液化富烃馏分的方法

文档序号:8253384阅读:306来源:国知局
液化富烃馏分的方法
【技术领域】
[0001]本发明涉及通过与混合制冷剂回路中的混合制冷剂间接热交换而液化富烃馏分,尤其是天然气的方法,其中混合制冷剂被压缩、分离成富含混合制冷剂的高沸点组分(HMR=重混合制冷剂)的液相制冷剂和富含混合制冷剂的低沸点组分(LMR =轻混合制冷剂)的气相制冷剂,并且所述两相制冷剂在间接热交换之前混合。
【背景技术】
[0002]液化富烃馏分或气体混合物,尤其是天然气的方法,特别用到了闭合的混合制冷剂回路,其中多组分制冷剂至少部分在升高的压力和周围环境温度下冷凝,并且在低压和低于环境温度下蒸发而产生制冷效果。在简化的方法中,只使用一个混合制冷剂回路,其中在压缩过程中出现的制冷剂馏分在与待液化的富烃馏分间接热交换之前被混合,并在热交换器中被共同使用。
[0003]参照图1中所示的流程,下文将更详细地说明此类冷却和液化富烃馏分的方法,例如德国专利申请102011010633中所公开的。
[0004]待冷却和待液化的富烃馏分,例如天然气,通过线路100被供给到热交换器E3’。在其中,该原料馏分与尚待描述的混合制冷剂回路相对地进行预冷却,然后通过线路101供给到分离单元T。用黑框简单表示的分离单元T作用在于,例如从待液化的原料馏分100/101中分离出氮和/或更高级的烃。在分离单元T中进行的分离过程决定了原料馏分100/101在热交换器E3’中必须至少被冷却到的温度。从原料馏分中分离出的一种或多种组分通过线路104从分离单元T中排出,同时,待液化的剩余原料馏分再次通过线路102被供给到热交换器E3’,并在其中被进一步冷却、液化和选择性地过度冷却。然后,使用这种方式处理后的原料馏分103被送至它的其他用途或送到储存罐中。
[0005]冷却和液化富烃原料馏分100/102所需的混合制冷剂回路包括至少两个阶段的压缩机单元C、压缩机单元C上游的分离器Dl和位于压缩机阶段下游的两个分离器D2和D3。此外,还包括用于消散压缩热量和部分冷凝混合制冷剂的两个后冷却器El和E2,和泵或泵单元P。
[0006]在热交换器E3’中与待冷却和待液化的原料馏分100/102相对地蒸发的混合制冷剂通过线路I被供给到上述的分离器Dl中。通过线路I’从该分离器顶部排出的气相制冷剂被供给到压缩机单元C的第一压缩阶段中,并被压缩到所需的中间压力。在经过后冷却器E I后,被压缩的混合制冷剂通过线路2被供给到分离器D2。富含制冷剂中的高沸点组分(HMR)的液相制冷剂从所述分离器的底部通过线路3被排出,并通过泵或泵单元P被泵送至混合制冷剂的尚待描述的气相的压力。
[0007]从分离器D2通过线路4排出的气相制冷剂被供给到压缩机C的第二个阶段,并被压缩到混合制冷剂回路所需的最终压力。被压缩的混合制冷剂通过线路5在经过后冷却器E2之后被供给到分离器D3。在分离器D3的底部中产生的液态馏分7通过控制阀Vl再循环到分离器D2的入口前。富含混合制冷剂的低沸点组分(LMR)的气相制冷剂通过线路6从分离器D3的顶部排出,在与上述液相制冷剂3混合后,通过线路8被供给到热交换器E3’。液相制冷剂3和气相制冷剂6在热交换器上游汇合,或者在热交换器E3’中刚开始热交换时立刻汇合,并且作为两相流被供给。混合制冷剂在热交换器E3’中被冷却和完全液化。在热交换器E3’的冷端,混合制冷剂9在阀V2中膨长而产生制冷作用,然后再次经过热交换器E3’时完全蒸发。
[0008]然而,使用上述工序,不可能有目的地影响热交换器E3 ’中的温度分布。可获得的、混合制冷剂回路的波动变量,例如压力分布、质量流率和组成,被用于控制系统容量和热交换器E3’冷端的原料馏分的温度,以及优化能耗。如果现在在气体液化期间需要有热交换器E3’中的理想中间温度,例如为了防止原料气体中的固体沉积或者为了建立理想的物质分离,如上述氮或更高级烃的分离,所述中间温度相对于在热交换器E3’冷端待液化的馏分的负载和温度不是独立可控制的。

【发明内容】

[0009]本发明的目的在于提供一种液化富烃馏分,尤其是天然气的方法,除了用于间接热交换的热交换器冷端的温度之外,还能够足够精确地控制其他温度。这应该理解为控制在至少3 °C,优选在至少1°C。
[0010]所述目的通过此类用于液化富烃馏分,尤其是天然气的方法来达到,所述方法的特征在于
[0011]-在至少两个热交换器中进行间接热交换,
[0012]-其中第一热交换器用于预冷,第二热交换器用于液化富烃馏分;且
[0013]-供给到第一热交换器的混合制冷剂包含5-50%的富含混合制冷剂的高沸点组分(HMR)的液相制冷剂,并且与富含混合制冷剂的低沸点组分(LMR)的气相制冷剂以使HMR/LMR的混合比例在1.2与10之间的方式混合。
【附图说明】
[0014]图1所示为一个根据现有技术的实施方案;
[0015]图2所示为一个根据本发明的实施方案。
【具体实施方式】
[0016]在上述属于现有技术的液化富烃馏分的方法中,混合制冷剂的液相和气相在各种情形下都全部混合,并被共同用于冷却和液化原料馏分。根据本发明,富烃馏分和混合制冷剂之间的间接热交换现在在至少两个热交换器中进行,其中第一热交换器用于预冷,第二热交换器用于冷却和液化富烃馏分。第一或预冷却热交换器在这里主要是利用混合制冷剂的液相进行冷却,而第二热交换器或液化器主要利用混合制冷剂的气相进行冷却。因此,根据本发明,供给到第一热交换器的混合制冷剂包含5-50%的富含混合制冷剂的高沸点组分(HMR)的液相制冷剂。该液相制冷剂与富含混合制冷剂的低沸点组分(LMR)的气相制冷剂以使HMR/LMR混合比例在1.2与10之间的方式混合。液相和气相制冷剂的剩余部分被用于冷却第二热交换器。用于第一热交换器的混合制冷剂现在针对高沸点组分浓缩多倍,且因此具有高沸点。因此第二热交换器的混合制冷剂针对混合制冷剂的低沸点组分进行浓缩,因此具有低沸点。
[0017]现在可以通过各个制冷剂馏分的混合和量以这样的方式来影响两个热交换器的制冷量和温度分布,以致第一热交换器的冷端的温度,以及类似地第二热交换器的冷端的温度可被精确控制在至少3°C,优选在至少1°C。
[0018]根据本发明的液化富烃馏分的方法的其他有利的实施方案的特征在于:
[0019]-供给到第一热交换器的混合制冷剂包含10-30%的富含混合制冷剂的高沸点组分(HMR)的液相制冷剂,
[0020]-HMR/LMR的混合比例在2与5之间,和/或
[0021]-气相制冷剂的支流被供给到第一和/或第二热交换器的冷端的混合制冷剂。
[0022]根据本发明的液化富烃馏分的方法及其其他有利的实施方案将在下文中参照图2示出的实施例更详细地说明。
[0023]待冷却和待液化的富烃馏分200现在被供给到第一热交换器或预冷器E4。在其中,原料馏分与尚待描述的混合制冷剂回路相对地进行预冷却,并通过线路201被供给到分离单元T。从原料馏分中分离出的一种或多种组分通过管线204从分离单元T排出,同时剩余的、待液化的原料馏分通过管线202被再次供给到第二热交换器或液化器E3,并在其中进一步被冷却、液化和选择性地过度冷却。以此方式处理后的原料馏分203然后被送至它的其他用途或被送到储存罐中。
[0024]除了在两个热交换器E3和E4之间分配气相制冷剂6和液相制冷剂3之外,冷却和液化富含烃的原料馏分200/202所需的混合制冷剂回路对应于参照图1说明的混合制冷剂回路。因此,现在下文仅仅着重说明与参照图1说明的混合制冷剂回路的不同点。
[0025]根据本发明,从分离器D2的底部排出的液相制冷剂3通过控制阀V6和V7经由线路区段11和15在热交换器E3和E4之间分配。在此供给到热交换器E4的混合制冷剂包含5-50%,优选10-30%的富含混合制冷剂的高沸点组分(HMR)的液相制冷剂。从分离器D3的顶部排出的、且富含混合制冷剂的低沸点组分(LMR)的气相制冷剂6通过线路区段10和14在热交换器E3和E4之间的分配是通过阀门V2和V4取决于汇合的混合制冷剂流12和16的质量平衡。
[0026]气相制冷剂6的支流可通过线路区段13和17被分别供给到分别在第一和/或第二交换器E4或E3的冷端的混合制冷剂12或16。控制阀V3和V5提供了控制热交换器E3和E4的冷端温度的另一种可能性。另外,可通过这两个阀V3和V5建立最小气体速率,所述最小气体速率通过防止气相和液相制冷剂在蒸发过程中分离而保证热交换器E3和E4的稳定的冷流。
【主权项】
1.通过与混合制冷剂回路的混合制冷剂的间接热交换液化富烃馏分,尤其是天然气的方法,其中混合制冷剂被压缩、分离成富含混合制冷剂的高沸点组分(HMR)的液相制冷剂和富含混合制冷剂的低沸点组分(LMR)的气相制冷剂,并且所述液相和气相制冷剂在间接热交换之前被混合,其特征在于: -间接热交换在至少两个热交换器(E3,E4)中进行, -其中第一热交换器(E4)用于预冷,第二热交换器(E3)用于液化富烃馏分(200-203),且 -供给到第一热交换器(E4)的混合制冷剂包含5-50%的富含混合制冷剂的高沸点组分(HMR)的液相制冷剂(3,15),并且与富含混合制冷剂的低沸点组分(LMR)的气相制冷剂(6,14)以使HMR/LMR的混合比例在1.2与10之间的方式混合。
2.根据权利要求1所述的方法,其特征在于供给到第一热交换器(E4)的混合制冷剂包含10-30%的富含混合制冷剂的高沸点组分(HMR)的液相制冷剂。
3.根据权利要求1或2所述的方法,其特征在于HMR/LMR的混合比例在2与5之间。
4.根据权利要求1至3任一项所述的方法,其特征在于气相制冷剂(6)的支流(13,17)被供给到第一和/或第二热交换器(E3,E4)冷端的混合制冷剂(12,16)中。
【专利摘要】描述了一种通过与混合制冷剂回路的混合制冷剂的间接热交换液化富烃馏分,尤其是天然气的方法,其中混合制冷剂被压缩、分离成富含混合制冷剂的高沸点组分(HMR)的液相制冷剂和富含混合制冷剂的低沸点组分(LMR)的气相制冷剂,并且所述液相和气相制冷剂在间接热交换之前被混合。根据本发明,间接热交换在至少两个热交换器(E3,E4)中进行,其中第一热交换器(E4)用于预冷,第二热交换器(E3)用于液化富烃馏分,且供给到第一热交换器的混合制冷剂包含5-50%的富含HMR的液相制冷剂(3,15),并且与富含LMR的气相制冷剂(6,14)以使HMR/LMR的混合比例在1.2与10之间的方式混合。
【IPC分类】F25J3-02
【公开号】CN104567274
【申请号】CN201410654487
【发明人】H·鲍尔, J·维特, M·格温纳
【申请人】林德股份公司
【公开日】2015年4月29日
【申请日】2014年9月30日
【公告号】DE102013016695A1, US20150096326
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1