颗粒状物质捕集用过滤膜、使用该过滤膜的取样器以及颗粒状物质的分析装置的制作方法

文档序号:4900617阅读:189来源:国知局
专利名称:颗粒状物质捕集用过滤膜、使用该过滤膜的取样器以及颗粒状物质的分析装置的制作方法
技术领域
本发明涉及一种捕集各种气体中悬浮颗粒状物质用的过滤膜,以及使用该过滤膜的颗粒状物质取样器,所述气体包括大气、以及例如各种排出废气或稀释排出废气所得到的稀释排出废气等的气体。本发明还涉及一种对上述颗粒状物质等进行分析用的颗粒状物质分析装置。
背景技术
有报告称,存在于大气中的悬浮颗粒状物质(Suspended Particulate Matter以下称为SPM)中,尤其粒子直径为10μm以下的颗粒状物质损害人的健康,另外,粒子直径为2.5μm以下的SPM(也称为微小颗粒状物质或PM2.5)与人的死亡率有很大的关系。
在测定大气中的颗粒状物质的方法中,有一种是利用β射线吸收方式测定捕集到的粉尘的质量的方法。该方法是将一定流量的大气作为试样气体连续吸入取样管内,在设在该取样管下游侧的真空室内,将上述试样气体中的悬浮颗粒状物质作为粉尘连续地捕集于过滤膜上,对所捕集到的粉尘照射来自β射线源的β射线,此时通过的β射线利用检测器检测出,通过利用该检测器输出的β射线吸收方式,测定上述捕集到的粉尘的质量。利用该方法,可以定量地把握大气中所含SPM的总量的浓度。
可是,近年来,不仅对上述SPM的总量,而且还开始要求对各成分(元素)的浓度分别进行定量分析。即,要求对被所述过滤膜捕集到的粉尘,例如,用离子色谱分析法、荧光X射线分析法或PIXY(带电粒子激发X射线分析法)等方法进行分析,对该粉尘所含成分的浓度分别进行定量。这种不仅对SPM的总重量(质量及浓度)、而且对SPM所包含的各种成分分别进行定量分析的作法,对于确定SPM的发生源,根据其结果制定防止大气污染对策等是非常重要的。
但是,对上述粉尘中的SPM的每一成分分别进行定量分析,例如,使用离子色谱分析装置、荧光X射线分析装置或PIXY装置对上述过滤膜捕集到的粉尘进行定量分析时,需要作出上述装置的已知试样的测量曲线、进行灵敏度校正等,在对SPM的各成分进行定量分析时,必须经过烦杂的程序。
作为测定大气中的SPM质量(浓度)的方法之一,例如有使用低容量(low-volume)取样器等的手动式取样器的方法。即,所述取样器将一定流量的大气连续地吸引到取样管内作为试样气体,使试样气体通过设在该取样管下游侧的过滤膜,而将SPM捕集到过滤膜上,在化费1天~数天时间使用该取样器将SPM收集到过滤膜上后,用天平秤来计测其质量,可由所得到的SPM的质量和试样气体的流量导出SPM的浓度(参阅专利文献1日本特开2001-343319号公报)。
作为所述过滤膜的原材料,主要使用在化学稳定性及吸潮性低等方面优异的氟系树脂,但是,由氟系树脂构成的过滤膜容易带电,所以存在着因其带电还会吸附捕集颗粒状物质之外的不要物质的缺点。这种因带电所产生的不要物质的吸附,在取样器捕集颗粒状物质时当然会产生,在将捕集后的过滤膜从取样器移放到天平秤上计测质量时也特别明显地产生,成为使颗粒状物质的测定误差增大的原因。
而近年来,想要更详细地了解所述SPM的含有成分的这种愿望极其高涨,因此,如上所述,将捕集到SPM后的过滤膜放在X射线分析装置上,对SPM的成分进行分析(参阅专利文献2日本特开平10-68684号公报)。
但是,在上述现有的方法中,由于是分别使用天平秤进行SPM的质量测定和用X射线分析装置进行SPM的成分分析,故存在着非常费功夫的问题。
另外,作为测定大气中SPM的质量的其他技术,有使用所谓的β射线吸收方式的方法,即不将捕集到SPM的过滤膜放在天平秤上,而对通过捕集颗粒状物质形成于过滤膜上的测定点照射β射线,根据其透过光的检测值求得SPM的质量。
但是,在使用β射线吸收方式的场合,由于过滤膜是含有较良好吸收X射线的硅、钠、锌之类的玻璃纤维制成的,因此,难以用上述X射线分析装置来对捕集在玻璃纤维制成的过滤膜上的SPM进行成分分析。

发明内容
本发明就是留意到上述问题完成的,本发明的第1目的在于提供一种能够在短时间内高精度地、简便地进行SPM成分的定量分析的大气中的悬浮颗粒状物质捕集用过滤膜(以下,简称捕集用过滤膜)。
鉴于上述问题,本发明的第2目的还在于提供一种可良好地捕集颗粒状物质的颗粒状物质捕集用过滤膜和使用该过滤膜的颗粒状物质取样器。
鉴于上述问题,本发明的第3目的还在于提供一种颗粒状物质分析装置,该装置能够简便可靠地对大气等试样气体中所含的颗粒状物质的质量、浓度进行测定,和对所述颗粒状物质的所含成分进行分析。
为达到上述第1目的,本发明的捕集用过滤膜,其特征在于,捕集颗粒状物质的捕集部由多孔性薄膜构成,该捕集部上背衬有通气性的加强层,同时,使上述加强层含持有一定量测定对象物质以外的物质作为标识(权利要求1)。
关于所述捕集用过滤膜,上述多孔性薄膜可以是氟树脂制成(权利要求2),另外,所述加强层可用吸潮性低的无纺布构成(权利要求3),而上述无纺布可由聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一种物质构成(权利要求4)。
另外,捕集悬浮颗粒状物质的捕集部还可由玻璃纤维制的多孔性薄膜构成,使所述捕集部含持有一定量测定对象物质以外的物质作为标识(权利要求5)。
权利要求1中所记述的捕集用过滤膜,在捕集到作为尘埃的SPM后,例如,使用PIXY装置只就进行测定,便能进行该PIXY装置的灵敏度校正,从而能够对SPM的成分分别精确地进行定量分析。
权利要求2~5中的捕集用过滤膜,与上述权利要求1中所述的捕集用过滤膜具有同样的效果。
为实现上述第2目的,本发明的颗粒状物质捕集用过滤膜具有由氟系树脂构成的多孔性层;设在该多孔性层一面侧的有通气性的加强层,所述加强层由带电性低的多孔性树脂材料构成(权利要求6)。
具体地说,加强层由无纺布构成,该无纺布以聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中任一个或多个为原材料(权利要求7)。
另外,为实现上述第2目的,本发明的颗粒状物质取样器具有保持多个分别装拆自如的过滤膜的过滤膜保持机构;使试样气体通过该过滤膜保持机构所保持的多个过滤膜中的一个、从而使试样气体中的颗粒状物质捕集在上述过滤膜上的试样气体供给机构,所述过滤膜为权利要求6或7所述的颗粒状物质捕集用过滤膜,而试样气体供给机构使颗粒状物质被依次捕集在由过滤膜保持机构所保持的多个过滤膜上(权利要求8)。
具体地说,过滤膜保持机构具有绕其轴旋转自如的转台,在该转台的周缘部安装有装拆自如的各个过滤膜(权利要求9)。
形成多孔性层的氟系树脂,通常具有容易带静电的性质,而在权利要求6和8的发明中,由于加强层具有防带电效果(除电效果),因此,能由所述加强层来有效地防止多孔性层带电、吸附大气中不需要物质等。因此,采用本发明的颗粒状物质捕集用过滤膜,可大大提高捕集颗粒状物质而进行的测定的精度。
另外,现有技术的氟系树脂构成的过滤膜,为了获得轻量化,是将其他树脂构成的支承环安装保持在氟系树脂所形成的过滤膜的周围;而本发明可用加强层来支承氟系树脂所形成的多孔性层整体,故可进一步获得薄型化和轻量化。
在权利要求8的发明中,由于使用可良好地捕集颗粒状物质的颗粒状物质捕集用过滤膜,因此,例如可有利于实现颗粒状物质的更高灵敏度的定量测定。而且,可连续且容易地进行该测定。此外,若采用权利要求9的发明,由于能分别地从转台上取下多个颗粒状物质捕集用过滤膜,故可获得对于操作简单等使用性方面更优异的效果。
为实现上述第3目的,本发明的颗粒状物质分析装置具有将试样气体中的颗粒状物质予以捕集的捕集装置;测定所述颗粒状物质质量的质量测定装置;以及对由所述捕集装置捕集的颗粒状物质中的成分进行分析用的成分分析装置(权利要求10)。
更具体地说,成分分析装置构成为通过对形成于过滤膜上的测定点照射X射线或电子射线之类的射线,分析颗粒状物质的成分(权利要求11)。
收集装置的构成最好是使试样气体通过过滤膜,在过滤膜上形成测定点,所述过滤膜由吸收X射线较少的材料构成(权利要求12)。
另外,质量测定装置的构成也可是通过使用β射线吸收方式、压降方式或光散射方式中任一个或组合使用多个,来测定颗粒状物质的质量(权利要求13)。
采用权利要求10,由于具有质量测定装置和成分分析装置,故可同时或连续地对大气等的试样气体中所含的颗粒状物质的质量、浓度进行测定和对含有所述颗粒状物质的成分进行分析。另外,不必分别用各自的装置对颗粒状物质进行质量、浓度测定和成分分析,装置整体的设置所需的空间较小即可,此外,可省却将收集后的颗粒状物质从进行质量测定用的装置转移到进行成分分析用的装置的工作和时间,能够进一步容易地获得颗粒状物质的质量、浓度测定和成分分析的自动化。
采用权利要求11,作为成分分析装置的构成,可仍采用例如公知的进行X射线分析用的构成,而且可以非破坏方式对形成测定点的捕集的颗粒状物质进行分析。
另外,采用权利要求12,由于过滤膜由X射线吸收较少的材料构成,故能容易而可靠地进行对颗粒状物质的成分的X射线分析。
采用权利要求13,通过从β射线吸收方式、压降方式、光散射方式中选择适当的方式,而可合适地测定颗粒状物质的质量。


图1所示的是使用本发明实施例1的大气中悬浮颗粒状物质捕集用过滤膜的测定装置的一构成例。
图2所示的是上述装置中的主要部分的构成。
图3概略表示使用PIXY装置对由上述捕集用过滤膜捕集到的SPM进行定量分析后的结果。
图4表示的是本发明实施例2的大气中悬浮颗粒状物质捕集用过滤膜的另一例的剖面图。
图5(A)和(B)是概略表示本发明实施例3的颗粒状物质捕集用过滤膜构成的说明图和纵剖视图。
图6是概略表示装入有图5所示过滤膜的过滤膜单元的构成的立体图。
图7是概略表示使用图6所示过滤膜单元的颗粒状物质取样器的构成的说明图。
图8是概略表示所述取样器主要部分的构成的俯视图。
图9是概略表示所述取样器安装部的构成的立体图。
图10是概略表示所述安装部的构成的纵剖视图。
图11是概略表示本发明第4实施例的颗粒状物质分析装置的构成的说明图。
图12是概略表示上述第4实施例的主要部分的构成的说明图。
图13是概略表示本发明第5实施例的颗粒状物质分析装置的构成的俯视图。
图14是概略表示上述实施例的主要部分的构成的说明图。
图15是概略表示第4实施例的变形例的构成的说明图。
具体实施例方式
下面,参照附图对本发明的详细内容进行说明。图1和图2表示的是本发明的实施例1的情形。图1概略地表示了使用本发明的捕集用过滤膜捕集SPM、并对该被捕集到的SPM总体的浓度(质量)进行测定用的装置1,图2表示的是该装置的主要部分的构成。在图1中,2是用于捕集SPM的带状过滤膜(其构成将在后面详细说明),呈卷筒状卷绕在供给卷轴3上。4是卷取由供给卷轴3送出的带状过滤膜2的卷取卷轴,在供给卷轴3和卷取卷轴4之间,设有用于捕集SPM并测定其浓度的腔室5。另外,6是用于输送带状过滤膜2的输送轴,具有检测从供给卷轴3出来的带状过滤膜2的输送量(移动量)的输送传感器6a,该输送轴6对带状过滤膜2只输送规定的量。
上述腔室5,其中一侧形成有带状过滤膜2的导入口,另一侧形成有带状过滤膜2的导出口,在其内部空间,设有用于引导保持带状过滤膜2呈水平状态的过滤膜保持部7。在该过滤膜保持部7的水平保持面7a上,如图2所示,例如,以俯视为正六角形的通气孔8a为中心开设有多个通气孔8b,构成为使带状过滤膜2能够捕集SPM。在所述SPM的捕集位置的下面、上述过滤膜保持部7的下侧(带状过滤膜2的下面侧),设有对带状过滤膜2照射β射线的β射线源9,在过滤膜保持部7的上侧(过滤膜2的上面侧),与β射线源9相对地设置有检测穿过带状过滤膜2的β射线的β射线检测器10。另外,β射线检测器10的输出信号被输入到后面将要叙述的演算控制部。
上述腔室5的一端(上游端),通过空气导入管11、连接有能取样一定量大气的譬如气旋式容积取样器12,同时腔室5的另一端(下游端),连接着设有象真空泵等一类的取样泵(未图示)的大气导出管(未图示)。通过上述取样泵的吸引动作,大气被导入容积取样器12内,通过该容积取样器12的工作提高了SPM浓度的大气13被导入腔室5内,通过带状过滤膜2,然后通过过滤膜保持部7的通气孔8a后被排出腔室5外。另外,容积取样器12所吸入(抽样)大气的量,被输入后面所述的演算控制部。
另外,在图1中,14作为演算控制部,对装置1的各个部分进行控制的同时还进行浓度演算等,譬如,由计算机构成,14a是显示演算结果等的显示部。
下面,对上述带状过滤膜2的构成,参照图2进行说明,该带状过滤膜2,其长度例如为40m、宽度W例如为4cm。该带状过滤膜2由氟系树脂(例如四氟乙烯树脂)制的多孔性薄膜形成的SPM捕集部15、和衬在该SPM捕集部15上的具有通气性的加强层16构成,同时,使该加强层16含持一定量测定对象物质以外的物质作为标识17,在装置1的腔室5中,使SPM捕集部15位于上面侧(即β射线检测器10侧)、加强层16位于下面侧(即β射线源9侧)装填。
上述带状过滤膜2,其厚度作为平均值较好的是100~200μm,更好的是140μm左右。另外,该带状过滤膜2,其重量作为平均值较好的是1.1~3.0mg/cm2,更好的是1.5mg/cm2左右。
而上述SPM捕集部15的厚度,较好的是80~90μm,其重量较好的是0.1~1mg/cm2,更好的是0.3mg/cm2左右。另外,衬在该SPM捕集部15上的加强层16,其重量较好的是1~2mg/cm2,更好的是设定在1.2mg/cm2左右。作为该加强层16,理想的是由聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一种物质制得的吸潮性低的无纺布,按规定的方法局部地贴在SPM捕集部15上。
另外,作为使上述加强层16所含持的标识17,理想的是大气中所含SPM(测定对象物质)以外的物质,如果是在用β射线对SPM的浓度测定之后用PIXY装置进行定量分析时,则用浸渍或织入等方法使上述加强层16含持一定量从Ti、Br、In、Pd等元素中选出的物质。又,用离子色谱分析装置进行上述定量分析时,则用浸渍或织入等方法使上述加强层16含持一定量从Al、Ca、Cr、Cu、Fe、K、Mg、Mn、Na、Ni、Zn等元素中选择出的物质。这里,之所以让加强层16含持标识17,是因为SPM捕集部15是由氟系树脂制得,所以难以确实地含持标识17,但是因为加强层16素材是由聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一种物质形成的吸潮性低的无纺布,所以能够可靠地使其含持上述标识17。
对用上述构成的带状过滤膜2、测定大气中SPM的方法的一例进行说明。如图1所示,带状过滤膜2经由输送轴6穿通腔室5内,设置在供给卷轴3和卷取卷轴4之间。由此,带状过滤膜2的一部分位于取样部位,在此状态下使其静止。
上述静止状态下通过使位于腔室5下游端的取样泵作吸引动作,大气被取样、导入容积取样器12内,通过该容积取样器12的工作提高了SPM浓度的大气13被导入腔室5内,通过带状过滤膜2,然后通过过滤膜保持部7的通气孔8a排出腔室5外。此时,在腔室5中,上述被取样的大气13在通过带状过滤膜2时,该大气13中所含的SPM被带状过滤膜2的SPM捕集部15部分捕集,形成图2中符号18所示的测定点。该测定点18,是在带状过滤膜2的静止状态下通过所定时间(比如,1小时)进行对上述大气取样而形成的。
对通过用上述所定时间进行大气取样在带状过滤膜上形成的测定点18照射来自β射线源的β射线,由β射线检测器10检测此时穿过带状过滤膜2的β射线。然后,通过对由该β射线检测器10输出的强度信号由演算控制部14进行所设定的演算,求出尘埃即捕集到的SPM的总重量,进而通过用吸进的大气量进行演算,求出捕集到的SPM的浓度。上述测定完成之后,通过操作输送轴6使带状过滤膜2移动所定量,上述测定点18向卷取卷轴4方向移动,带状过滤膜2新的其他部分移动到捕集·测定部位位置,成为等待下一次捕集·测定的待机状态。
对上述捕集到的尘埃中的SPM的各成分分别进行定量分析,可通过对上述带状过滤膜2的测定点部分18,例如用PIXY装置进行定量分析,对上述尘埃中的SPM的其各成分分别定量。此时,带状过滤膜2的加强层16中,因为含持测定对象以外的成分(元素)作为标识17,所以能够进行上述PIXY装置的灵敏度补正,能够对上述SPM中的所需测定对象成分的浓度高精度且高灵敏度地进行测定。
即,图3模式地表示了用上述PIXY装置对测定点部分18进行测定时得到的信号19,符号P1~P5为与上述测定点部分18所捕集到的尘埃(SPM)中所含的如Na、S、CL、Ca、Fe的元素(成分)对应的峰值信号,其峰值高度与各元素的浓度(量)成正比。另外,符号Ps是和带状过滤膜2的加强层16中作为标识17含持的Ti对应的峰值信号。例如,若假设该作为标识17的钛的浓度(量)为1ppm,则上述峰值信号Ps的峰值高度表示1ppm,以此为基准,可以对上述各元素的浓度(量)准确地进行定量。
若只是由厚度例如象80~90μm那样薄、重量例如象0.3mg/cm2轻的氟系树脂形成的SPM捕集部15构成带状过滤膜2时,其抗拉强度弱而不适用于间歇自动测定,但上述的实施形态中,因为带状过滤膜2是由例如1.2mg/cm2(平均值)重的具有通气性的加强层16衬在轻且薄的SPM捕集部15上构成的,所以即使带状过滤膜2本身的厚度薄,也能提高其抗拉强度。也就是说,上述实施状态中的带状过滤膜2,特别适合于在捕集SPM时保持一定抗拉状态的自动测定方式。
另外,在上述实施形态中,因为加强层16是被部分地粘贴在带状过滤膜2的SPM捕集部15上,所以没有粘贴加强层16的部分的厚度譬如在80~90μm左右这样薄的范围构成,重量譬如是控制在0.3mg/cm2左右,带状过滤膜2的重量(密度)平均可控制在1.5mg/cm2左右,所以能够降低SPM捕集部15的β射线吸收量,能够高灵敏度地进行测定。
图4所示的是本发明实施例2的捕集用过滤膜的一例,在本实施例的形态中,作为捕集用过滤膜2A只有SPM捕集部15A,该SPM捕集部15A由玻璃纤维制的多孔性薄膜形成,同时使该SPM捕集部15A含持标识17A。作为该标识17A,可合适地使用上述实施例1中所例示的各种元素。
本实施例的捕集用过滤膜2A,可使用于如上述实施例1中的带状过滤膜2那样的自动测定方式,但例如,也合适地使用于在24小时静止状态下捕集大气中SPM的类型的捕集用过滤膜。此时,捕集用过滤膜2A的形状,不是带状,例如形成为直径数cm大小的俯视图为圆形的单叶状。
另外,本发明的捕集用过滤膜2、2A,作为测定方式,不仅限于β射线吸收方式,也可适用于压降方式、光散射方式的测定装置。
如上所述,本发明的捕集用过滤膜中,将SPM作为尘埃捕集后,使用PIXY装置、荧光X射线分析装置或是离子色谱分析装置仅仅进行测定,便能进行该PIXY装置等的灵敏度校正,能精确地对SPM成分分别进行定量分析。所以,通过使用上述捕集用过滤膜,对大气中的SPM不仅对其总量,而且对其各个成分能够精确地分别进行定量分析。
图5~图10示出本发明的第3实施例。
图5(A)和(B)表示本发明的颗粒状物质捕集用过滤膜(下面简称为过滤膜)。该过滤膜201用于捕集试样气体中所含的颗粒状物质,例如,适于捕集大气中的SPM、其中尤其称为PM2.5的微小颗粒状物质。并且,俯视看该过滤膜201,例如是圆形,是多层结构(双层结构),该双层结构具有氟系树脂构成的作为过滤膜本体的多孔性层202和设在该多孔性层202的一面侧(图示例子中为下面侧)的具有通气性的加强层203,加强层203由带电性低的多孔性树脂材料构成。
具体地说,多孔性层202由氟系树脂(例如四氟乙烯)形成的多孔性薄膜构成。又,加强层203由吸潮性低的无纺布构成,而无纺布以聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一个或多个作为原材料。并且,多孔性层202和加强层203通过贴附等适当的方法被一体化。
这里,过滤膜201的多孔性层202的厚度例如为80~90μm。多孔性层202的重量最好是0.1~1mg/cm2的范围,本实施例为0.3mg/cm2左右。另一方面,加强层203的重量最好是1.0~2.0mg/cm2的范围,本实施例为1.2mg/cm2左右。
另外,过滤膜201整体的厚度,其平均值最好是100~200μm,本实施例为140μm左右。此外,过滤膜201的重量的平均值最好是1.0~3.0mg/cm2的范围,本实施例为1.5mg/cm2左右。
图6表示装有过滤膜201的过滤膜单元204的一例子。该过滤膜单元204由基板205和压板206夹持过滤膜201,且可使试样气体通过夹持状态的过滤膜201,例如,被配置在试样气体的流路(未图标)中来使用。
详细地说,基板205俯视大致为长方形的板状,其中央部比其它部分低一级,形成有可载放过滤膜201的过滤膜载放部207。在该过滤膜载放部207的周缘部形成有使过滤膜201的周缘部抵接的环状部分208,其中央部包括使试样气体通过用的多个贯通孔209;以及与过滤膜201的下游侧(图示例子为下方侧)抵接、防止因试样气体的流动使过滤膜201向下游侧变形而破损的适当形状的桥架210。
另外,在基板205的一个表面(上面)的一端部形成有厚壁部分211,其上面的位置比其它部分高出压板206的厚度部分,且除了基板205的上面的厚壁部分211外的部分是用来载放压板206的载放面部212,该载放面部212和压板206的形状和大小大致一致。由此,载放在载放面部212后的压板206的上面与厚壁部分211的上面大致成为同一个面。
另一方面,压板206俯视看大致为长方形的板状,在其大致中央,俯视的形状是与过滤膜201的俯视形状相同的圆形,且设有比过滤膜201稍小的贯通孔213,如图9所示,当将压板206载放在基板205的载放面部212上后,基板205的过滤膜载放部207的中心位置与压板206的贯通孔213的中心位置自动地一致。因此,在将过滤膜201载放到基板205的过滤膜载放部207上后,在载放面部212上载放压板206、由基板205和压板206对过滤膜的固定结束后,过滤膜201的周缘部成为被基板205的环状部分208附近的部分和压板206的贯通孔213的周缘附近的部分所夹持的状态。
图7表示装填有所述过滤膜单元204、用来捕集(吸附)颗粒状物质的颗粒状物质取样器(下面仅称为取样器)214。该取样器214用于捕集试样气体S中所含的颗粒状物质,尤其适于捕集大气中的SPM、特别是称为PM2.5的微小颗粒状物质。
取样器214具有过滤膜保持机构215,其对将过滤膜201夹持在基板205和压板206之间的多个过滤膜单元204分别保持成装拆自如;以及试样气体供给机构216,其使试样气体S通过多个过滤膜单元204中的一个、使所述过滤膜单元204中的过滤膜201捕集试样气体S中的颗粒状物质,试样气体供给机构216使过滤膜保持机构215所保持的多个过滤膜单元204中的过滤膜201依次捕集颗粒状物质。
过滤膜保持机构215如图7和图8所示,具有绕铅垂方向的中心轴J旋转自如的转台217、和使该转台217旋转的电动机等构成的驱动装置218,在所示转台217的周缘部设有可将过滤膜单元204安装成装拆自如的多个过滤膜单元安装部219(图示例子为12个)。
并且,转台217如图8所示,通过驱动装置218而向一定方向(例如绕顺时针)R旋转,且每适当时间旋转规定角度,即间歇旋转。本实施例是每24小时旋转30°。
多个过滤膜单元安装部219,沿转台217的周向等间隔地形成在转台217周缘部,各过滤膜单元安装部219如图9所示,呈从转台217的周缘端部向中央被切去适当长度的形状,其俯视形状大致为长方形。
另外,在过滤膜单元安装部219的周缘下部,设有朝其内侧突出的突出部分220,若从过滤膜单元安装部219的侧方向其里侧插入过滤膜单元204,即成为由突出部分220保持过滤膜单元204的周缘部的状态。
另外,在过滤膜单元安装部219的周缘附近设有多个弹簧构件221(图示例子中为二个),如图9所示,各个弹簧构件221,如图9所示,与保持在突出部分220上的过滤膜单元204的上表面抵接,向下方对其施力,防止过滤膜单元204轻易地从过滤膜单元安装部219拔出(脱出)。
如图7所示,试样气体供给机构216具有配置在设于转台217周缘部的过滤膜单元安装部219的上方的上腔室222;隔着所述安装部205(图7中没有标号5)而配置在上腔室222的下侧的下腔室223;对二个腔室222、223进行保持,并可使两者222、223向互相离开或接近的方向移动的移动装置224;将试样气体S供给上腔室222用的试样气体导入管225;以及将供给到下腔室223的试样气体S导出到外部的试样气体导出管226,并且,例如在试样气体导出管226的适当部位,设有真空泵之类的取样泵(未图标)。该取样泵对大气S的吸引,由未图示的质量流量控制器或压差方式等进行控制,其吸引流量设定为规定流量即16.7L/min。
并在上腔室222的下端部设有将来自试样气体导入管225的试样气体S向过滤膜201上面送出的试样气体导出口227,该试样气体导出口227以遮住夹持有过滤膜201的压板206的贯通孔213的状态而与压板206的上面抵接,在下腔室223的上端部设有接受试样气体S的试样气体导入口228,该试样气体S通过了过滤膜201的上面侧到下面侧,而试样气体导入口228以遮住夹持有过滤膜201的基板205的所有贯通孔209(或过滤膜载放部207)的状态而与基板205的下面抵接。
如图7所示,移动装置224具有上腔室用支臂231,其对上腔室222进行保持、在上下方向设有内螺纹部229和导孔230;下腔室用支臂234,其对下腔室223进行支承、在上下方向设有内螺纹部232和导孔233;棒状体237,其贯通所述内螺纹部229、232,并形成有与内螺纹部229、232螺合的外螺纹部235、236,且绕其上下方向的轴旋转自如;以及贯通所述导孔230、233的导棒238。另外,内螺纹部229、232为互相反向的螺纹,由此,棒状体237的外螺纹部235、236也为反向的螺纹。
在上述构成的移动装置224中,当使棒状体237向一方向旋转时,具有与棒状体237的外螺纹部235螺合的内螺纹部229的上腔室用支臂231由导棒238导向而向上方移动,同时,具有与棒状体237的外螺纹部236螺合的内螺纹部232的下腔室用支臂234由导棒238导向而向下方移动。随着上述移动,由上腔室用支臂231保持的上腔室222就向上方移动,由下腔室用支臂234保持的下腔室223向下方移动,二个腔室222、223离开。
相反,当使棒状体237向另一方向旋转时,上腔室用支臂231由导棒238导向而向下方移动,同时,下腔室用支臂234由导棒238导向而向上方移动。于是,随着上述移动,上腔室222向下方移动的同时,下腔室223向上方移动,二个腔室222、223接近,最后成为由上腔室222和下腔室223对装入过滤膜201的过滤膜单元204进行夹持的状态。
另外,在试样气体导入管225的上游部设有分粒器239,该分粒器239构成为对大气S中所含的SPM或PM2.5、PM10进行分级,捕集超过规定颗粒直径的大颗粒状物质,有选择地将规定颗粒直径以下的小颗粒状物质送到试样气体导入管225和上腔室222。
另外,作为分粒器239,例如可使用对由试样气体S的涡流所产生的离心分离加以利用来分粒的旋风分离器、或通过试样气体S的冲突而有选择地对小颗粒直径的颗粒状物质进行取样的冲击器。
并且,如图7和图8所示,取样器214构成为具有将转台217整体遮住的盖体240,通过从盖体240的外部来隔离由转台217保持的过滤膜单元204,过滤膜单元204中的过滤膜201和盖体240的外部空气(大气)就不直接接触。盖体240呈基本沿着转台217外侧的形状,且不妨碍转台217的绕轴的旋转。
并且,在盖体240的周缘部设有开闭自如的盖部241,该盖部241以设在盖体240的底面上的绞链部242为轴进行转动,当关闭后,成为盖体240外部的空气不进入盖体240内部的状态。通过打开盖部241,就可在过滤膜单元安装部219上对过滤膜单元204进行装拆。
另外,盖体240不仅遮住转台217,而且遮住包含试样气体导出口227周围的上腔室222的下部侧壁、和包含试样气体导入口228附近的下腔室223的上部侧壁,在遮住上腔室222的下部侧壁的部分和遮住下腔室223的上部侧壁的部分,形成有沿上下方向伸缩自如的折皱部分243、244,以经得住上腔室222和下腔室223的沿上下方向的移动。
此外,取样器214如图8所示,其试样气体供给机构216的上腔室222和下腔室223夹持设于转台217周缘部处的多个过滤膜单元安装部219中的一个,并在与该被夹持的过滤膜单元安装部219的一个相邻的过滤膜单元安装部219、即转台217旋转方向R下游侧的过滤膜单元安装部219相对应的位置,设有所述盖体240的盖部241。
下面,说明由上述结构构成的取样器214的动作。
预先将过滤膜单元204安装在取样器214的过滤膜单元安装部219上。该安装如图8所示,可打开盖体240的盖部241、通过对处于与该盖部241对应位置的过滤膜单元安装部219、从其侧方插入过滤膜单元204来进行。并且,使转台217旋转,在与盖部241对应的位置使所有的过滤膜单元安装部219依次移动,通过安装过滤膜单元204,则过滤膜单元204就成为被安装在各过滤膜单元安装部219上的状态。若过滤膜单元204安装结束,则关闭盖部241。
并且,首先通过移动装置224的动作使互相离开的上腔室222和下腔室223接近,使位于与试样气体供给机构216对应位置的一个过滤膜单元204处于夹入的状态。
接着,通过设在下腔室223下游侧的取样泵的吸引,而将大气S导入分粒器239内,通过该分粒器239的工作,排除了测定对象外的颗粒状物质的大气S经过试样气体导入管225而进入上腔室222。然后,该大气S从上腔室222的试样气体导出口227被送出并由下腔室223的试样气体导入口228接受,从而大气S从被上腔室222和下腔室223所夹持固定的过滤膜单元204的过滤膜201的上面侧穿过过滤膜到其下面侧,再从所述试样气体导出管226被导出到下腔室223的外部。并且,通过使大气S持续流过过滤膜201内的状态被保持一定时间(本实施例为24小时),结束过滤膜201对颗粒状物质的捕集。
一旦如上那样结束过滤膜201对颗粒状物质的捕集,则转台217只旋转30°。由此,利用试样气体供给机构216用于捕集颗粒状物质的包含过滤膜201在内的过滤膜单元204就移动到与盖体240的盖部241对应的位置处。
移动到与盖部241对应位置的含有捕集到颗粒状物质后的过滤膜201的过滤膜单元204,在打开盖部241的状态下,将其从过滤膜单元安装部219上取下,同时,在该过滤膜单元安装部219上重新安装捕集颗粒状物质前的包含过滤膜201的过滤膜单元204。然后,关闭盖部241,此时,对移动到与试样气体供给机构216对应位置的过滤膜单元204中的过滤膜201进行与上述同样的颗粒状物质捕集作业。上述的转台217的旋转和试样气体供给机构216的动作,构成为交替自动进行。
另外,从过滤膜单元安装部219上取下的过滤膜单元204中的过滤膜201,在不与大气接触的状态下进行保管。
在上述取样器214中,可获得如下那样的效果。即,在以分批式至少花23~24小时用过滤膜201对颗粒状物质进行捕集的现有技术的取样器,有如下问题每一次捕集颗粒状物质,必须中断该捕集,对过滤膜进行更换作业,在对颗粒状物质多次连续进行捕集时,非常花功夫。而本实施例的取样器214中,由于其构成是使转台217和试样气体供给机构216的动作交替自动地进行,因此,可自动而连续地进行由过滤膜单元204(过滤膜201)对颗粒状物质的捕集作业和过滤膜单元204的更换,每次颗粒状物质的捕集结束后,不必人工对过滤膜单元204进行更换等,相应缩短捕集颗粒状物质所花费的时间,并省却该捕集所花费的工作。
另外,若采用例如电池驱动取样器214、构成可随身携带的场合,则在无电源供应的偏僻地方等也可方便地对颗粒状物质进行捕集。
另外,本发明不限于上述的实施例,可作各种变形来实施。例如,过滤膜201的俯视形状不限于圆形,俯视形状也可是椭圆形、长方形之类的多边形等。
另外,过滤膜单元204的基板205和压板206不完全作成分体,也可将两者通过用绞链等构成的绞链部(未图示)进行连接。
另外,所述试样气体S,也不仅限于大气,也可是发动机废气或烟道废气等的废气,或是稀释这样的废气得到的稀释废气等,此时,作为分析对象的颗粒状物质,是这种废气中所含的颗粒状物质。
另外,试样气体S通过过滤膜201、捕集试样气体S中的颗粒状物质的时间不限于24小时,例如既可是1小时或数小时,也可是数天,可根据试样气体S的种类和浓度适当设定。
设在盖体240上的盖部241的数目不限于1个,可以是多个,而且,1个盖部241所对应的安装部205的数目不限于1个,可以是多个。在所述盖部241是一个、且仅与一个安装部205对应的场合,若不更换过滤膜201而连续多次地进行颗粒状物质的捕集,则在取出过滤膜201时,需要人工旋转转台217等,进行所需的过滤膜201取出的工作,而若设置多个盖部241、使盖部241与多个安装部205对应,则可省却上述这样的工作。
图11和图12表示本发明的第4实施例。
本实施例的颗粒状物质分析装置(以下称为分析装置)301,适用于例如对大气中的SPM、尤其适用于其中称为PM2.5的微小颗粒状物质进行分析的装置。并且,如图11和图12所示,所述分析装置301具有对作为试样气体S的大气中所含的颗粒状物质(SPM)302进行收集的收集装置303,和测定所述颗粒状物质302的质量的质量测定装置304。
收集装置303具有带状过滤膜305;对该带状过滤膜进行保持的过滤膜保持机构306;试样气体S通过由该过滤膜保持机构306保持的带状过滤膜305的一部分、使试样气体S中的颗粒状物质302捕集在带状过滤膜305上而形成测定点307的试样气体供给机构308。
下面对收集装置303的各构成要素进行说明。
带状过滤膜305如图12中放大后所示,是将多孔性层305a和加强层305b层叠后的结构,由吸收X射线较少的材料构成。具体地是,多孔性层305a由多孔质薄膜构成,而该多孔质薄膜由以吸收X射线较少的氟、碳、氢为主的氟系树脂(例如四氟乙烯树脂)形成。另外,加强层305b由吸潮性低的无纺布构成,而无纺布由聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一个构成。然后,多孔性层305a和加强层305b通过贴附或缝制等适当方式被一体化。而带状过滤膜305的长度约为40m,宽度为4cm。
这里,带状过滤膜305的多孔性层305a,其厚度设定为80~90μm,多孔性层305a的重量设定在0.1~1mg/cm2的范围内,在本实施例中,设定为0.3mg/cm2左右。另一方面,加强层305b的重量设定在1.0~2.0mg/cm2的范围内,在本实施例中,设定为1.2mg/cm2左右。
另外,带状过滤膜305的厚度,其平均值设定为100~200μm,在本实施例中设定为140μm左右。此外,带状过滤膜305的重量,其平均值设定为1.0~3.0mg/cm2,在本实施例中是1.5mg/cm2左右。
过滤膜保持机构306具有将带状薄膜卷绕成滚筒状的供给卷轴306a;将从该供给卷轴306a送出的带状过滤膜305卷取的卷取卷轴306b,并以每一定时间(例如每1小时)将带状过滤膜305输送规定长度。另外,在带状过滤膜305中,位于从供给卷轴306a送出、到由卷取卷轴306b卷取为止之间位置的部分,被保持成受到2个卷轴306c、306d所赋予的适当张紧力的状态。另外,卷轴306c设有搬运传感器306e,其对以一定长度从供给卷轴306a送到卷取卷轴306b侧(被卷取后)进行检测。
如图11所示,试样气体供给机构308具有构成使带状过滤膜305在内部行走的腔室308a;将一定流量的作为试样气体S的大气供给于该腔室308a的试样气体导入管308b;设在该试样气体导入管308b上游部的分粒器308c;以及将导入所述腔室308a内的试样气体S导出到外部的试样气体导出管308d(参照图12),并且,例如在试样气体导出管308d的适当部位设有真空泵等的取样泵(未图示)。
分粒器308c的构成是,对大气S中所含的颗粒状物质(SPM)302进行分级,对超过规定颗粒直径的大颗粒状物质302进行捕集,有选择地将规定颗粒直径以下的小颗粒状物质302送到试样气体导入管308b和腔室308a。
另外,作为分粒器308c,可使用对由试样气体S的涡流所产生的离心分离加以利用来分粒的气旋式(一般称为旋风分离器)、或通过试样气体S的冲突而有选择地对小颗粒直径的颗粒状物质302进行取样的冲击式(一般称为冲击器)。
质量测定装置304的构成是,使用β射线吸收方式,对带状过滤膜305所捕集到的形成测定点307的颗粒状物质302的质量和浓度进行测定,且如图12所示,具有β射线源304a,从β射线源304a射出的β射线照射形成于所述带状过滤膜305上的测定点307的一侧(下侧),以及配置在测定点307的另一侧(上侧)的例如由比例计数管构成的β射线检测器304b、β射线检测器304b对透过测定点307的β射线进行检测而将对应于其强度的信号输出。质量测定装置304的构成是,通过适当处理β射线检测器304b的检测输出而得到颗粒状物质302的质量,并从该质量和由试样气体供给机构308供给于腔室308a的试样气体S的流量得到颗粒状物质302的浓度。
另外,β射线源304a,位于由捕集装置303形成的测定点307的正下方被收容在试样气体供给机构308的腔室308a内,β射线检测器304b隔着测定点307位于β射线304a的正上方被收容在所述腔室308a内。
并且,在带状过滤膜305行走方向的腔室308a的下游侧,配置有对由所述捕集装置303捕集的颗粒状物质302中的成分(例如金属成分)进行分析用的成分分析装置309。该成分分析装置309使用X射线分析装置,其通过对形成于带状过滤膜305上的测定点307照射X射线,来分析颗粒状物质302的金属成分等的成分。而作为所述X射线分析装置,可举出例如能量分散型X射线分析装置和全反射荧光X射线分析装置等。
详细地说,成分分析装置309具有X射线源309a,其对测定点307从其一侧(下侧)照射规定直径的X射线(1次X射线);还具有荧光X射线检测器309b,其由对当将来自X射线源309a的1次X射线照射到测定点307上时产生的荧光X射线进行检测用的例如半导体检测器构成;以及配置在测定点307另一侧(上方)的透过X射线检测器309c,其对透过测定点307的所述1次X射线进行检测并输出对应于其强度的信号,通过适当处理荧光X射线检测器309b和透过X射线检测器309c的检测输出,从而对颗粒状物质302的金属成分等进行成分分析。
下面,说明由上述结构构成的分析装置301的动作。
卷筒状卷绕在供给卷轴306a上、对颗粒状物质302进行吸附(捕集)之前而设定的带状过滤膜305,每隔一定时间从供给卷轴306a被送出规定长度,对该送出的带状过滤膜305在腔室308a中捕集颗粒状物质302,形成测定点307。并且,在测定点307被捕集的颗粒状物质302在首先供质量测定装置304进行测定后,再由成分分析装置309进行分析,带状过滤膜305,从所述测定和分析所使用的部分依次由卷取卷轴306b卷取。
详细地说,在该实施例的分析装置301中,首先,由卷取卷轴306b开始卷取带状过滤膜305,若搬运传感器306e对带状过滤膜305仅以规定长度从供给卷轴306a送到卷取卷轴306b侧进行检测时,则根据该检测,停止卷取卷轴306b对带状过滤膜305的卷取。这样,间歇性送进的带状过滤膜305在由供给卷轴306a送出后,经过卷轴306c、腔室308a、成分分析装置309、卷轴306d这一顺序后,由卷取卷轴306b卷取。
接着,通过设在腔室308a的下游侧的取样泵的吸引而将大气S导入到分粒器308c内,通过该分粒器308c的工作而使测定对象外的颗粒状物质302被排除后的大气S经试样气体导入管308b进入腔室308a内。然后,该大气S从带状过滤膜305的被固定在腔室308a内的部分的上面侧通向下面侧,从所述试样气体导出管308d导出到腔室308a的外部。并且,将大气S经过带状过滤膜305内的状态保持一定时间(本实施例是1小时),形成测定点307。
另外,在形成所述测定点307时,同时由质量测定装置304对捕集于测定点307的颗粒状物质302进行测定。该质量测定装置304进行的测定是将来自β射线源304b的β射线对测定点307进行照射,并由β射线检测器304b检测所述β射线,获得穿过测定点307的β射线的强度。通过用该强度和规定的算式进行演算,导出作为测定对象的颗粒状物质302的质量和浓度。即,颗粒状物质302的质量和浓度的测定,不仅可在形成测定点307之后进行,也可在其形成的过程中进行。
如上那样进行的测定点307的形成和质量测定装置304进行的测定一旦结束,再开始进行卷取卷轴306b对带状过滤膜305的卷取,供质量测定装置304测定的测定点307继续被送到成分分析装置309,供成分分析装置309进行分析。该成分分析装置309进行的分析,是将来自X射线源309a的X射线对测定点307进行照射,并由荧光X射线检测器309b和透过X射线检测器309c来检测1次X射线和透过X射线。并且,通过适当处理各个检测器309b、309c的检测输出,对作为测定对象的颗粒状物质302的金属成分等的成分进行解析。
然后,包含带状过滤膜305的测定点307的供于所述成分分析装置309的部分,最后经卷轴306d由卷取卷轴306b卷取,并以该状态被保管。
在由上述结构构成的分析装置301中,不必对带状过滤膜305进行切断等的特别作业,可自动且连续地对带状过滤膜305所捕集的颗粒状物质302进行质量和浓度、金属成分等的成分分析。
另外,在现有技术的分析装置中,由于使用较良好吸收X射线、且由包含较多金属成分(铝、硅、铅、锌等)的玻璃纤维构成的过滤片,故不能使用X射线分析装置进行分析,而本实施例的带状过滤膜35由吸收X射线较少的材料构成,且带状过滤膜305所含的金属成分只是构成加强层305b的无纺布的着色(白色)所使用的钛,所含的金属成分极少,因此,可大大提高由X射线分析装置构成的成分分析装置309的分析精度,不仅可对颗粒状物质302的金属成分进行定性分析,而且可定量分析。
此外,所述带状过滤膜305,虽形成多孔性层305a的氟树脂具有容易带静电的性质,但由于形成加强层305b的无纺布具有除电功能,因此,形成于带状过滤膜305上的测定点307从腔室308a到成分分析装置309的期间,能可靠地防止因静电吸附不要的尘埃的现象,由此也获得可实现高精度分析的效果。
图13和图14表示本发明的第5实施例。对于与第4实施例的同一结构部件,标上相同符号,省略其说明。
本第5实施例的分析装置310与第4实施例的分析装置301相比,相同点是都具有对作为试样气体S的大气中所含的颗粒状物质302进行捕集的捕集装置303,测定所述颗粒状物质302的质量的质量测定装置304,以及对颗粒状物质302中的金属成分等的成分进行分析的成分分析装置309,主要不同点是具有多个过滤片311,取代带状过滤膜305,另外,取代对带状过滤膜305进行保持的过滤膜保持机构306,而设有对多个过滤片311进行保持的转台结构的过滤片保持机构312。
详细地说,本实施例的收集装置303具有多个(图示例子为8片)过滤片311;对全部过滤片311进行保持的过滤片保持机构312;将试样气体S通过由该过滤片保持机构312保持的过滤片311、而使过滤片311收集试样气体S中的颗粒状物质302、形成测定点307的试样气体供给机构308。
所述过滤片311如图14所示,俯视看大致为圆形,虽未图示,但其为所述多孔性层305a和加强层305b的双层结构这一点和由X射线吸收较少的材料构成这一点与第4实施例的带状过滤膜305相同。
另一方面,过滤片保持机构312由转台构成,在转台的圆周边缘部按沿圆周方向保持有大致等间隔而装拆自如地对多个(图示例子中为8片)过滤片311。
并且,本实施例的试样气体供给机构308具有在内部通过由转台构成的过滤片保持机构312的周缘部、且不妨碍过滤片保持机构312旋转的腔室308a;将一定流量的作为试样气体S的大气供给到该腔室308a的试样气体导入管308b;设在该试样气体导入管308b上游部的分粒器308c(未图示);以及将导入所述腔室308a内的试样气体S导出到外部的试样气体导出管308d,另外,例如在试样气体导出管308d的适当部位,设有真空泵之类的取样泵(未图示)。
另外,所述腔室308a将由过滤片保持机构312保持在其周缘部上的多个过滤片311中的仅1片予以覆盖,成分分析装置309将相邻的过滤片311覆盖。
对于第5实施例的分析装置310的其他结构,由于与第4实施例的分析装置301相同,故省略再次说明。
下面,说明由上述结构构成的分析装置310的动作。
沿周缘部放置有多个过滤片311的过滤片保持机构312,每一定时间(1小时)以规定角度(本实施例为45°)绕铅垂方向的轴旋转,将颗粒状物质302捕集在移动到腔室308a内的1片过滤片311上,形成测定点307并且,在测定点307被捕集的颗粒状物质302首先在供由被收容在腔室308a内的质量测定装置304进行测定后,再供由配置在腔室308a边上的成分分析装置309进行分析,然后,将过滤片311从过滤片保持机构312上取下(回收)、保管,同时将新的过滤片311安装在该取下后的位置上。
详细地说,在本实施例的分析装置310中,首先,过滤片保持机构312绕其铅垂方向的轴以规定角度(45°)沿规定方向(图3中绕逆时针方向)旋转后停止。
接着,通过设在腔室308a下游侧的取样泵的吸引而将大气S导入到分粒器308c内,通过该分粒器308c的工作而使测定对象外的颗粒状物质302被排除后的大气S经试样气体导入管308b进入腔室308a内。然后,该大气S从位于腔室308a内的过滤片311的上面侧通到下面侧,再从所述试样气体导出管308d导出到腔室308a的外部。并且,对大气S经过过滤膜311内的状态保持一定时间(1小时),形成测定点307。
另外,所述测定点307形成的同时,由质量测定装置304对捕集成测定点307的颗粒状物质302进行测定。该质量测定装置304进行的详细测定,按实施例4中说明的方式进行。
在测定点307形成及由质量测定装置304的测定完成之后,过滤片保持机构312再次绕其铅垂方向的轴以规定角度(45°)沿规定方向旋转后、停止。由此,经质量测定装置304测定过的过滤片311,继续被送到成分分析装置309,供成分分析装置309进行分析。该成分分析装置309进行的详细分析,按实施例4中说明的方式进行。
然后,供所述成分分析装置309的过滤片311,最后从过滤片保持机构312取下,以适当状态保管。
另外,本发明不限于上述的实施形态,可作各种变形来实施。例如,作为所述试样气体S,不限于大气,也可是发动机排出废气或烟道废气,或者是对这样的废气进行稀释后得到的稀释废气等,此时,作为分析对象的颗粒状物质302,是包含在这些气体中的颗粒状物质。
另外,质量测定装置304不限于使用β射线吸收方式,例如也可取代β射线吸收方式,使用压降方式或光散射方式,或适当组合使用β射线吸收方式、压降方式、光散射方式中任意二个或三个,来测定颗粒状物质302的质量和浓度。
例如,在使用光散射方式时,也可构成为在构成所述试样气体导入管308b的侧壁上,形成互相相对的光学窗,在一个光学窗的外方设置例如发出红外光的光源,在另一个光学窗的外方设置散射光检测器(光检测器),当对流入试样气体导入管308b内的大气S照射红外光时,测定所述大气S所含的大小为规定颗粒直径以下的颗粒状物质302中产生的光散射强度。
此外,成分分析装置309也可构成为对照射X射线以外的电子射线类的射线而获得的特性X射线进行检测,来分析颗粒状物质302中金属成分等的成分。
另外,虽然使试样气体S通过带状过滤膜305(过滤片311)、捕集试样气体S中的颗粒状物质302的时间往往一般设定为1小时,但为了提高成分分析装置309的分析精度,例如最好可以自由地从数小时延长到数天。
第4实施例的分析装置301不限于分别设置腔室308a及质量测定装置304和成分分析装置309,也可如图15所示,不仅在腔室308a内设置β射线源304a和β射线检测器304b,还在腔室308a内设置X射线源309a、荧光X射线检测器309b和透过X射线检测器309c,并一体构成腔室308a、质量测定装置304和成分分析装置309。在该场合,分析装置301更紧凑。而该情况对第5实施例的分析装置310也同样。
此外,在各个实施例中,表示了同时具有荧光X射线检测器309b和透过X射线检测器309c的结构,但不限于这种结构,例如也可仅使用荧光X射线检测器309b或透过X射线检测器309c中的任一个进行成分分析,这是不言而喻的。
权利要求
1.一种大气中的悬浮颗粒状物质捕集用过滤膜,其特征在于,捕集悬浮颗粒状物质的捕集部由多孔性薄膜形成,该捕集部上背衬有通气性的加强层,同时使所述加强层含持有一定量的测定对象物质以外的物质作为标识。
2.如权利要求1所述的大气中的悬浮颗粒状物质捕集用过滤膜,其特征在于,多孔性薄膜由氟树脂制成。
3.如权利要求1或2所述的大气中的悬浮颗粒状物质捕集用过滤膜,其特征在于,加强层由低吸潮性的无纺布构成。
4.如权利要求3所述的大气中的悬浮颗粒状物质捕集用过滤膜,其特征在于,无纺布由聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一物质构成。
5.一种大气中的悬浮颗粒状物质捕集用过滤膜,其特征在于,捕集悬浮颗粒状物质的捕集部由玻璃纤维制成的多孔性薄膜形成,使所述加强层含持有一定量测定对象物质以外的物质作为标识。
6.一种颗粒状物质捕集用过滤膜,具有由氟系树脂形成的多孔性层和设在该多孔性层的一面侧的具有通气性的加强层,其特征在于,所述加强层由带电性低的多孔性树脂材料构成。
7.如权利要求6所述的颗粒状物质捕集用过滤膜,其特征在于,所述加强层由以聚乙烯、聚对苯二甲酸乙二醇酯、尼龙、聚酯、聚酰胺中的任一种或若干种为原材料的无纺布构成。
8.一种颗粒状物质取样器,其特征在于,具有保持多个分别装拆自如的过滤膜的过滤膜保持机构,以及使试样气体通过该过滤膜保持机构所保持的多个过滤膜中的一个,从而将试样气体中的颗粒状物质捕集到上述过滤膜上的试样气体供给机构,所述过滤膜为权利要求6或7所述的颗粒状物质捕集用过滤膜,所述试样气体供给机构使颗粒状物质依次地被捕集在由所述过滤膜保持机构所保持的所述多个过滤膜上。
9.如权利要求8所述的颗粒状物质取样器,其特征在于,所述过滤膜保持机构具有绕其轴旋转自如的转台,在该转台的周缘部安装有装拆自如的所述各个过滤膜。
10.一种颗粒状物质分析装置,其特征在于,具有捕集试样气体中的颗粒状物质的捕集装置;测定所述颗粒状物质的质量的质量测定装置;以及对由所述捕集装置捕集的颗粒状物质中的成分进行分析用的成分分析装置。
11.如权利要求10所述的颗粒状物质分析装置,其特征在于,成分分析装置通过对形成于过滤膜上的测定点照射X射线或电子射线之类的射线,来分析颗粒状物质的成分。
12.如权利要求10或11所述的颗粒状物质分析装置,其特征在于,捕集装置的构成是,使试样气体通过过滤膜,在过滤膜上形成测定点,所述过滤膜由X射线吸收较少的材料构成。
13.如权利要求10至12中的任一项所述的颗粒状物质分析装置,其特征在于,质量测定装置的构成是,通过使用β射线吸收方式、压降方式或光散射方式中的任一个或组合使用若干个,来测定颗粒状物质的质量。
全文摘要
本发明提供一种能够在短时间内高精度、简便地进行SPM成分的定量分析的大气中悬浮颗粒状物质捕集用过滤膜。本发明的捕集悬浮颗粒状物质的捕集部由多孔性薄膜构成,该捕集部衬有通气性的加强层,同时使上述加强层含持一定量测定对象物质以外的物质作为标识。本发明还提供一种能够良好地进行颗粒状物质捕集的颗粒状物质捕集用过滤膜以及使用该颗粒状物质捕集用过滤膜的颗粒状物质取样器。所述颗粒状物质捕集用过滤膜(201)具有由氟系树脂制得的多孔性层(202)和设在该多孔性层(202)的一面侧的具有通气性的加强层(203),所述加强层(203)由带电性低的多孔性树脂材料构成。本发明还提供一种能够简单且可靠地进行对大气等的试样气体中所含的颗粒状物质的质量、浓度的测定和对所述颗粒状物质所含有成分的分析的颗粒状物质分析装置。该装置具有用来捕集试样气体S中的颗粒状物质(302)的捕集装置(303)和用来测定所述颗粒状物质(302)的质量的质量测定装置(304)和用来分析由上述捕集装置(303)捕集到的颗粒状物质(302)中的成分的成分分析装置(309)。
文档编号B01D46/10GK1539543SQ20041003241
公开日2004年10月27日 申请日期2004年4月7日 优先权日2003年4月16日
发明者齐藤胜美, 加藤纯治, 治, 彦, 藤原雅彦, 筱原政良, 良 申请人:株式会社崛场制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1