一种处理炼油废水的膜生物反应器的制作方法

文档序号:19843961发布日期:2020-02-07 22:21阅读:145来源:国知局
一种处理炼油废水的膜生物反应器的制作方法

本实用新型涉及炼油废水处理技术领域,具体为一种处理炼油废水的膜生物反应器。



背景技术:

石油作为一种战略资源在国民经济发展中占有举足轻重的地位,但石油的开采以及石油炼制过程中都会产生大量废水,尤其在石油炼制过程中,需对原油进行脱水、脱盐等处理,在此过程中会产生大量成分复杂、含油量高、可生化性差的废水。同时根据国家节能减排的发展战略与石化企业对节水的客观要求,石化企业不仅需要持续减少污染物排放,还需要节约水资源,增加循环水使用率,因此,石化企业对于废水资源化具有较高的要求,目前较为先进且应用较多的废水深度处理回用技术以膜分离技术为主。

膜生物反应器(mbr)作为膜分离技术和传统活性污泥法的结合,与传统工艺相比,mbr具有占地面积小,污染物去除率高,污泥浓度高、泥龄长且产泥量少,产水水质好并可回用,抗冲击能力强,控制比较灵活等优势,在石化废水处理中逐渐得到了重视和应用。一般石油炼化企业对于其生产废水,从源头上进行分质分流处理,形成含油废水及含盐废水两大类。含油废水含盐量少,在不需脱盐工艺的情况下,通过深度处理工艺即可达到回用标准。针对含油废水,石化企业一般采用预处理+a/o生化处理+曝气生物滤池+过滤器+

活性炭的方式;而采用mbr工艺,极大的缩短了处理流程,形成预处理+a/o/mbr生化处理的工艺流程,在占地面积、处理效率等方面具有明显的优势。

但采用mbr工艺处理石化炼油废水时,主要的难点在于控制膜污染速率和维持膜通量。膜污染是指膜分离过程与污泥混合液相互作用而导致膜通量下降的现象,人们已经推导并验证了的mbr中几种可能的膜污染作用方式主要有:(1)胶体颗粒物质对膜孔的堵塞;(2)溶液中溶质在膜表面的吸附;(3)污泥絮体在膜表面的沉淀;(4)膜表面滤饼层的压密;(5)污染物的成分及性质在长期运行过程中所发生的变化。膜污染问题极大的阻碍了mbr的推广应用,膜污染降低膜的使用性能,增加膜的更换频率和反应器的运行损耗,从而严重影响了mbr技术的经济性和实用性。



技术实现要素:

本实用新型的目的在于提供一种利用纳米复合材料作为生物膜载体的膜生物反应器,其可提高微生物的载荷量,解决了膜生物反应器(mbr)膜污染的问题,提高了处理炼油废水的效率。

为了实现上述发明目的,本实用新型采用以下技术方案:

一种处理炼油废水的膜生物反应器,包括原水箱1、原水泵2、反应箱3、自吸泵13、中水箱14、控制器18,其特征在于:所述原水箱1、原水泵2、反应箱3、自吸泵13、中水箱14通过管路依次连接,所述中水箱14的的出水口连接有出水管40,所述出水管40上连接有排水管41,所述排水管41上连接有回流支路,所述回流支路包括回流泵17,所述回流泵17的进水口通过管路与排水管41连接,所述回流泵17的出水口通过管路与原水箱1连接,所述原水泵2和自吸泵13与控制器18通过电性连接,所述反应箱3的内腔由隔板4分割成第一池体5和第二池体6,所述第一池体5和第二池体6的底部是相通的,所述第一池体5内设置有填料组件7,所述填料组件7由上下网格和填料组成,填料固定在上下网格之间,所述填料是由纳米凹凸棒黏土复合亲水聚氨酯泡沫材料构成的微生物载体,所述第二池体6内设有膜组件8,所述膜组件8由第二池体6底部的膜支架39支撑,所述膜组件8包括膜组件壳体,所述膜组件壳体上设置有膜组件进水口和膜组件出水口,所述膜组件进水口覆盖有过滤层,所述膜组件出水口通过管道与反应箱3的出水口相连,所述膜组件8由pvdf中空纤维组成,所述第一池体5的底部设有曝气装置,曝气装置由气泵9、进气总管10、进气支管11和陶瓷曝气头12组成,所述中水箱14内设有消毒装置和水质监测装置19。

所述原水箱1、反应箱3和中水箱14为一体化箱体。

所述中水箱14的出水管40上设置有第八球阀36,所述排水管41上设置有第九球阀37,所述水质监测装置19、第八球阀36、第九球阀37与控制器18之间通过电性连接。

所述消毒装置由氯片投放管15和投放在氯片投放管15内的氯片组成,所述氯片投放管15上均匀设置有进水孔16。

所述原水箱1的箱内壁下部设置有液位传感器20,所述液位传感器20与控制器18通过电性连接。

所述原水箱1、反应箱3和中水箱14的箱体上部分别设置有溢流管。

所述原水箱1、反应箱3和中水箱14的箱体下部分别设置有放空管,所述放空管上设置有相应的球阀,所述球阀与控制器18通过电性连接。

所述反应箱3中设有温度计和ph检测器,温度计和ph检测器与控制器18通过电性连接。

本实用新型的有益效果在于:本实用新型将生物膜与mbr工艺相结合,采用纳米凹凸棒黏土复合亲水聚氨酯泡沫材料作为生物载体,建立了新型的生物膜—膜生物反应器(bf-mbr),与传统的膜生物反应器(mbr)相比,bf-mbr提高了微生物的负载量,化学需氧量(cod)去除效率和nh3-n去除效率都有所提高,浊度相比有所下降,从而有更好的炼油废水处理效率。

附图说明

图1为本实用新型的工艺流程图;

图2为本实用新型中原水箱、反应箱和中水箱的一体结构示意图。

图中所示:原水箱1,原水泵2,反应箱3,隔板4,第一池体5,第二池体6,填料组件7,膜组件8,气泵9,进气总管10,进气支管11,陶瓷曝气头12,自吸泵13,中水箱14,氯片投放管15,进水孔16,回流泵17,控制器18,水质监测装置19,液位传感器20,第一放空管21,第一球阀22,第一溢流管23,第二球阀24,第三球阀25,第一逆止阀26,第二放空管27,第四球阀28,第二溢流管29,第五球阀30,第六球阀31,第二逆止阀32,第三放空管33,第七球阀34,第三溢流管35,第八球阀36,第九球阀37,第十球阀38,膜支架39,出水管40,排水管41。

具体实施方式

下面结合附图和实施例,对本实用新型的具体实施方式作进一步详细描述。以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。

以下实施例中涉及的零部件、结构、机构等,如无特殊说明,则均为常规市售产品。

实施例1:

一种处理炼油废水的膜生物反应器,包括原水箱1、原水泵2、反应箱3、自吸泵13、中水箱14、控制器18,其特征在于:所述原水箱1、原水泵2、反应箱3、自吸泵13、中水箱14通过管路依次连接,所述中水箱14的的出水口连接有出水管40,所述出水管40上连接有排水管41,所述排水管41上连接有回流支路,所述回流支路包括回流泵17,所述回流泵17的进水口通过管路与排水管41连接,所述回流泵17的出水口通过管路与原水箱1连接,所述原水泵2和自吸泵13与控制器18通过电性连接,所述反应箱3的内腔由隔板4分割成第一池体5和第二池体6,所述第一池体5和第二池体6的底部是相通的,所述第一池体5内设置有填料组件7,所述填料组件7由上下网格和填料组成,填料固定在上下网格之间,所述填料是由纳米凹凸棒黏土复合亲水聚氨酯泡沫材料构成的微生物载体,所述第二池体6内设有膜组件8,所述膜组件8由第二池体6底部的膜支架39支撑,所述膜组件8包括膜组件壳体,所述膜组件壳体上设置有膜组件进水口和膜组件出水口,所述膜组件进水口覆盖有过滤层,所述膜组件出水口通过管道与反应箱3的出水口相连,所述膜组件8由pvdf中空纤维组成,所述第一池体5的底部设有曝气装置,曝气装置由气泵9、进气总管10、进气支管11和陶瓷曝气头12组成,所述中水箱14内设有消毒装置和水质监测装置19。

所述原水箱1、反应箱3和中水箱14为一体化mbr反应箱。

所述原水箱1的出水口通过管路与原水泵2的进水口连接,所述原水泵2的出水口通过管路与反应箱3的进水口连接,所述反应箱3的出水口通过管路与自吸泵13的进水口连接,所述自吸泵13的出水口通过管路与中水箱14的进水口连接,所述原水泵2前后的管路上设置有第二球阀24和第三球阀25,所述自吸泵13前后的管路上设置有第五球阀30和第六球阀31,所述原水泵2与反应箱3之间的管路上设置有第一逆止阀26,所述自吸泵13与中水箱14之间的管路上设置有第二逆止阀32,所述中水箱14的出水管40上设置有第八球阀36,所述排水管41上设置有第九球阀37,所述中水箱14与回流泵17之间的管路上设置有第十球阀38,所述第二球阀24、第三球阀25、第五球阀30、第六球阀31、第八球阀36、第九球阀37、第十球阀38与控制器18之间通过电性连接。

所述水质监测装置19与控制器18之间通过电性连接。

所述消毒装置由氯片投放管15和投放在氯片投放管15内的氯片组成,所述氯片投放管15上均匀设置有进水孔16。处理后的中水通过进水孔16与氯片投放管15内的氯片接触以便对中水进行消毒。

所述原水箱1的箱内壁下部设置有液位传感器20,所述液位传感器20与控制器18通过电性连接。当液位传感器20测定的原水箱1的液位低于控制器18内设定的对比值时,控制器18将控制原水泵2和自吸泵13断电停止工作,以此进行原水箱1的低液位保护。

所述原水箱1的箱体上部设置有第一溢流管23,所述反应箱3的箱体上部设置有第二溢流管29,所述中水箱14的箱体上部设有第三溢流管35。当原水箱1、反应箱3和中水箱14中的液位因为故障或其他原因升高时可通过溢流管将水排出。

所述原水箱1的箱体下部设有第一放空管21,所述第一放空管21上设置有第一球阀22,所述反应箱3的箱体下部设有第二放空管27,所述第二放空管27上设置有第四球阀28,所述中水箱14的箱体下部设置有第三放空管33,所述第三放空管33设置有第七球阀34,所述第一球阀22、第四球阀28、第七球阀34与控制器18通过电性连接。

所述反应箱3中设有温度计和ph检测器(图中未画出),温度计和ph检测器与控制器18通过电性连接,温度计和ph检测器是用于检测废水处理过程中反应箱3内的温度和ph值,由于微生物群的存活需要适宜的温度和ph,当检测到温度值和ph值不是最适值时,控制器18会提醒工作人员将温度和ph值调整到最合适。

所述疏水性聚偏二氟乙烯(pvdf)中空纤维的膜面积为1m2/片,最大膜通量为22l/m2·h。

本实用新型中的生物膜—膜生物反应器(bf-mbr)采用连续回流进料的方式处理废水,工作体积为25l,水力停留时间为5小时。即反应箱14的体积为25l。水力停留时间是指待处理污水在反应器内的平均停留时间,也就是污水与生物反应器内微生物作用的平均反应时间。水力停留时间5小时是指水在反应器内被处理了5小时。

本实用新型中的生物膜—膜生物反应器(bf-mbr)在自动模式下,自吸泵13每运行13分钟,停止2分钟。

本实用新型中的生物膜—膜生物反应器(bf-mbr)在运行过程中,使用300mg/lnaclo进行常规的每周冲洗,以使其稳定运行。在冲洗之前,通过控制器18的控制,打开第一球阀22、第四球阀28和第七球阀34,用第一放空管21、第二放空管27和第三放空管33将原水箱1、反应箱3和中水箱14中的液体放空,然后再用300mg/lnaclo进行冲洗,冲洗完成后,同样用对应的放空管将对应箱体里的冲洗液放空。

本实用新型的工作过程为:在处理处理污水前,首先通过控制器18将第二球阀24、第三球阀25、第五球阀30、第六球阀31和第八球阀36打开,然后将经过预处理的炼油废水,即经过沉淀将大颗粒去除的炼油废水从原水箱1的箱口倒入其中,原水箱1中的废水经原水泵2的作用被吸到反应箱3中,在反应箱3中,固定在由纳米凹凸棒黏土复合亲水聚氨酯泡沫材料构成的微生物载体上的经过驯化专门用于处理炼油污水的活性污泥微生物群体附着生长形成功能微生物膜,功能微生物膜作用于炼油废水,通过气泵9加压曝气促使炼油废水通过功能微生物膜,炼油废水携带着污染物和氧气流过功能微生物膜时,废水中溶解氧被消耗,有机污染物被功能微生物膜上的微生物吸收降解使废水得以净化;微生物不断生长繁殖,功能微生物膜也不断增厚,增厚到一定程度时,在生物膜内形成缺氧或厌氧层,为生物脱氮、除磷提供条件;同时,因气泵加压曝气的作用,使生物膜受到水的剪切力不断脱落更新;处理后的废水经过膜组件8的疏水性聚偏二氟乙烯中空纤维膜过滤,过滤后的废水在自吸泵13的作用下进入中水箱14,氯片消毒器对废水进行灭菌,灭菌后的废水通过水质监测装置19的监测,当通过监测达到排放标准时,控制器18控制打开第九球阀37,处理后的中水从排水管41排放回收利用,当通过监测没有达到排放标准时,控制器18控制打开第十球阀38,使废水在回流泵17的作用下回到原水箱1,混合后进行循环处理。

在本实用新型的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;最后应说明的是:以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,尽管参照前述实施例对本实用新型进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1