复合材料和复合材料膜的制作方法

文档序号:5014819阅读:433来源:国知局
专利名称:复合材料和复合材料膜的制作方法
技术现状离子聚合物膜已用于多种工艺过程,例如用于薄膜燃料电池、电渗析、扩散渗析、电解(PEM电解、氯碱电解)或电化学过程等。
然而,实际薄膜的缺点是,在温度超过100℃的大多数情况下由于薄膜干燥原因,质子的导电率会迅速降低。然而,温度超过100℃对于离子聚合物膜的燃料电池应用却很关键,因为超过100℃时燃料电池的温度调节便大大简化并且燃料电池反应的催化便得到实质性改善(过电压减低,不再有使催化剂中毒的CO负载)。
从文献已知,只有少数的薄膜例子在温度超过100℃时仍呈现出良好的质子导电性,例如具有羰基-1,4-亚苯基-氧苯基-4-磺酸侧基的聚亚苯基类即具有这种性能。然而,这些薄膜的质子导电率在温度超过130℃时会迅速下降,并且在温度处于100℃与130℃之间的良好质子导电率的原因尚不清楚。
质子的导电性是基于格罗萨斯(Grotthus)机理,该机理是以酸性介质中的质子和碱性介质的羟基离子作为电荷载体或载荷子(ChargeCarrier)。在此情况下,存在一种通过氢键产生的交联结构,这些氢键能够进行实际的电荷传输。这意味着,膜中所含的水在电荷传输中起着重要作用如果没有附加的水,在这些可商购的薄膜中便没有值得一提的横穿过膜的电荷传输,由此使膜失去其功能。另一种新的发展是使用磷酸盐主链来代替氟代烃主链,但也需要水作为附加的网络组分。(Alberti等人,SSPC9,Bled,Slowenia,17.-21.8.1998,Extended Abstracts,P.235)。当向上述这些膜中加入最少量的SiO2粒子时(Antonucci等人,SSPC9,Bled,Slowenia,17-21.8.1998,Extendld Abstracts,P.187)。可在高达140℃温度下导致质子导电性的稳定化,然而这只能在压力为4.5巴的操作条件下应用。如果不增加操作压力,这些膜在100℃以上也会松驰其水网络并干燥。因而,所有上述膜类型的一个实质性缺点是,即使在最佳操作条件下也只能在温度不超过100℃下使用。
也与上述情况相同,Denton等人(US 6,042,958)由一些离子导电聚合物和多孔基质制得了一些复合材料。他们使用了玻璃、陶瓷或二氧化硅作为含氧化硅的组分。在其中所述实施例中,操作温度并未增加到超过80℃。
当在直流甲醇燃料电池(DMFC)中存在不足量的水时,甲醇能横跨通过该膜,然而其导致功率显著降低。
如果制备一些磺化聚芳基醚醚酮薄膜(EP 054791 B1)或磺化的聚醚砜和二氧化硅的复合材料,则所述膜会以1.5[meq/g]的阳离子交换量进行溶胀直至最终被破坏的程度。
本发明的复合材料和以此制得的薄膜的优点是,向一种作为交联组分的页导状硅酸盐(Phyllosilicate)的空腔中加入一种有机成分,尤其是质子化的氮碱类,这时碱是提供在聚合物主链上。而且,选择性地引入阳离子或金属氢氧化物并随后反应生成相应的金属氧化物,这使得能够在宽范围内改变路易斯酸的性能和膜空腔的大小。而且,页层状硅酸盐能够官能化而与它们被包埋在其中的离子聚合物相互作用或者根据它们的官能团来影响周围介质。
页层状硅酸盐类(粘土矿物)具有某些有趣的性能·它们能结合高至250℃的水合水,·可以另外将金属离子和金属氧化物加入到这些材料中,以此按照如下通式诱发特性质子电导率(intrinsic proton conductivity)[在有机反应中的沸石,粘土和杂多酸,Y.Izumi,K.Urabe,M.Onaka;1992;Weinheim,VCH-Verlag,P.26]。
·具有路易斯酸空腔的页层状硅酸盐能通过与碱性聚合物的碱性基团进行酸—碱相互作用而插入[Kunststoffnanokomposite(聚合物纳米复合材料),symposiumVon der Inovention zur Innovation,Publication at theSymposium of the Fonds of the Chemical Industry,6thof may 1998 inCologne]。
由于这种性能,已合成出了某些类型的页层状硅酸盐/聚合物复合材料。Mhlhaupt等已由蒙脱土和聚丙烯,蒙脱土和聚酰胺,以及蒙脱土和甲基丙烯酸甲酯制得了各种复合材料。在这些复合材料中,例如,甲基丙烯酸甲酯由于与蒙脱土混合而变得难于燃烧,这里因为所引入的页层状硅酸盐是对燃烧中所形成的裂解气的阻燃剂。
本发明的目的基于已有技术,本发明的目的是提供这样一些复合材料,它们具有高的离子导电率(尤其是质子导电率),同时具有有限的溶胀能力并允许其在电化学电池中的操作温度超过100℃。
因而,本发明涉及一种含有酸和/或有机碱以及一种页层状硅酸盐的离子导电复合材料,其特征在于含有1-99重量%的酸—碱部分和99-1重量%的页层状硅酸盐的组成。发明内容描述(产品描述)(a)所说的酸可以是一种离子交换聚合物(具有阳离子交换基团-SO3H,-COOH,-PO3H2,其中聚合物可改变为只有一个所述的阳离子交换基团或为所述各阳离子交换基团的混合物);其中该聚合物可以是未交联的或者是以共价键交联的。离子交换量的一般范围为0.1-12meq/g,更加优选为0.3-8meq/g,最优选为0.5-2meq/g。特别优选热塑性塑料作为主链。
(b)所说的酸还可以是有机或无机低分子酸。在无机酸的情况下,硫酸和磷酸是特别的。在有机酸的情况下,所有属于磺酸和羧酸类的低分子酸都可考虑使用,尤其是所有的氨基磺酸和用作它们的前体的氨基磺酰氯类。
(c)所说的碱可以是阴离子交换聚合物(具有阴离子交换基团-NR3+(R=H,烷基,芳基),吡啶鎓PyrR+,咪唑鎓盐ImR+,二氢化吡唑鎓(pyrozolium)PyrazR+,三唑鎓(triazolium)TriR+以及其它有机碱性芳族和/或非芳族基团(R=H,烷基,芳基),其中聚合物可以仅仅用一个所述的阴离子交换基团或用所述阴离子基团的混合物进行改性);其中聚合物可以是非交联的或以共价键交联的。其中阴离子交换量可优选在1-15meq/g之间,更优选为3-12meq/g,最优选为6-10meq/g。优选作为主链主链的也是所有的热塑性塑料,特别是聚砜,聚醚醚酮,聚苯并咪唑以及聚乙烯基吡啶。
(d)这种碱可以是有机或无机低分子碱。作为有机低分子碱,所有胍衍生物是特别优选的。
(e)所述酸和碱的官能团可以在同一分子中。该分子可以是低分子或高分子。如果该分子是聚合物,则在聚合物链上具有来自上述(c)的阴离子基团以及来自(a)的阴离子交换基团。
(f)从(a)至(e)各项中的上述酸类和碱类,可以混合在复合材料中。可以选择任何混合比。该共混物除离子交联外,还可以以共价键交联。
(g)如果酸和碱都为低分子的,便在复合材料中添加未改性的聚合物。
(h)无机活性填料是一种页层状硅酸盐,该硅酸盐基于蒙脱土,绿土或蒙脱石,海泡石,坡缕石(蒙德土有效成分),白云母,钠板石,镁绿泥石,锂皂石,滑石,含氟锂皂石,滑石粉,贝得石,囊脱石,斯蒂文皂石,膨润土,云母,蛭石,含氟蛭石,多水高岭土,含氟合成滑石类型或者两种或两种以上上述页层状硅酸盐类的混合物。这种页层状硅酸盐可以是层离或脱层的,或者是柱状的。特别优选的是蒙脱土。
在复合材料中页层状硅酸盐的重量比优选为1-80重量%,更优选为2-30重量%,最优选为5-20重量%。官能化的页层状硅酸盐的描述术语“页层状硅酸盐”一般是指其中SiO4 tetraeders被连接在二维无限网络中的硅酸盐。(该阴离子的经验公式为(Si2O52-)n)。单个层通过位于它们之间的阳离子连接在一起,其通常为存在于天然形成的页层状硅酸盐中的Na,K,Mg,Al或/和Ca。
术语“层离的官能化页层状硅酸盐”我们理解为这样一些页层状硅酸盐,在其中各层的距离首先通过与所谓的官能化试剂进行反应而增大。在层离之前这样一些硅酸盐的层厚度优选5-100埃,更优选5-50埃,最优选8-20埃。为了增加各层间距(疏水作用),将页层状硅酸盐与常称为鎓离子或鎓盐的所谓官能化疏水反应剂一起反应(在制备本发明的复合材料之前)。
页层状硅酸盐的阳离子是被有机官能化疏水剂取代的,由此所需要的各层间距离可通过有机残基的种类加以调节,所说的各层间距离取决于各官能化分子或加入到页层状硅酸盐中的聚合物的种类。
金属离子的交换可以是全部的或部分的。优选金属离子全部交换。可交换的金属离子的量通常是以毫当量(meq)每克页层状硅酸盐来表达并称为离子交换量。
优选的是具有至少为0.5,更佳为0.8-1.3meq/g的阳离子交换量的页层状硅酸盐类。
适合的有机官能化疏水剂衍生自氧鎓,铵,磷鎓及硫鎓离子,它们可载有一个或多个有机残基。
作为适用的官能化疏水剂,可提及通式I和/或II所表示的那些 式中的一些取代基具有如下含义R1,R2,R3,R4都彼此独立地为氢,直链、支链、饱和的或不饱和的烃基,所述烃基具有1-40个、优选1-20个碳原子,任选将带有至少一个官能团或者2个彼此互相连接的基团,优选连接到具有5-10个碳原子,更优选具有一个或多个N原子的杂环残基上的基团。
X代表磷或氮,Y代表氧或硫,N是1-5的、优选1-3的一个整数,以及Z是一个阳离子。
适合的官能团为羟基,硝基或磺基,而羧基或磺酸基是特别优选的。同样,磺酰氯和羧酸氯化物基团是特别优选的。
适合的阴离子Z衍生自给质子酸类,特别是无机酸类,其中卤素如氯、溴、氟、碘、硫酸根,磺酸根,磷酸根,膦酸根,亚磷酸根,以及羧酸根,尤其乙酸根是优选的。用作起始原料的页层状硅酸盐类一般作为悬浮液进行反应。优选的悬悬剂是水,任选与醇类混合,尤其是与具有1-3个碳原子的低级醇类混合。如果官能化疏水剂不是水溶性的,则优选一种其中所述试剂是可溶性的溶剂。在这种情况下,特别选用质子惰性溶剂。悬浮剂的其他例子有酮类和烃类。通常优选的悬浮剂是与水可混溶的。当向页层状硅酸盐中加入疏水剂时,便发生离子交换,由此页层状硅酸盐通常从溶液中沉淀出来。作为离子交换的副产物而得到的金属盐优选是水溶性的,这样疏水化的页层状硅酸盐可以作为结晶固体例如通过过滤分离出来。
离子交换大多是不依赖于反应温度的。反应温度优选高于介质的结晶点并低于介质的沸点。对水体系来说,反应温度在0℃与100℃之间,优选在40℃与80℃之间。
对阳离子和阴离子交换聚合物来说,烷基铵离子是优选的,特别是如果作为官能团在同一分子中存在额外的羧酸氯化物或磺酸氯化物的话。甲基铵离子可以通过通常的甲基化试剂如甲基碘得到。适合的铵离子是ω-氨基羧酸类,尤其优选ω-氨基磺酸类和ω-烷基氨基磺酸类。ω-氨基磺酸类和ω-烷基氨基磺酸类可用通常的无机酸类例如氢氯酸、硫酸或磷酸或通过甲基化试剂如甲基碘而制得。
附加的优选铵离子是吡啶和十二烷基铵离子。在经疏水化之后,页层状硅酸盐的层间距通常为10-50埃,优选13-40埃。
疏水化的和官能化的页层状硅酸盐是通过干燥而脱去水的。一般,这样处理过的页层状硅酸盐仍然含有0-5重量%的残留的水含量。随后,疏水化了的页层状硅酸盐可以尽可能无水的悬浮剂中的悬浮液形式,与所述聚合物混合,并进一步加工处理。根据本发明,所说的聚合物,尤其优选的热塑性官能化聚合物(离子聚合物)被加入到疏水化的页层状硅酸盐的悬浮液中。其作法是使用已经溶解的聚合物或者将聚合物溶解在其自身的悬浮液中。优选的页层状硅酸盐的用量比例为1-70重量%,更优选2-40重量%,最优选5-15重量%。生产复合材料的方法本发明进一步涉及一种生产复合材料膜的工艺方法。下面描述生产具有高的质子导电率的质子导电复合材料的方法实施例。
1)将氨基芳基磺酰氯溶解在四氢呋喃中。然后向其中加入相应量的蒙脱土K10。蒙脱土是经质子交换的并且干燥的。随后搅拌数小时。搅拌的时间决定于氨基芳基磺酰氯的分子大小和氨基与蒙脱土阳离子交换容量的比例。在搅拌过程中,氨基便嵌入到蒙脱土的空腔中。然后,向悬浮液中加入已溶解在四氢呋喃中的磺酰氯化的聚砜。热塑性塑料中的磺酰氯含量约为0.5个基团/每个重复单元。搅拌悬浮液,缓和地脱气并在玻璃板上用刮刀涂布成一层薄膜。在室温下蒸发掉四氢呋喃。对蒙脱土的含量加以选择,使其占已加入的磺酰氯化聚砜的5-10重量%。一旦薄膜完全干燥,将该薄膜在去离子水中剥离下来,并在10%盐酸中于90℃固化处理。以此使磺酰氯基团水解并反应成为磺酸基团。将得到的膜在80-90℃的水中另外进行固化处理直至不再能检测出盐酸。
每个重复单元具有0.5个SO2Cl基团的磺酰氯化的聚砜,在水解之后,相当于1.0毫当量/克的阳离子交换容量。由于从氨基芳基磺酰氯产生的附加磺酸基团,相当于磺酸基团的量的阳离子交换容量明显增加并且不是水溶性的。在相同阳离交换容量情况下,唯独磺化了的聚砜是水溶性的。
2)将具有0.9毫当量/克的阳离子交换容量(IEC)的磺化聚醚醚酮,溶解在热(T>80℃)N-甲基吡咯烷酮(NMP)中。具有这样的含量的磺酰氯化形式,是不溶于THF的。聚合物磺酸类及其盐类在THF中是不溶性的或仅有很小程度的可溶性。然后向该溶液中加入载有氨基磺酸的蒙脱土K10在NMP中的悬浮液。其中磺酸基团存在于表面上,而氨基填充于蒙脱土的空腔中。悬浮液的组分也需加以选择以使固含量处于聚合物含量的2-20重量%范围内。这取决于所使用的膜的应用。将悬浮液按照上述方法加工成膜。在温度为80℃-150℃的烘干板上蒸发出溶剂。将此薄膜从玻璃板上剥离下来并在脱离子水中于90℃下固化处理12小时。
3)将磺酰氯化的聚砜和胺化了的聚砜溶解在THF中。然后向其中加入10重量%的蒙脱土K10(干燥的并为质子化了的形式)。搅拌该悬浮液,脱气并按照上述方法加工成薄膜。将薄膜从玻璃板上剥离下来,然后在稀释的HCl中于80℃固化处理,以此将磺酰氯基团水解成磺酸。然后将薄膜再进一步用去离子水处理,直至全部盐酸从薄膜上除去。
现在出现,本发明的复合材料具有这样一些惊人的性能·这些复合材料即使在远远超过100℃的温度下也具有优良的离子导电性。特别是复合材料的质子导电率在此温度范围内更加优良,这一方面是由于粘土材料的水储存性能,另一方面是由于粘土材料的自身质子导电(self-proton conducting)性能。良好的质子导电率使得有可能在上述温度范围内将这些复合材料用在薄膜电池中。
·由于形成空腔的硅酸盐,复合材料膜的化学、机械和热稳定性大大增加,这是因为聚合物分子和粘土矿物以及沸石分别能够在这些空腔中彼此相互作用。由于碱性基团的相互作用,尤其是含碱性聚合物和碱性聚合物组分的离子聚合物共混物能够嵌入路易斯酸的一些空腔内,以此形成了酸性硅酸盐和碱性聚合物链之间的离子型交联键,这种交换键的形成决定于体系,可能pH对增加化学、机械和热稳定性有独立的贡献,特别是如果该复合材料膜是用于强酸性或碱性介质中的情况下。
·用于DMF的情况下,本发明的复合材料膜显示出减少的通过膜的甲醇渗透性和气体通过扩散作用。其中薄膜的甲醇渗透性和渗透选性性(permselectivity)可按照如下情况任意作精细改变·页层状硅酸盐/网孔状硅酸盐(tectosilicate)的种类,·在复合材料中的硅酸盐的质量百分数·有目的地将间隔分子和双官能分子引入到硅酸盐空腔中去。间隔分子与渗透分子的相互作用的种类和强度特别决定于面向外的其官能团的种类和渗透分子的官能团的种类。例如一种氨基磺酸或氨基羧酸与在膨润土表面上进行碱—膨润土交换的胺官能团相连接。第二个官能团是用于与聚合物反应或用于在电薄膜过程中的质子传输。
·本发明的薄膜,与普通离子聚合物膜相比,可大大减少菌蚀污染(离子聚合物遭受真菌和细菌的生物侵蚀)。并且这已经在离子聚合物膜中硅酸盐(蒙脱土)的含量为2-5%时显示出来。长期以来已知,粘土矿物通过大大减少微生物,尤其是真菌的分解而起着土壤改良剂的作用。令人惊奇的是,粘土矿物的这种性能也在含粘土矿物的薄膜中表现出来。由于本发明的复合材料的这种性能,所以它们有可能用作水和污水处理中的薄膜分离过程,还可以用于含有例如羟基基团和/或过氧化氢的任何氧化环境中。
·硅酸盐路易斯酸类的催化性能也用在本发明的各复合材料中,本发明的粘土矿物已由这种硅酸盐路易斯酸制得。
应用实施例1.磺化聚醚醚酮(磺化度70%)与5重量%的蒙脱土溶解在DMAc中并用刮刀涂布成薄膜,在溶剂蒸发后其厚度为50μm。将此薄膜放入一个用真菌污染的水介质中。没有检测出被真菌侵蚀的情况。没有蒙脱土的空白试验却有严重的菌落繁殖和侵蚀。
2.a)将盐形式的磺化聚砜和聚乙烯基吡咯烷酮以这样的比例进行共混,即使其最后容量为1meq[H+]/g总共混物。将这两种聚合物溶解在DMAc中并加工成薄膜。该薄膜的比电阻为33[ohm×cm]。
b)向与2.a)相同的共混物中另外加入8重量%的活化蒙脱土并将制得的共混物加工成与2.a)中相同的薄膜。该薄膜的比电阻为27.7[ohm×cm]。
3.将溶解在DMAc中的聚苯并咪唑与10重量%的活化蒙脱土相混合,并将无页层状硅酸盐的样品作为空白试样。将每种共混物加工成薄膜,用阻抗光谱学测量了它们的电阻。没有页层状硅酸盐的样品的电阻为588[ohm×cm],而有页层状硅酸盐的电阻为276[ohm×cm]。
权利要求
1.一种含有酸和/或有机碱及页层状硅酸盐/网孔状硅酸盐的质子导电复合材料,其特征在于酸—碱部分的组分含量为1-99重量%,页层状硅酸盐/网孔状硅酸盐组分的含量为99-1重量%。
2.一种复合材料和复合材料共混物薄膜的制备方法,其特征在于离子聚合物溶液或离子聚合物前体的溶液与页层状硅酸盐或网孔状硅酸盐或两者的混合物混合,从所得悬浮液中蒸发掉溶剂,其中离子聚合物可以是(a)一种阳离子交换聚合物,它具有阳离子交换基团-SO3H,-COOH,-PO3H2,其中聚合物可以是用仅一个所述的阳离子交换基团或用所述这些阳离子交换基团的共混物改性的;其中所述聚合物可以是非交联的或以共价键交联的;该聚合物的主链可以是乙烯基聚合物,芳基主链聚合物,聚噻唑,聚吡唑,聚吡咯,聚苯胺,聚噻吩或它们的任何共混物;(b)一种阳离子交换聚合物,它具有阴离子交换基团-NR3+(R=H,烷基,芳基),吡啶鎓PyrR+,咪唑鎓盐ImR+,二氢化吡唑鎓PyrazR+,三唑鎓TriR+以及其它有机碱性芳族和/或非芳族基团(R=H,烷基,芳基),其中所述聚合物可以是用仅一个所述阴离子交换基团或用所述这些阴离子交换基团的共混物改性的;其中聚合物可以是非交联的或以共价键交联的;聚合物的主链可以是乙烯基聚合物,芳基主链聚合物,聚噻唑,聚吡唑,聚吡咯,聚苯胺,聚噻吩或它们的任何共混物;(c)在聚合物链上带有来自(a)中的阴离子交换基团和(b)中的阳离子交换基团的聚合物;其中聚合物主链可以是乙烯基聚合物,芳基主链聚合物,聚噻唑,聚吡唑,聚吡咯,聚苯胺,聚噻吩或它们的任何共混物;(d)一种(a)和(b)的共混物,其中混合比可以为100%(a)至100%(b),共混物除离子交联键之外还可以是共价键交联的;该聚合物的主链可以是乙烯基聚合物,芳基主链聚合物,聚噻唑,聚吡唑,聚吡咯,聚苯胺,聚噻吩或它们的任何共混物;其中离子聚合物的前体可以是(a)阳离子交换聚合物的前体,(a1)具有COHal,CONR2或COOR基团的聚合物,其中R=H,烷基,芳基,Hal=F,Cl,Br,I,(a2)具有SO2Hal,SO2NR2或SO2OR基团的聚合物,其中R=H,烷基,芳基,Hal=F,Cl,Br,I,(a3)带有PO3Hal2,PO3(NR2)2或PO3(OR)2基团的聚合物,其中R=H,烷基,芳基,Hal=F,Cl,Br,I,(b)一种阴离子交换聚合物的前体,它具有基团-NR2(R=H,烷基,芳基),吡啶基Pyr,咪唑基Im,吡唑基Pyraz,三唑基Tri和/或其它有机碱性芳香和/或非芳香基团,其中R=H,烷基,芳基,其中无机组分可以是页层状硅酸盐或网孔状硅酸盐或二者的任意共混物。
3.a)如权利要求1所述的方法,其特征在于从页层状硅酸盐组中优选膨润土组,并且蒙脱土/贝得石系列是更优选的,蒙脱土是最优选的;b)如权利要求1所述的方法,其特征在于使用柱状页层状硅酸盐。
4.a)如权利要求1所述的方法,其特征在于从网孔状硅酸盐组中优选沸石组,并且斜发沸石是更优选的。b)如权利要求1所述的方法,其特征在于是使用柱状网孔状硅酸盐。
5.如权利要求1-4中至少一项所述的方法,其特征在于使用天然的和合成的页层状硅酸盐。
6.如权利要求1所述的方法,其特征在于碱性组分含有咪唑,乙烯基咪唑,吡唑,噁唑,咔唑,吲哚,异吲哚,二氢噁唑,异噁唑,噻唑,苯并噻唑,异噻唑,苯并咪唑,咪唑啉,吲唑,4,5-二氢吡唑,1,2,3-噁二唑,呋咱烷(furazane),1,2,3-噻二唑,1,2,4-噻二唑,1,2,3-苯并三唑,1,2,4-三唑,四唑,吡咯,苯胺,吡咯烷或吡唑基团。
7.如权利要求2所述的方法,其特征在于优选酸—碱共混物(d)以及合成和天然来源的粘土矿物蒙脱土作为离子聚合物,还在于它被官能化了。
8.如权利要求2所述的方法,其特征在于优选酸—碱共混物(d)作为离子聚合物,优选斜发沸石作为沸石。
9.如权利要求1-8中至少一项所述的方法,其特征在于酸性聚合物的聚合物主链选自芳基主链聚合物组。芳基主链聚合物的可能组成单元如下图a所示 图a芳基主链聚合物的组成单元结合有图a组成单元的可能的芳基主链聚合物是—聚醚醚酮PEEK Victrex([R5-R2-R5-R2-R7]n;x=1,R4=H),—聚醚砜PSU Udel([R1-R5-R2-R6-R2-R5]n;R2x=1,R4=H),—聚醚砜PES VICTREX([R2-R6-R2-R5]n;R2x=1,R4=H),—聚二苯砜RADEL R([(R2)2-R5-R2-R6-R2]n;R2x=2,R4=H),—聚醚醚砜RADEL A([R5-R2-R5-R2-R6]n-[R5-R2-R6-R2]m;R2x=1,R4=H,n/m=0.18),—聚二苯硫醚PPS([R2-R8]n;R2x=1,R4=H),—聚苯氧PPO([R2-R5]n;R4=CH3)。
10.如权利要求1和2所述的方法,其特征在于碱性聚合物的聚合物主链选自芳基主链聚合物组(图a)或选自杂芳基主链聚合物组,杂芳基主链聚合物的可能组成单元如下图b所示 图b杂芳基聚合物的组成单元1咪唑,2苯并咪唑,2吡唑,4苯并吡唑,5噁唑,6苯异噁唑,7噻唑,8苯并噻唑,9三唑,10苯并三唑,11吡啶,12联吡啶,13邻苯二甲酰亚胺;作为本发明的杂芳基聚合物,如下一些聚合物是适用的—聚咪唑,聚苯并咪唑,—聚吡唑,聚苯并吡唑,—聚噁唑,聚苯并噁唑,—聚噻唑,聚苯并噻唑,—聚噻吩,聚苯并噻吩,—聚吡啶类,—聚酰亚胺类。
11.如权利要求1-10中任何一项所述的方法,其特征在于在酸—碱共混物中权利要求9的酸性聚合物(图a)是与权利要求10(图b)和权利要求6的碱性聚合物类结合在一起的。
12.可由权利要求1-11中所使用的碱性聚合物制得的非离子导电复合材料及复合材料共混薄膜,对用于薄膜和薄膜分离过程来说,所述碱性聚合物的用量为20-98重量%,页层状硅酸盐/网孔状硅酸盐的用量为2-80重量%。
13.如在权利要求1-11的至少一项中所述的复合材料和复合材料共混薄膜,其特征在于它们在-40℃-200℃的温度下用于薄膜燃料电池(H2燃料电池或直流甲醇燃料电池)中。
14.如权利要求1-12中至少一项所述的方法,其特征在于复合材料和复合材料共混薄膜用于(电)薄膜分离过程诸如渗析,扩散渗析,气体分离,全蒸发,全提取,微过滤,超过滤及纳米过滤,以及反向渗透过程。
15.如权利要求1-12中至少一项所述的复合材料和复合材料共混薄膜,其特征在于它们用作催化薄膜或用于薄膜反应器中。
16.用于涂覆平面结构,尤其是涂覆各种薄膜,箔片和电极的如权利要求1-12中至少一项所述的复合材料。
17.如权利要求1所述的复合材料的制备方法,其特征在于本发明的有机组分和硅酸盐组分在-40℃-300℃的温度下在溶剂中接触或者优选在无溶剂情况下接触。
18.具有耐热性高达400℃的权利要求1-17中至少一项所述的含有质子导电体的复合材料。
19.如权利要求16所述复合材料薄膜或复合材料的制备方法,其特征在于由相应共混物或由权利要求2,6,9,10和11的仅一种组分所组成的薄膜涂覆有溶液或分散体或无溶剂形式的硅酸盐组分。
20.权利要求16所述的复合材料薄膜或复合材料的制备方法,其特征在于硅酸盐组分单独用溶液或分散体或无溶剂涂覆或用权利要求2,6,9,10和11的各组分的共混物涂覆。
21.复合材料的制法,其特征在于它用于薄膜中和(电)薄膜方法诸如渗析,扩散渗析,气体分离,全蒸发,全提取,微过滤、超过滤和纳米过滤以及用在反渗透中并且在抗微生物分解和氧化侵蚀方面是稳定的。
22.如权利要求1-21中至少一项所述的复合材料的制备方法,其特征在于改变所制薄膜的选择渗透性。
23.如权利要求1-22中至少一项所述的复合材料的制备方法,其特征在于将无机组分与至少两种不同的碱性组分共混,其中碱性组分可以是低分子或高分子的。
24.一种方法,其特征在于上述复合材料被加工成为任何种类的模制品。关键词聚合物质子导电体,无机—有机复合材料,页层状硅酸盐,网孔状硅酸盐,薄膜燃料电池,直流甲醇燃料电池,水余量,作为水储存器的硅酸盐,聚合物酸,阳离子交换聚合物,聚合物碱,官能化的硅酸盐。
全文摘要
本发明涉及复合材料或复合材料膜,它由离子聚合物和无机任选官能化的页层状硅酸盐组成。离子聚合物可以是(a)阳离子交换聚合物;(b)阴离子交换聚合物;(c)在聚合物链上含有阴离子交换基团和阳离子交换基团的聚合物;(d)由(a)和(b)组成的共混物,其混合比范围是从100%(a)至100%(b)。共混物可以是离子交联的和共价键交联的。无机组分可选自页层状硅酸盐或网孔状硅酸盐组。在特殊蒙脱土中优选使用膨润土和沸石。离子聚合物:膨润土的混合比范围为99∶1至30∶70。本发明还涉及复合材料/复合膜的应用:作为原子导电体用于薄膜燃料电池中(H2燃料电池PEFC,直流甲醇燃料电池DMFC)于温度高于100℃;用于电膜分离方法中如渗析,扩散渗析,气体分离,全蒸发,全提取及用于微过滤和超过滤,特别是由于它们的抗菌蚀性能,以及作为催化膜用于催化膜反应中。
文档编号B01D69/14GK1358212SQ00809599
公开日2002年7月10日 申请日期2000年5月2日 优先权日1999年4月30日
发明者约翰·凯瑞斯, 托马斯·翰翎, 莉玛·翰翎 申请人:托马斯·翰翎, 莉玛·翰翎
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1