用于降低蒸馏塔高度的结构填料系统的制作方法

文档序号:5023924阅读:386来源:国知局
专利名称:用于降低蒸馏塔高度的结构填料系统的制作方法
技术领域
本发明总的来说涉及用于蒸馏塔的结构填料,特别是在低温空气分离装置的操作中从单个氩塔制备高纯度氩气。
结构填料确实有逊色于塔盘的缺陷。填充塔的生产费用通常比盘式塔高。此外,虽然每个理论级的填料高度可以与盘式塔相当,其收集和分布液体所需的其它高度意味着含商品结构填料的工业用塔比盘式塔要高。增加蒸馏塔的高度具体对于空气分离来说有几个缺点。例如泄漏到低温系统的热随塔填充高度增加而增加,这需要以更多的能耗进行更多的制冷来克服。此外,如果低压塔填充高度太高,液体从高压塔到低压塔的传送可能需要液体泵或蒸汽提升,这使工艺增加了复杂性和效率低下。蒸汽提升是用于描述通常为蒸汽的低密度流与通常为液体的高密度流的组合的术语,其用于降低平均流体密度从而降低将该流体传送到更高水平时源于静水压头的压降。
因为这些原因,与化学工业中其它典型工业分离相比,低温空气分离装置使用非常低的盘式距和低的理论等板高度(HETP)填料。HETP是通常用于表征填充蒸馏塔的术语,在常规意义上来说此中所用较低HETP表示在一定的填料高度上进行了更多的传质。
氩气浓度在约98%(摩尔)或以下的粗氩通过空气的低温精馏制备。氩气中含有小于1%的空气。通常空气通过使用双塔系统分离成氧气和氮气,所述双塔系统包括一低压塔和一与其存在热交换关系的高压塔。氩气的沸点在氮气和氧气之间但接近于氧气并且倾向于在低压塔的较下区域浓缩。在低压塔中氩气浓缩达到最大之处或附近,导出一股流体并送到氩塔中精馏成粗氩产品。在原料流中氩气浓度一般为7-15%,从而通过氩塔系统可获得氩的有效回收。氩塔原料流的其余部分包含氧气和氮气。
在氩塔中,原料通过低温精馏分离。不易挥发的组分氧气被汽提离开上升的蒸汽,氩气浓缩在塔的顶部。在氩塔原料中存在的氮气也将在塔的顶部浓缩,因为氮气比氩气和氧气更易挥发。离开塔顶的粗氩产品一般包含95-98%的氩气。其余部分基本上是氧气和氮气。粗产品送去进一步处理以生产高纯氩或精炼氩。通过将粗氩流与氢气混合并将混合物通过催化氢化装置使氢和氧反应生成水而将氧气去除。然后将流体通过干燥器去除水分。去除氧气还有其它方法。氧气去除后,通过低温蒸馏将氮气从氩流中去除。得到的高纯度氩或精炼氩的氧和氮浓度通常均低于2ppm,适合于工业用途。
从氩塔系统生产精炼氩的基建费用和操作费用是相当大的。但是,如果在氩塔提供足够的平衡级,也可以直接生产基本无氧的氩。通常,在生产粗产品的氩塔中配有的平衡级数目为40-50。为了只通过蒸馏满足氧气浓度的技术指标,该数目必须提高到150或以上。
通过氩塔的扩展进行近乎无氧的氩气的生产具有一些明显的优点。主要是它不需要另外的下游的单元操作以及相伴的硬件和控制系统。但是,包含大量的平衡级意味着需要非常高的塔。目前,如果需要生产近乎无氧的氩气,则将另一塔与常规氩气生产装置中的粗氩塔串联。称为超级(superstaged)塔的所述第二塔必须产生100左右的分离平衡级,粗氩塔产生约50的分离平衡级。从粗氩塔的顶部导出蒸汽并导入超级塔的底部。来自超级塔底部的液体泵入到粗氩塔的顶部。将所述塔分流具有明显的经济上的缺陷并且使用单塔进行同样的工作自然可得到经济上的节约。但是,现实是就省略粗氩塔时伴随着建造和耸立较高塔所需的费用来看,在常规结构填料的情况下分流所述塔的附加费用是合理的。
因此,本发明的一个目标是提供一种结构填料块,它可用于塔中而使生产时所述塔可用于指定的分离,其塔高小于使用常规结构填料作为塔填充物时所需的塔高。
本发明的另一方面是包含一定高度的由众多块组成的填料的塔,所述块具有大于600m2/m3小于1500m2/m3的面积密度并且包括许多具有大于45度小于70度波纹角的垂直朝向的结构填料板,所述块至少具有下面的一项(1)低于8英寸的高度,和(2)填料板,其底区的结构不同于该板的其它区域,从而使底区蒸汽流动的阻力低于其余区域的蒸汽流动阻力。
本发明的再一方面为具有大于600m2/m3小于1500m2/m3的面积密度并且包括许多具有大于45度小于70度波纹角的垂直朝向的结构填料板的块,所述块至少具有下面的一项(1)低于8英寸的高度,和(2)填料板,其底区的结构不同于该板的其它区域,从而使底区蒸汽流动的阻力低于其余区域蒸汽流动的阻力。
此中所用的术语“塔”是指蒸馏或分馏塔或区,即接触塔或区,其中液相和汽相逆流接触而导致流体混合物的分离,例如通过在填料件上汽相和液相的接触而分离。有关蒸馏塔的进一步讨论可参见纽约McGraw-Hill Book Company出版R.H.Perry和C.H.Chilton编辑的化学工程师手册,第五版,B.D.Smith等人写的13部分“蒸馏”的13-3页连续蒸馏法。蒸汽和液体接触分离过程取决于组分蒸汽压的差异。高蒸汽压组分(或易挥发或低沸点)组分将会浓缩在汽相中,而低蒸汽压(或难挥发或高沸点)组分会浓缩在液相中。蒸馏是液体混合物加热可用于在汽相中浓缩易挥发组分而使难挥发组分在液相中浓缩的分离方法。部分冷凝是汽体混合物的冷却可用于在汽相中浓缩易挥发组分并依此在液相中浓缩难挥发组分的分离方法。精馏或连续蒸馏是通过汽相和液相的逆流处理获得的组合连续部分汽化和冷凝的分离方法。汽相和液相的逆流接触可以绝热或非绝热并且可包括在相间积分(分级)或微分(连续)接触。利用精馏的原理分离混合物的分离处理装置通常可互相交换地称为精馏塔、蒸馏塔或分馏塔。低温精馏是至少部分在低于150°K的温度下进行的精馏。
此中所用的术语“填料”是指用作塔内件的预定结构、尺寸和形状的固体或中空体,提供液体表面区域用于在两相的逆流流动中在液-汽界面的传质。
此中所用的术语“结构填料”是指对角横波纹填料,其中各个组件具有相互对应和与塔轴对应的特定朝向。
此中所用的术语塔的“上部分”和“下部分”分别是指在塔的中点上方和下方的部分。
此中所用的术语“波纹”是指在填料板上峰式或槽式的折叠。
此中所用的术语“波纹角”是指结构填料相应于垂直方向的波纹的角度。
此中所用的术语“面积密度”是指每单位填料体积的填料表面积。
图2是堆砌在塔内的结构填料块的示意图。
图3A和3B分别显示可用于本发明的实践中的填料板的正面图和侧面图,所述填料板具有55度的波纹角并在填料板的底区和顶区整平了波纹。
图4A和4B分别显示可用于本发明的实践中的填料板的正面图和侧面图,所述填料板具有65度的波纹角并在填料板的底区和顶区具有更陡的波纹。
图5是实施本发明方法的一种优选布置的示意图。
已知通过使用具有高面积密度的结构填料件可降低蒸馏塔如低温空气分离塔的高度。但是,高面积密度存在缺点。一个是较高的液体持留。对于一定的液体通量来说,在填料上的液体持留率随填料面积密度以0.85次方增加。在扩展的氩塔中高液体持留率尤其是个问题。氩气是空气中的微量组分。即使随空气输入的每个氩分子在氩塔内俘获,在氩塔具有完满的液体存量前也需要几个小时时间,并通常需要一天以上的时间。高面积密度的另一个问题是较低的容量。增加比面积降低了通道尺寸并增加了气体的压降。必须增加塔径来提供所需的流动能力。
在本发明的实施中,结构填料件具有大于600m2/m3小于1500m2/m3的面积密度并优选具有大于800m2/m3小于1000m2/m3的面积密度。通过连同限定面积密度一起使用波纹角大于45度但小于70度(优选47到55度)的结构填料,本发明在基本避免所述缺点的同时保留了许多较高面积密度结构填料的优点。

图1、3A和4A说明了具有本发明限定的波纹角的结构填料板。
在一个优选实施方案中,本发明使用低于8英寸并优选低于6英寸的非寻常短高度的块。通常结构填料板具有至少8英寸的高度。本发明的短块高度提供了增高的汽液混合频率以及液体膜的更频繁更新。重要的考虑因素是每个理论塔板的混合程度而非每英尺填料高度的混合程度。因此,具有低HETP的填料应使用比较大HETP的填料短的块高。低于8英寸的块高有益于获得低HETP。可在安装前将两个或多个填料块固定一起以便于安装。
在本发明的另一优选实施方案中,结构填料板的底区在结构上与其余部分不同从而当结构填料板制成块时在底区对蒸汽流的阻力低于其余部分。这种底部的改变用于补偿随高面积密度出现的容量降低。并不必须在构成块的每个板上的底区均进行结构的改变。图3A、3B、4A和4B提供显示了底区和其它区域的结构填料板,其中底区10可至多构成填料板低端的10%、优选至多5%、最优选至多2.5%,填料板的其余部分包括其余区域11。在图3A、3B、4A和4B所示的填料板中,说明了由中区12和顶区13构成的其它区域。如果需要,顶区可具有与底区相似的结构,在这种情况下只有所述其余部分的中区的结构与底区不同。适用底区结构改变的例子包括降低波纹高度、更陡峭的波纹和更大的分级开口区。
最优选本发明使用高度小于8英寸的块和底区的结构与其余部分不同的填料板,底区结构的不同使得在底区对蒸汽流动的阻力小于其余区域对蒸汽流动的阻力。
本发明方法的一个特别优选实施方案以简要形式说明于图5。在该系统中,在单个塔中生产高纯度氩,所述单塔从双塔低温空气分离装置的低压塔接收原料流。本发明的结构填充组件可在整个氩塔使用或只在氩塔的一部分使用。所述填充组件也可在低压塔和/或高压塔的全部或一部分使用。
现在参照图5,原料空气53送入到高压塔50,在此通过低温精馏分离成富氮蒸汽和富氧液体。富氮蒸汽作为流54送入到主冷凝器55,在那里通过与低压塔51的底部液体间接换热而冷凝。得到的富氮液体56作为回流液57送入到塔50以及作为回流液58送入塔51。富氧液体以流59的形式送入到氩冷凝器60,在那里被至少部分汽化,然后如以所示的流61送入到塔51。在塔51内,各种原料通过低温精馏分离成产品氮(以流62的形式回收)和产品氧(以流63的形式回收)。侧流64(约7-20%(摩尔)的氩,其余主要为氧)从塔51送到超级氩塔52,在那里分离成富氩流体和富氧流体。富氧流体以流70的形式从塔52的底部导出、通过液体泵71并然后以流65的形式送入到塔51。富氩流体在全部或部分地在冷凝器60中处理后以流66的形式作为高纯度氩(氩浓度至少98%(摩尔),含氧量低于5ppm)回收。超级氩塔52一般具有180以下的平衡级,通常具有150-180个平衡级。
虽然参照某些优选的实施方案对本发明进行了详细说明,但是本领域技术人员会承认在本发明权利要求的精神和范围内还存在本发明其它的实施方案。
权利要求
1.一种操作精馏塔的方法,包括(A)将包括较易挥发组分和较难挥发组分的原料混合物送入到塔中,所述塔包含由一定高度的众多块组成的填料,所述块具有大于600m2/m3并且小于1500m2/m3的面积密度并且包括许多具有大于45度并且小于70度波纹角的垂直朝向的结构填料板,所述块至少具有下面的一项(1)低于8英寸的高度,和(2)填料板,其底区的结构不同于该板的其它区域,从而使底区蒸汽流动的阻力低于其余区域蒸汽流动的阻力;(B)在所述塔内进行精馏,其中蒸汽向上流动通过所述块,液体向下流动通过所述块,依此所述较易挥发组分在上流蒸汽中浓缩,所述较难挥发组分在下流液体中浓缩;和(C)从所述塔的上部导出第一种流体,所述第一种流体具有超过原料混合物的较易挥发组分浓度,从所述塔的下部导出第二种流体,所述第二种流体具有超过原料混合物的较难挥发组分浓度。
2.权利要求1的方法,其中所述精馏是低温精馏,并且其中所述易挥发组分是氩,难挥发组分是氧,原料混合物包含7-20%(摩尔)的氩,第一种流体具有至少98%(摩尔)的氩浓度。
3.权利要求1的方法,其中所述精馏是低温精馏,并且其中所述易挥发组分是氮,难挥发组分是氧。
4.权利要求1的方法,其中所述块具有低于8英寸的高度,并且至少一些填料板的底区在结构上不同于该板的其余区域从而使底区的蒸汽流动阻力低于其它区域的蒸汽流动阻力。
5.包含一定高度的由众多块组成的塔,所述块具有大于600m2/m3并且小于1500m2/m3的面积密度并且包括许多具有大于45度并且小于70度波纹角的垂直朝向的结构填料板,所述块至少具有下面的一项(1)低于8英寸的高度,和(2)填料板,其底区的结构不同于该板的其它区域,从而使底区蒸汽流动阻力低于其余区域的蒸汽流动阻力。
6.权利要求5的塔,其中所述块的高度小于8英寸并且至少一些所述填料板的底区在结构上不同于该板的其余区域从而使底区的蒸汽流动阻力低于其它区域的蒸汽流动阻力。
7.具有大于600m2/m3并且小于1500m2/m3的面积密度并且包括许多具有大于45度并且小于70度波纹角的垂直朝向的结构填料板的块,所述块至少具有下面的一项(1)低于8英寸的高度,和(2)填料板,其底区的结构不同于该板的其它区域,从而使底区蒸汽流动的阻力低于其余区域的蒸汽流动阻力。
8.权利要求7的块,其中所述填料板具有47-55度的波纹角。
9.权利要求7的块,具有大于800m2/m3至小于1000m2/m3范围的面积密度。
10.权利要求7的块,具有低于6英寸的高度。
11.权利要求7的块,具有低于8英寸的高度并且其中至少一些所述填料板的底区在结构上不同于该板的其余区域从而使底区的蒸汽流动阻力低于其它区域的蒸汽流动阻力。
全文摘要
一种尤其用于通过空气低温精馏生产产品、特别是高纯度氩的系统,包括具有所限定的中等面积密度、限定的尖波纹角以及至少一种限定的短的块高和限定的填料结构变化的结构填料配置。
文档编号B01J19/32GK1347754SQ01141138
公开日2002年5月8日 申请日期2001年9月30日 优先权日2000年10月6日
发明者M·J·洛克特, J·F·比林哈姆 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1