塔底排出。在以上阐明的范围内流体流18被称为“使氧富集至第二氧含量的流体流”,而流体流14被称为“使氧富集至第三氧含量的流体流”。

作为第一分离塔12的主产品在第一分离塔12塔顶排出气态氮15,16,在主热交换器9中加热至约环境温度,并最后通过管线17排出气态压力产品(pgan)。其他气态氮通过塔顶冷凝器13引导。在塔顶冷凝器13获得的冷凝液52的一部分53可以作为液态氮产品(plin)获得;剩余部分54作为回流加入分离塔12的塔顶。

在塔顶冷凝器13中流体流14在2至9巴,优选在约4巴的压力下蒸发,接着以气态通过管线19流到主热交换器9的冷端。由此它在中间温度下以流20的形式排出,并例如,在所显示的实施例中形成为透平膨胀机的制冷发动机21中,做功减压至大气压以上约300毫巴。制冷发动机21在机械上与(冷)压缩机30和制动装置22连接,在所显示的实例中,该制动装置由油制动器形成。减压后的流体流23在主热交换器9中加热至约环境温度。热流体流24作为流体流25鼓入大气(atm)和/或在某些情况下在加热装置28中加热随后,作为再生气体26,27使用。

流体流18在塔顶冷凝器13中在2至9巴,优选在约4巴压力下蒸发,并以气态通过管线29流到压缩机30,它在其中再压缩至约第一分离塔12的工作压力。再压缩后的流体流31在主热交换器9中再次冷却至塔温,并最后通过管线32再次在塔底送入第一分离塔12。流体流14和18所解释的处理对应于上述所谓spectra法。

流体流36首先称为“使氧富集至第一氧含量的流体流”,它基本上没有难挥发的污染物,从分离塔12的中间位置以液态排出,它安排在空气送入点以上5至25个理论或实际塔板。在给定情况下流体流36在形成为纯氧塔的第二分离塔38的塔底蒸发器37中过冷,接着通过管线39和节流阀40给入第二分离塔38的塔顶。第二分离塔38(在塔顶)的工作压力等于1.3至4巴,优选约2.5巴。

此外,第二分离塔38的塔底蒸发器37还借助冷却的加入空气10的第二部分42运行。这时,加入空气流42至少部分地,例如,完全冷凝,并通过管线43流到第一分离塔12,其中它引入其他加入空气11的送入高度或塔底。

纯氧从第二分离塔38的塔底作为深冷液体排出,任选地借助泵55加压至2至100巴,优选约12巴的增大压力,并送入下面就附图2和3说明的罐安排70。在罐安排70中中间储存随后,该深冷液体通过管线56引入主热交换器9的冷端,在该处在增大的压力下蒸发,并加热至环境温度,最后通过管线57作为气态产品(gox-ic)排出。

第二分离塔38的塔顶气58混入前面解释的减压后的第二流体流23(参见联系a)。在某些情况下一部分加入空气通过旁路管线59引向冷压缩机30的泵防溢出(所谓anti-surgecontrol(防溢出控制))在其入口处。

任选空气分离设备100可以在泵55的上游和/或下游从作为液态馏出物取得液态氧(在附图中用lox表示)。附带地还可以使外部液体,例如,也来自液体罐的液态氩、液态氮或液态氧,在主热交换器9中在间接热交换中与加入空气一起蒸发(附图中未示出)。

在图2中以示意设备流程图的形式说明可以在空气分离设备100中,正如在图1说明的,使用的根据本发明一个实施方案的储罐系统,并整体用70标示。

借助参照图1已经解释的泵55,流体流41的深冷液体从第一压力水平变为第二压力水平。该第一压力水平尤其是可以对应于在空气分离设备100的第二分离塔38(纯氧塔),如图1所示,可以运行的压力水平。该第二压力水平,例如,等于2至100巴。

压力升高了的流体流41送入第一罐71或第二罐72。正如多次阐述的,罐71或72可以彼此交替地送入流体流41的液体,即,在第一时间段内,流体流41的深冷液体送入第一罐71,而不送入第二罐72,而在第二时间段内,送入第二罐72,而不送入第一罐71。为了触发相应使用的阀71a和72a,例如,可以设置罐控制装置80。

同样正如多次阐述的,总是瞬间不把流体流41的深冷液体送入罐71,72,而是排出深冷液体。它未经加热转入第三罐73。如上所述,还可以规定,例如,在第三罐73被完全填充时,正如在这里借助管线74说明的,相应的液体直接进一步引导,并引去加热。液体的加热,如上所述,例如可以在空气分离设备,例如,图1的空气分离设备100的主热交换器9,和/或在额外的蒸发器90中进行。

图3以示意设备流程图的形式说明根据本发明的另一个实施方案的储罐系统。图3的储罐系统也用70标示。图3所说明的储罐系统70设有增压蒸发装置75。正如在图2的储罐系统70或在图1的空气分离设备100中,其中可以任选地设置泵55。在增压蒸发时一般省去相应的泵55,而流41的深冷液体在纯氧塔38中的蒸馏压力下,在这里该压力对应于“第一压力水平”,送入罐71或72。在增压蒸发装置75中,使流41的深冷液体中以液态从罐71或72排出的部分蒸发。蒸发了的和处于增大压力下的气体送入罐71或72的塔顶空间。以此方式可以省略掉泵55,可以仅使用增压蒸发。

正如这里所显示的,提供液态空气产品用的深冷液体,以液态从第三罐73排出,并在主热交换器9中和/或在额外的蒸发器90中蒸发,或从液态转变为超临界状态,并从空气分离设备导出。然而,提供液态空气产品用的深冷液体还可以以液态从第三罐73排出,并在第四罐76中液态储存直至使用。细节已经阐述。还可以进一步在第三罐73的上游或下游排出。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1