控制臭氧化水流量及浓度的设备和方法

文档序号:5004071阅读:399来源:国知局
专利名称:控制臭氧化水流量及浓度的设备和方法
技术领域
本发明一般涉及半导体器件的制造,更特别涉及对供应至半导体加工设备的臭氧化水的控制。
背景技术
在半导体制造中使用臭氧化去离子水能提供比较简单安全的加工步骤,例如晶片表面清洁,钝化,天然氧化物清除,和清除光刻胶。
臭氧化去离子水发生器通常使用接触器使臭氧从气体扩散进入去离子水中从而制造臭氧化水。薄膜式接触器使用臭氧可渗透膜在液体和气体之间提供物理分离,而填充柱接触器使液体和气体均质混合,在压力下产生更高的臭氧浓度。
半导体制造厂家通常具有多个需要臭氧化水的加工设备。不同加工设备要求不同的臭氧浓度和流量。购买,运行和保养多个臭氧化水发生器会提高制造成本和导致生产线停工。
最好能拥有不太昂贵,更可靠,适应性更强和响应更快的臭氧化水源。
发明概述本发明涉及用于改进臭氧化水供应系统的臭氧化水控制单元。该控制单元能调整来自于臭氧化水发生器并随后被输送至加工设备的臭氧化水流量和/或浓度。可以使用一个或多个控制单元和单个发生器供应超过一个具有独立臭氧化水需求的加工设备。
在各实施方案中,即使该臭氧化水供应系统中仅包括一个臭氧化水发生器,该系统也能同时向不同加工设备供应不同臭氧浓度的臭氧化水。使用一个或多个控制单元和少到仅仅一个臭氧化水发生器就能独立控制向两个或多个加工设备供应臭氧化水。
每个控制单元控制其输出臭氧化水的流量和/或浓度。因此,可以调整所供应臭氧化水的参数适应每个加工设备。在一个实施例中,该系统能供应低臭氧浓度的臭氧化去离子水,例如用于清洗过程,同时供应更高臭氧浓度的臭氧化去离子水,例如用于去胶过程。
因此,本发明一方面提供了一种向超过一个加工设备供应臭氧化水的方法。将来自于臭氧化水发生器的第一浓度臭氧化水和来自于水源的水混合,产生第二浓度的臭氧化水。向第一加工设备供应第二浓度的臭氧化水,并向第二加工设备供应来自于臭氧化水发生器的臭氧化水。
本发明第二方面提供了另一种为超过一个加工设备供应臭氧化水的方法。该方法包括提供一个臭氧化水控制单元。该臭氧化水控制单元包括一个臭氧化水输入管线,用于接受来自于臭氧化水发生器的第一浓度臭氧化水,还包括一个进水管线,用于接受来自于水源的水。该单元还包括一个臭氧化水输出管线,与臭氧化水输入管线和进水管线处于流体连通状态。有一个阀控制进水管线中的水流量,与控制氧化水输入管线中的臭氧化水的流量共同起作用,在输出管线中产生第二浓度的臭氧化水。
该方法中进一步包括向第一加工设备供应来自于输出管线的第二浓度臭氧化水,和向第二加工设备供应来自于臭氧化水发生器的臭氧化水。
本发明第三方面提供了一种臭氧化水控制单元。该控制单元包括一个臭氧化水输入管线,用于接受来自于臭氧化水发生器的臭氧化水,包括一个进水管线,用于接受来自于水源的水,还包括一个臭氧化水输出管线,与该臭氧化水输入管线和进水管线处于流体连通状态。该单元还包括一个阀,用于控制进水管线中的水流量,与控制氧化水输入管线中的臭氧化水的流量共同起作用,在输出管线中产生第二浓度的臭氧化水。
附图简要说明通过以下具体说明以及


,对本发明的优选实施例以及其他优点进行具体说明。
在附图中,使用相同的附图标记表示不同视图中相同的部分。而且附图不一定是成比例的,重点在于说明本发明的原理。
图1是表示臭氧化水发生器和半导体制造中所用其他部分之间一种关系实例的方框图。
图2是一种臭氧化水发生器实施例的方框图。
图3是一种臭氧发生器模块实施例的方框图。
图4是包括一薄膜式接触器的一种接触器模块实施例的方框图。
图5是包括一个填充柱接触器的一种接触器模块实施例的方框图。
图6是包括超过一个接触器的一种接触器模块实施例的方框图。
图7是一种接触器模块实施例一部分的方框图。
图8是一种接触器模块实施例一部分的方框图。
图9是一种填充柱接触器实施例的截面图。
图10是一种破坏臭氧模块实施例的方框图。
图11是臭氧浓度对臭氧化去离子水从接触器中被输出时间的关系图。
图12是一种接触器实施例的方框图。
图13a是一种现有技术的液槽。
图13b所示是包括附图12接触器的一种液槽系统的实施例。
图14是一种臭氧化水控制单元实施例的方框图。
图15是包括多个臭氧化水控制单元,一个臭氧化水发生器,一个纯水水源和三个加工设备的实施例方框图。
图16是包括一个臭氧化水发生器和一个将臭氧化水输送至两个加工设备的控制单元的实施例方框图。
图17是一种臭氧化水控制单元实施例的具体方框图。
本发明优选实施方式附图1以高度简化的形式表示了一种臭氧化水发生器1000与半导体制造中所用其他部分的物理关系。臭氧化水发生器1000接受来自于去离子水源20的去离子水(“DI水”),接受来自于氧气源30的氧气(“O2”),并向一个或多个半导体加工设备40供应臭氧化去离子水(“DIO3”)。用过的或过量的DI水或DIO3可以通过排水管线50被排走。本发明一方面提供了一种改进控制,成本更低,和可靠性提高的臭氧化水发生器。
在一个更具体的实施例中,附图2的方框图表示了代表性的臭氧化水发生器1000模块和腔室1020中的相关部分。为了简明起见,没有表示出臭氧化水发生器1000的电控及空气压力控制部件。
臭氧(“O3”)发生器模块800用O2管线813输送的氧气制造O3。二氧化碳(“CO2”)管线供应模块800所用的CO2。通过冷却水输入管线812将向O3发生器模块800供应冷却水,并通过冷却水输出管线811排出冷却水。O3发生器产生的O3通常与CO2和O2混合在一起。由于转化至O3的效率小于100%,因此有一些O2残留,可选按照用户要求添加CO2。通过干气体管线815向接触器模块100输送干气体混合物。
接触器模块100用DI水管线112供应的DI水和来自于干燥管线815的O3制造DIO3。DIO3中通常含有DI水和O3,O2,以及溶解在DI水中的CO2。通过DIO3管线115向半导体加工设备40输送DIO3。
参考附图4,5,和6,在各种接触器模块100的实施例中,包括一个或多个各种类型的接触器110,120。可选在DIO3发生过程中使用O3/CO2气体混合物,部分起到稳定臭氧化DI水中O3浓度的作用。
减压排放管线113响应过高水压输送由接触器模块100排出的水(在下文详述)。从减压排放管线113出来的水被存放在收集盘1040中。收集盘1040还能捕捉接触模块的漏水处。可以通过箱形排水沟1045排出收集盘1040中的液体。
浅水管线114将过量DI水或DIO3输送至臭氧化水发生器1000外部的排放口。来自于半导体加工设备40的用过的DIO3可以通过DIO3回流管线41,流量计11和流量控制阀12被回流至臭氧化水发生器1000。这样,臭氧化水发生器1000就能完全监控和控制半导体加工设备40所使用的DIO3。
接触器模块100通常产生含有O2,H2O,O3的湿气体,以及制造DIO3的废弃产物CO2。沿着湿气体管线911将湿气体输送至臭氧破坏模块900。破坏模块900能在沿着气体排放管线912排出湿气体之前,从湿气体中基本清除臭氧。这个过程能保护环境和半导体操作工人,防止潜在的臭氧损害。作为附加安全防护,腔室1020装配有一个气体泄漏检测器1030,即腔室“检漏计”,监控腔室1020中的臭氧气体泄漏。
为了简化以下说明,附图3-10中对有关气体和液体管线的控制和监控单元给予了同样的附图标记。这些控制和监控单元包括体积流量计11;体积流量控制阀12;开关阀13;压力调节器14;过滤器15(用于颗粒或冷凝物);止回阀16;卸压阀17;取样阀18;流量限流器19;臭氧浓度监控器20;冷凝监控器21;和温度计22。这些单元都是说明性的而并非全部。主要为了进行说明而在附图中示出控制和监控单元。可以根据不同实施例的要求改变这些单元的数量,种类和位置。
进一步要了解的是,气体和液体管线是用合适材料制造的。干气体管线和DI水管线包括不锈钢。输送含臭氧的液体或湿气体的管线通常包括含氟聚合物。
附图3所示是更具体的一种臭氧发生器模块800实施例的方框图。臭氧发生器810通过开关阀13和压力调节器14接受来自于O2管线813的氧气,并将O2转化成O3。还可以通过CO2气体管线814,压力调节器14,体积流量控制阀12和流量限流器19将CO2输送至臭氧发生器810。而且,可以在气体离开臭氧发生器810之后通过体积流量控制阀12和止回阀16向气体中加入CO2。止回阀16切断气体回流进入CO2输送管线。
在一个实施例中,臭氧发生器810使用介电挡板放电产生干燥臭氧。臭氧浓度取决于通过放电管的气体体积流量以及放电功率,压力和温度。
在进入臭氧发生器810之前向O2中加入CO2,能为O3发生过程提供一种掺杂剂。能防止因为电极的氧化而导致臭氧发生器810的性能长期使用后恶化。可以使用其他掺杂剂,例如N2或CO。可以向离开臭氧发生器810的干气体中添加额外的CO2。CO2还能产生稳定O3浓度的优点。
使用CO2还能产生其他优点。使用N2有可能在放电时形成氮的氧化物。这样甚至在使用电化学抛光的不锈钢管时也会产生铬污染。
要稳定DIO3中的臭氧需要大量CO2。臭氧的半衰期是DI水质量的函数。优选这种质量能提供大约15分钟的半衰期。与CO2同存的N2也会影响臭氧的稳定性。虽然优选高纯度的CO2和O2,但是也可以使用含有N2杂质的低纯度O2,其优点是,N2杂质可以作为掺杂剂。稳定作用通常要求大约50到100ppm的N2或大约100到500ppm的CO2。但是通常需要CO2来加强短期稳定性。因此,通常在气体进入臭氧发生器810之前和之后加入CO2。
可以通过取样阀18对制得的干气体进行取样,确定O3,O2和CO2的浓度。然后使干气体经由过滤器15,体积流量控制阀12,止回阀16,过滤器15,和开关阀13通过干气体管线815。
还通过冷却水输入管线812和冷却水排出管线811,向臭氧发生器模块800提供冷却水。冷却水通过开关阀13,过滤器15,体积流量控制阀12和体积流量计11被输送至臭氧发生器810。离开臭氧发生器之后,冷却水通过开关阀13。
附图4到8所示是各种接触器模块100的实施例。接触器模块100中通常包括一个或多个各种类型的接触器。例如,优选使用不同种类的逆流接触器。在逆流接触器中,气体和水以相反方向流过接触器。
逆流型接触器具有其他变体。薄膜式接触器使用疏水膜分离接触器中的气体和液体。通常,干气体进入薄膜式接触器的顶部并离开其底部,而DI水在底部进入,DIO3在顶部离开。相反,填充柱接触器通过气体和液体的直接接触,使用一种填料使其缓慢通过接触器。通常,DI水在顶部进入,而干气体在底部进入。填料能增加气体和液体之间的接触时间。填料包括例如含氟聚合物,石英,或蓝宝石。
因薄膜式接触器中的气体和液体被膜分隔,因此气体和液体之间存在压差。而且,使入口处的DI水体积流量与出口处的DIO3体积流量之间匹配。相反,填充柱接触器中的液体和气体压力是相同的,入口处和出口处的体积流量没有关系。因此,在短时间内,入口和出口处的体积流量可以是不同的。这些区别部分导致薄膜式接触器具有较低的最大体积流量,但是具有很好的可控制性,而填充柱接触器通常具有较大的最大体积流量,但是其可控制性较差。
通过液体和气体的相互作用,气体中的臭氧溶解在液体中。通常,平衡时液体中的臭氧浓度与气体中的臭氧分压成比例。例如在填充柱接触器中,接触器通常在压力下工作,为较高臭氧浓度的DIO3输出提供势能。液体和气体之间的接触时间还会影响离开接触器的液体中臭氧浓度。在3英高的填充柱接触器中,液体通过接触器需要的时间通常是大约5到10秒。
如附图4中所示,接触器模块中包括一个薄膜式接触器110。接触器110的较低部分通过体积流量控制阀12接受来自于DI水管线112的DI水。当入口处水压过高时,可以通过一个卸压阀17将一部分DI水排放至卸压排放管线113。在接触器110中经过处理之后,DIO3通过一个体积流量计11离开接触器110的上部,并通过一个开关阀13被输送至DIO3管线115。
离开接触器110的过量或不需要的DIO3可以通过臭氧监控器20,开关阀13,体积流量计11,和体积流量控制阀12被输送至浅水管线114。
接触器110的上部通过开关阀13接受来自于干气体管线815的含臭氧干气体。湿气体离开接触器110的下部,并通过体积流量计11被输送至湿气体管线911。然后,臭氧破坏模块900从湿气体中除去臭氧。
附图10更详细地显示一种臭氧破坏模块900的具体实施方案。臭氧破坏器910通过体积流量控制阀12,开关阀13,过滤器15和冷凝监控器21接受来自于湿气体管线的湿气体。可以通过取样阀18对湿气体进行取样。
臭氧破坏器910通过使用一种催化剂降低湿气体中的臭氧浓度。从臭氧破坏器910中排出的气体通过温度计22和体积流量监控器11被输送至废气管线912。通常,只要温度计22监控到的温度保持在一个最小限度之上,就可以认为臭氧破坏效率是足够的。
附图5所示是接触器模块1001的另一个具体实施方案。在这个实施方案中,接触器模块100包括一个填充柱型接触器120。接触器120的上部通过体积流量控制阀12接受来自于DI水管线112的DI水。在接触器120中经过处理之后,DIO3通过体积流量计11离开接触器120的下部,并通过开关阀13被输送至DIO3管线115。
可以通过臭氧监控器20,开关阀13,体积流量计11,和体积流量控制阀12将离开接触器120的过量的或不需要的DIO3输送至浅水管线114。当接触器120中的水压过高时,可以用卸压阀17将接触器120下部中的一部分水排放至卸压排水管线113。
接触器110的下部通过开关阀13接受来自于干气体管线815的含臭氧干气体。湿气体离开接触器120的上部,并通过体积流量计11被输送至湿气体管线911。然后,臭氧破坏模块900从湿气体中除去臭氧。
附图5中所示的实施例进一步提供了用一个液面感应器150监控接触器120中液面的方法,该感应器与接触器120处于流体连通状态。通过电容计152测量液面。而且,如果液面降至最低允许水平之下,例如通过遮光板153感应到该情况,则应关闭开关阀13,防止液体的进一步流失。如果液面升高至最高允许水平之上,例如通过另一个遮光板151感应到该情况,则应关闭另一个开关阀(未示出),防止更多DI水进入接触器120。在这两种情况下,会给出警告提醒注意问题。
附图6所示是一种接触器模块100的实施例,其中包括两个平行工作的接触器120。为了简明起见,未示出附图6实施例中与附图5相似的部分。平行使用两个或多个接触器120具有若干优点,包括更大的DIO3可能流量,以及在一个接触器120发生故障时仍能连续生产DIO3。而且,使用两个较小接触器120的制造和运行成本低于使用单个较大接触器120的成本。在另一个实施例中,两个或多个接触器120串联工作,使DIO3中的臭氧浓度更高。
附图7所示是接触器模块100另一个实施方案的一部分,其中部分与附图5的实施方案相关。为了简明起见,未示出附图7实施方案中与附图5相似的部分。所示实施方案中包括一个填充柱接触器120,但是可以使用符合该实施方案原理的各种接触器。
一部分来自于DI水管线112的DI水被DI水旁路管线610分流。或者,有一个第二DI水管线(未示出)作为DI水旁路管线610。
通过体积流量计和体积流量控制阀之后,DI水旁路管线610中的DI水与离开接触器120的DIO3混合。从该混合物形成的DIO3通过DIO3供应管线115被输送至半导体加工设备。通过调节旁路管线610中DI水的流量,能改变DIO3管线中的DIO3臭氧浓度和流量。
使用旁路管线610能产生若干优点。通常,现有技术的臭氧化发生器在遭遇浓度变化的要求时,会在DIO3中产生臭氧浓度瞬变现象。改变进入接触器的DI水或干气体的流量来改变臭氧浓度时,接触器内条件转变成新稳态需要一段时间。这种效应如附图11所示。
例如,通过降低离开接触器的DIO3流量,可以提高DIO3中的臭氧浓度。可以通过降低流量来增加水在接触器110,120中所仪停留的时间。这样能使水与气体中的臭氧发生更长时间的相互作用。但是DIO3离开接触器时发生的延时,并没有完全用完在接触器中增加的时间。因此,离开的DIO3中的臭氧会逐渐增大至新的要求的水平。而且,如附图11中所定性表现出浓度的盘旋上升或高低变化会被叠加在逐渐增加的臭氧浓度上。
这些效应在半导体加工过程中是不利的。DIO3的使用者通常希望能对浓度水平进行立刻,稳定的调节。通过调节旁路管线610中的DI水流量,能比较迅速和稳定地改变被输送至DIO3管线115中的DIO3臭氧浓度。超过半导体加工设备40要求的过量DIO3可以被输送至浅水管线114。
使用上述方法,能在接触器110,120中产生流量恒定的水流,使离开接触器110,120的DIO3保持稳定的臭氧浓度。然后可以将这种供应非常稳定的DIO3与各种流量的DI水混合,使被输送至DIO3管线114的DIO3浓度变化符合要求。在一个相关实施例中,能随时在接触器110,120中保持恒定低流量的水流,甚至当半导体加工设备的DIO3需求是零时也是如此。流量恒定时,几乎立刻就能获得DIO3。而且,由于接触器中的流量较低,所以在不需要DIO3时,几乎不需要排出DIO3。这时,可以减少流过旁路管线610的DI水,或者关闭旁路进一步节约用水。
在上述方法的一个实施方案中,接触器120工作时的恒定流量是5升/分,出口处DIO3的臭氧浓度是80ppm。将来自于旁路管线610的15升/分流量DI水与该接触器120的出水混合,在DIO3管线114中产生20升/分流量的20ppm的DIO3。半导体加工设备40可以使用全部20升/分20ppm浓度的DIO3,或者将其中的一部分排放掉。
使用上述方法还会产生其他优点。例如,保持接触器110,120中或旁路管线610中的水流能减少细菌的生长。例如,可以保持旁路管线610中的DI水流,在旁路管线610和其他DI水输送管线中提供连续水流,保护这些管线防止细菌生长。另外,流过接触器110,120液体流量的变化会产生压力尖峰,导致接触器110,120出现故障。使用上述方法能降低或消除这些流量变化,从而提高接触器110,120的可靠性。
附图8所示是另一个接触器模块100实施例的一部分,部分与附图5的实施例相关。为了简明起见,没有示出附图8实施例中与附图5相似的部分。所示实施例中是一个填充柱接触器120,但是可以用于符合该实施例原理的各种接触器。
离开接触器120并通过一个体积流量计之后,一部分DIO3可以被循环管线180分流,再次进入接触器120,可选通过储水槽710。虽然没有示出,但是可以使用一个水泵将DIO3泵入接触器120。储水槽部分起到缓冲作用,即储存分流的DIO3,能更好地控制分流DIO3的循环。
分流的DIO3可以通过一个液体管线接头再次进入接触器120,该液体管线接头用于接受来自于DI水管线112的DI水。或者,接触器120中可以包括一个独立接头,使分流DIO3再次进入接触器120。
使分流DIO3循环通过接触器,能获得臭氧浓度提高的DIO3。它有现有技术臭氧化水发生器所不具备的优点。例如,与使用可比接触器的现有技术发生器相比,能产生更高臭氧浓度的DIO3。而且,可以使用更小更便宜的接触器制造要求臭氧浓度水平的DIO3。
参考附图9的截面视图,说明了一种改进的填充柱接触器500。将接触器500用于各种接触器模块100中,能产生上述优点。
接触器500包括一个液体和气体相互作用的容器,该容器能在接触器500工作时保持升高的压力。该容器包括第一端部分510和第二端部分520。如附图9中所示,该容器中进一步包括中间部分530。第一端部分510与中间部分530的第一端相连,第二端部分520与中间部分530的第二端相连,形成基本不渗漏液体和气体的液体气体相互作用容器。在该容器中包括填料挡板560和填料(未示出)。
510,520,530部分优选是由包括含氟聚合物的聚合物制成的。含氟聚合物选自四氟乙烯,全氟烷氧化物,聚二氟乙烯,和氟代乙烯丙烯。通常,可以用具有耐臭氧性的材料制造510,520,530部分。可以用各种方法制造510,520,530部分。例如,对一些含氟聚合物,例如全氟烷氧化物,可以采用注塑方法。对其他材料,例如四氟乙烯,可以采用机械加工方法。
510,520,530部分的足够壁厚为接触器的加压操作提供自身支撑的机械稳定性。因此,不同于现有技术的填充柱接触器,接触器500不需要不锈钢外壳。
对于圆筒形容器,可以用下式计算足够的壁厚t=r(P/σmax);σmax=(1/s)σy;其中t是理想壁厚,r是容器内径,P是内压力,σmax是最大允许拉伸壁应力,σy是用于制造容器特定材料的屈服强度,s是安全因子。对特定容器材料使用较大的安全因子,即特定的最大允许拉伸壁应力,会对给定的工作压力P给出更大的厚度。
例如,工作压力是0.75兆帕时,即大约7.5个大气压,内径是3英寸,安全因子是2,由全氟烷氧化物制成的容器部分510,520,530具有15兆帕的屈服强度,则计算求得的壁厚是0.3英寸。安全因子较小时,例如大约为1时,则可以使用大约0.15英寸的壁厚。在优选更保守的设计时,例如安全因子为4,则给出理想厚度是0.6英寸。可以使用较大的厚度,例如1.2英寸或更厚,但是这会增加成本和接触器500的重量。
或者可以凭经验决定容器部分的厚度,制造各种厚度的容器,对这些样品在各种测试压力下进行试验,确定故障发生时的压力。在一些实施例中,容器不同部位的厚度各不相同。例如,可以使用较厚的末端部分510,520,为气体或液体管线连接至接触器500提供更大的稳定性。
通过使用垫圈540和夹钳550(只在附图9截面图中容器的一个侧面上表示出夹钳)有助于部分510,520,530之间连接的气密性和稳定性。
与现有填充柱接触器相比,接触器500具有若干优点。现有接触器的不锈钢外壳会使接触器变得相当重和很昂贵,通常需要顶部和底部钢法兰。这些现有接触器通常会在制造聚四氟乙烯内衬时碰到麻烦。相比之下,接触器500需要的部件很少,这些部件都可以通过不太昂贵的注塑技术制得。这使填充柱接触器500比现有填充柱接触器更可靠,其成本比现有填充柱接触器降低大约80%。而且,通过注塑,液体或气体管线接头511,512,513,514可以成为第一端部分510或第二端部分520中的一部分,从而进一步减少接头数量和成本,并提高可靠性。
附图12所示是一种接触器600的实施例,特别用于为半导体湿法工作台加工过程提供臭氧化液体。接触器600可以独立于臭氧化水发生器1000使用。
接触器600包括一个管状部分,其中包括一个由适应于半导体加工过程的金属所制成的外壳610。优含氟聚合物,例如全氟烷氧化物(PFA),与存在的氢氟酸相容。外壳610的第一端与第一装配件620相连,处于流体连通状态。使用第一装配件连接液体供应管线,例如DI水供应管线或硫酸供应管线。外壳610的第二端与第二装配件630连接并处于流体连通状态。使用第二装配件连接臭氧化液体供应管线。第三装配件640连接外壳610的侧面并处于气体连通状态,优选更靠近第一装配件620而不是第二装配件630。用第三装配件640连接气体供应管线,气体中含有臭氧。制造装配件620,630,640时使用了与半导体加工过程相容的部件,例如从Entegris,Inc.(Chaska,Minnesota)获得的Flaretek接头。
管状部分中进一步包括一个或多个内部混合单元650,其中的一些能在附图12的管状部分剖视截面图中看到。单元650使通过第三装配件640进入外壳610的气体和通过第一装配件620进入外壳610的液体产生湍流并发生混合。这种混合有助于使臭氧以较高的质量传递效率进入液体。
各种引发湍流形状都适用于单元650。优选弯曲形状,沿着外壳610长度方向上的弯曲程度大于外壳620的内宽。外壳610的内宽大约是5到30毫米,对典型的半导体加工应用则优选15毫米。
在一个实施例中,每个单元650都具有上游端和下游端,两端基本是平整的,彼此扭曲。扭曲的对称性可以是变化的,例如从左转向右转螺旋状,沿着外壳610从单元650到单元650。在另一个实施例中,对称性以单元650组形式变化。在另一个实施例中,单元650对称性随机变化。
接触器600特别适用于向半导体湿法加工工作台供应臭氧化液体。附图13a所示是现有技术中一种典型的湿法加工工作台1370。去离子水或硫酸等液体通过液体输送管线1320被输送至湿法加工工作台1370。臭氧通过臭氧输送管线1310被独立地输送至湿法加工工作台1370。臭氧气泡1340被注射进在湿法加工工作台1370中的液体1330中。当臭氧气泡1340从液体1330中浮起时,一部分臭氧扩散进入液体,形成用于加工湿法工作台中半导体晶片(未示出)的臭氧化液体。
与现有技术对比的一种湿法加工工作台系统如附图13b中所示。接触器600接受来自于气体供应管线615的臭氧和来自于液体供应管线612的液体,并将臭氧化液体680通过臭氧化液体输送管线660输送至湿法加工工作台670。虽然臭氧气泡690存在于臭氧化液体680中,但是在将其输送至湿法加工工作台670之前对液体和臭氧气体进行湍流混合具有若干优点。湿法加工工作台670中臭氧化液体680的臭氧浓度更均匀,而且如果有要求的话,大于现有技术方法的浓度。而且,能更有效地使用臭氧气体。可以很容易地将现有技术的湿法加工工作台系统改造成附图13b中所示的类型,主要使用现有管道。
与使用臭氧化水发生器供应湿法加工工作台的需要相比,按照附图13b实施例的原理供应臭氧化DI水具有若干优点。13b的实施例更节约成本并可靠得多。而且,由于使用高度可靠的臭氧化DI水源能缩短停工时间,从而降低因为关闭半导体制造流水线而造成的高成本。维修次数的减少进一步提高了制造加工的安全性。
在下文中,将半导体加工过程中常用的高纯水分别称为DI水,水,纯水和超纯水(UPW)。
附图14-16所示是控制臭氧化水流量及浓度的设备和方法。附图14是一种臭氧化水流量和浓度控制单元1400实施例的方框图。单元1400接受来自于臭氧化水发生器的臭氧化水和来自于DI水源的DI水。将这些液体混合之后,单元1400将臭氧浓度和/或流量发生变化的臭氧化水输送至一个或多个加工设备。
单元1400中包括DIO3流量控制阀1410和/或DI水流量控制阀1420。可以使用阀1410,1420,通过控制来自发生器的臭氧化水与来自DI水源的水的混合体积比,来控制离开单元1400的臭氧化水中的臭氧浓度。还可以使用阀1410,1420控制输出臭氧化水的流量。应该将这里所说的DI水理解成包括常用于半导体加工过程中的高纯水。
控制单元1400能为一个或多个加工设备控制臭氧化水的浓度和/或流量,而臭氧化水发生器处于稳态运行。如下所述,使用一个或多个单元1400能使单个发生器为两个或多个加工设备供应不同浓度的臭氧化水。
说明书中用“加工设备”表示任何使用臭氧化水的装置,或装置的一部分。例如,单个装置中的独立液槽可以作为独立的加工设备。
附图15所示是包括多个控制单元1400,一个臭氧化水发生器1000,一个纯水源20和三个加工设备40A,40B,40C的实施例方框图。控制单元1400与臭氧化水发生器1000共同起作用,独立控制输送至加工设备40A,40B,40C的臭氧化水的参数。其他实施例包括更多或更少的加工设备,和/或附加发生器1000。
附图16是发生器1000和控制单元1400实施例的方框图,能向两个加工设备40D,40E输送臭氧化水。发生器1000将臭氧化水直接输送至加工设备40D,从而直接控制被输送至加工设备40D的臭氧化水浓度。控制单元1400控制被输送至第二个加工设备40E的臭氧化水浓度。
在其他实施例中,包括不同数量的加工设备,不同数量的通过一个或多个控制单元接受臭氧化水的加工设备。一些实施例中包括两个或多个发生器1000,例如,提供更大量的臭氧化水。
附图17所示是控制单元1400A另一个实施方案的具体方框图。控制单元1400A包括气动控制阀V1,V2;气动开关阀V4,V5;手动调节阀V3;流量指示器F1;压力传感器PR1,PR2;和流量传感器FR1,FR2。气动阀V1,V2,V4,V5利用压缩干燥空气工作。
控制单元1400A的工作如下所述。通过控制单元1400A的控制面板设定要求的加工过程的流量和臭氧浓度,或者通过计算机控制远程设定。控制单元1400A接受来自于臭氧发生器的指定输入浓度的臭氧化水。
输入的臭氧化水通过气动开关阀V5,用压力传感器PR1和流量传感器FR1分别测量其压力和流量。类似地,输入的纯水通过气动关闭阀V2,用压力传感器PR2和流量传感器FR2分别测量其压力和流量。通过流量传感器FR1,FR2之后,将两种液体混合,然后通过气动阀V1离开控制单元1400A。
控制单元1400A对选定臭氧浓度和输入臭氧化水的浓度进行比较,从而作出响应选择要求的稀释比。调节纯水管线中的气动阀V2,比较从流量传感器FR1,FR2获得的流量比。通过闭环过程继续调节,直到流量达到了选定的稀释比。
控制单元1400A还能通过流量传感器FR1,FR2的测量确定总流量,并对总流量和输出臭氧化水的选定流量进行比较。可以通过闭环过程调节靠近出口处的气动阀V1,直到获得选定的输出流量。
调节手动阀V3能获得要求的流向排放口的流量,通过流量指示器F1进行测量。流向排放口的液流通过一个气动关闭阀V4。监控压力传感器PR1,PR2能在超过安全压力水平时进行紧急制动。
在一个实施方案中,发生器1000输送饱和有臭氧的臭氧化水,控制单元在压力下进行混合,防止臭氧发生脱气作用。在一个实施方案中,输入的饱和臭氧化水通过均匀尺寸的直线输入管线。
本发明的特点能提供不少优点,例如,快速调整浓度和流量,使过程流体的迅速增加和迅速减少成为可能(能以关闭/开启模式获得优化的过程周期),和扩大过程流体的流量和浓度范围。
在说明性实施方案中,控制单元1400所接受的臭氧化水流量在大约0到35升/分范围内,DI水的流量在大约0到42升/分的范围内。优选的排放流量在大约0到2升/分范围内。输出臭氧化水中的臭氧浓度可以在输入臭氧化水浓度的0%到100%范围内变化。这里要注意的是,只将DI水输送至控制单元的出口处时,能获得输出臭氧化水中的0%臭氧浓度。
以上参考优选实施方案对本发明进行了说明,本领域技术人员能在不超出权利要求所限定的本发明原理和范围内在形式和细节上作出各种变化。例如,可以使用控制单元来控制两种流体的流量和/或浓度参数,而不是臭氧化水和/或DI水。例如,可以使用控制单元控制超过两种流体的混合。例如,控制单元中可以包括两个或多个出口;每个出口都能供应具有不同浓度的臭氧化水。
权利要求
1.一种向超过一个加工设备供应臭氧化水的方法,包括接受来自于臭氧化水发生器的具有第一浓度的臭氧化水;接受来自于水源的水;将至少一种所接受的臭氧化水与从水源所接受的水混合成具有第二浓度的臭氧化水;和向第一加工设备供应具有第二浓度的臭氧化水,同时向第二加工设备供应来自于臭氧化水发生器的臭氧化水。
2.如权利要求1所述方法,其特征在于向第二加工设备供应来自于臭氧化水发生器的臭氧化水包括将至少一种来自于臭氧化水发生器的臭氧化水与来自于水源的水混合成具有第三浓度的臭氧化水,并向第二加工设备供应具有第三浓度的臭氧化水。
3.如权利要求1所述方法,其特征在于混合包括选择所接受了的臭氧化水流量与从水源所接受水的流量的比值,产生具有第二浓度的臭氧化水。
4.如权利要求3所述方法,其特征在于混合并进一步包括调节至少一种所接受了的臭氧化水的流量和所接受了的水的流量,达到选定的比值。
5.如权利要求1所述方法,其特征在于进一步包括选择具有第二浓度的臭氧化水流量,并控制所接受臭氧化水的流量和从水源所接受的水流量,使产生的具有第二浓度的臭氧化水具有选定流量。
6.如权利要求1所述方法,其特征在于混合包括基本上不将所接受的臭氧化水与从水源所接受的水混合,使产生的第二臭氧浓度基本上等于0%。
7.一种向超过一个加工设备供应臭氧化水的方法,包括提供一种臭氧化水控制单元,它包括臭氧化水输入口,用于接受来自于臭氧化水发生器的具有第一浓度的臭氧化水;进水口,用于接受来自于水源的水;臭氧化水输出口,与臭氧化水输入口和进水口处于流体连通状态;和阀,用于控制进水口中的水流量,与臭氧化水输入口中的臭氧化水流量共同起作用,在输出口中产生具有第二浓度的臭氧化水,和向第一加工设备供应来自于输出口的具有第二浓度的臭氧化水,同时向第二加工设备供应来自于臭氧化水发生器的臭氧化水。
8.如权利要求7所述方法,其特征在于向第二加工设备供应来自于臭氧化水发生器的臭氧化水包括提供一个第二臭氧化水控制单元,其中包括臭氧化水输入口,用于接受来自于臭氧化水发生器的具有第一浓度的臭氧化水;进水口,用于接受来自于水源的水;臭氧化水输出管线,与臭氧化水输入口和进水口处于流体连通状态;和阀,用于控制进水口中的水流量,与臭氧化水输入口中的臭氧化水流量一起发生作用,在输出口产生具有第三浓度的臭氧化水,和向第二加工设备供应来自于输出口的具有第三浓度的臭氧化水。
9.一种臭氧化水控制单元,包括臭氧化水输入口,用于接受来自于臭氧化水发生器的具有第一浓度的臭氧化水;进水口,用于接受来自于水源的水;臭氧化水输出口,与臭氧化水输入口和进水口处于流体连通状态;和阀,用于控制进水口中的水流量,与臭氧化水输入口中的臭氧化水流量一起发生作用,在输出口中产生具有第二浓度的臭氧化水。
10.如权利要求9所述臭氧化水控制单元,进一步包括一个流量传感器,用于测量进水口中的水流量,其特征在于根据测得流量的响应来调节阀门,获得选定流量,产生具有第二浓度的臭氧化水。
11.如权利要求10所述臭氧化水控制单元,进一步包括一个流量传感器,用于测量臭氧化水输入口中所接受臭氧化水的流量,还包括一个阀,用于控制臭氧化水输入口中所接受臭氧化水的流量,其特征在于根据所测得接受臭氧化水的流量的响应来调节控制接受臭氧化水流量的阀门,使所接受臭氧化水的流量与来自于水源的水流量的比值是选定值。
12.如权利要求10所述臭氧化水控制单元,进一步包括一个第二臭氧化水输出口,与臭氧化水输入口和进水口处于流体连通状态,第二臭氧化水输出口供应具有第三浓度的臭氧化水。
13.如权利要求10所述臭氧化水控制单元,其特征在于该第二浓度在第一浓度的0%到100%范围内。
14.一种臭氧化水供应系统,包括臭氧化水发生器;第一臭氧化水控制单元,与该臭氧化水发生器处于流体连通状态,该控制单元包括臭氧化水输入口,用于接受来自于臭氧化水发生器的具有第一浓度的臭氧化水;进水口,用于接受来自于水源的水;臭氧化水输出口,与该臭氧化水输入口和进水口处于流体连通状态;和阀,用于控制进水口中的水流量,与臭氧化水输入口中的臭氧化水流量一起发生作用,在输出口中产生具有第二浓度的臭氧化水,和第二臭氧化水控制单元,与该臭氧化水发生器处于流体连通状态,用于向第二加工设备供应具有第三浓度的臭氧化水,同时向第一加工设备供应具有第二浓度的臭氧化水。
全文摘要
本发明公开了一种用于向超过一个加工设备供应臭氧化水的设备和方法。将来自于臭氧化水发生器的第一浓度臭氧化水与来自于水源的水混合成第二浓度臭氧化水。向第一加工设备供应第二浓度臭氧化水。向第二加工设备供应来自于臭氧化水发生器的臭氧化水,同时向第一加工设备供应第二浓度臭氧化水。
文档编号B01F1/00GK1653400SQ03811404
公开日2005年8月10日 申请日期2003年4月25日 优先权日2002年4月26日
发明者J·费特考, J·西维特, C·戈茨查克 申请人:应用科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1