氧化铈-氧化锆基混合氧化物及其制造方法

文档序号:5023481阅读:324来源:国知局

专利名称::氧化铈-氧化锆基混合氧化物及其制造方法
技术领域
:本发明涉及一种氧化铈-氧化锆基(ceriumoxide-zirconiumoxide-based)混合氧化物及其制造方法。
背景技术
:由于Ce"和C的氧化-还原电位很小,大约为1.6V,下式所示反应的进行是可逆的,因此氧化铈具有储氧能力(OSC),被用作汽车三元催化剂的助催化剂或催化剂载体。Ce02Ce02.x+X/202(X=0-0.5)但公知的是纯氧化铈的OSC极低,大约为X=0.005。因此,为提这一点,已有大量报道进行了描述(1)提高氧化铈的比表面积耐热性,和(2)通过将氧化锆加入至具有氧化铈的固溶体中,在上述反应中通过将离子半径很小的Zr"插入至铈主链中以减少体积的增加,从而提高OSC。另一方面,使用纯氧化铈作为汽车三元催化剂的助催化剂或催化剂载体时,在负载有贵重金属尤其是铂的情况下其分散性非常好。艮P,氧化铈具有能够在高温下抑制铂颗粒聚集的优异特性是公知的事实。因此,近年来已经有需求需要一种具有所有这些特性的氧化铈-氧化锆基混合氧化物。日本已审査的专利申请第H06-74145号描述了"一种主要由比表面积稳定的氧化铈组成的组合物,其包括氧化铈和比例为1-20wty。的至少一种类型的添加剂,其中添加剂是一种或多种类型选自硅、锆和钍的其它金属元素A的氧化物"。但其实施例中仅描述了含有2.5%氧化锆的氧化铈的耐热性。此外,日本专利第3623517号公开了"一种包括铈/锆原子比至少为1的氧化铈和氧化锆的组合物,其在90(TC下灼烧6小时后表现出的比表面积为至少35m2/g,在40(TC下表现出的储氧能力为1.5ml/g。"但没有关于铂分散性的描述。另一方面,日本专利申请公开第2002-177781号描述了"一种废气纯化催化剂,其包括由负载在含锆和铈的固溶体氧化物(A)上的氧化铈组成的混合氧化物(B)"。但该催化剂的独特结构中氧化铈负载在含锆和铈的固溶体氧化物(A)周围,而且,没有任何关于其OSC和铂分散性的描述。而且,日本专利申请公开第2005-314134号描述了"中心部分含有相当大量二氧化铈-氧化锆固溶体、外壳部分含有相当大量第二种金属氧化物的金属氧化物颗粒",和"中心部分含有相当大量二氧化铈-氧化锆固溶体、外壳部分含有相当大量第二种金属氧化物的金属氧化物颗粒的制造方法,该方法提供了含有其各自等电点不同的二氧化铈-氧化锆固溶体胶体颗粒和第二种金属氧化物胶体颗粒的溶胶,该方法包括将溶胶的pH调节至更接近二氧化铈-氧化锆固溶体胶体颗粒的等电点,离第二种金属氧化物胶体颗粒的等电点远一些,使二氧化铈-氧化锆固溶体胶体颗粒集聚,使溶胶的pH更接近第二种金属氧化物胶体颗粒的等电点,离二氧化铈-氧化锆固溶体胶体颗粒的等电点远一些,使第二种金属氧化物胶体颗粒集聚在已集聚的二氧化铈-氧化锆固溶体胶体颗粒周围,对得到的聚集物进行干燥和煅烧"。尽管有关于OSC和铂分散性的描述,但外壳部分和中心部分的特征是它们均为二氧化铈-氧化锆固溶体的形式,其制造方法极为独特。
发明内容如前所述,本发明的目的是提供一种铂分散性优异、osc合适的氧化铈-氧化锆基混合氧化物及其简单的制造方法。为了达到前述目的,本发明的发明人进行了大量研究并出人意料地发现,通过将铈盐和锆盐加入到含有硫酸铈-碱金属混合盐的桨料中,向其中加入碱,得到含有氢氧化铈和氢氧化锆的混合氢氧化物,然后对其进行热处理,得到混合物形式的包括氧化铈和正方晶或立方晶氧化锆的混合氧化物,氧化锆由含有铈的固溶体组成,获得的氧化铈-氧化锆基混合氧化物具有优异的铂分散性和合适的osc。基于该项发现,本发明提供如下发明。1.一种氧化铈-氧化锆基混合氧化物,其包括氧化铈和氧化锆,其中(1)Ce02:Zr02的重量比为60:40至90:10,且(2)氧化铈和氧化锆作为混合物存在,氧化锆由其中正方晶或立方晶氧化锆含有铈的固溶体组成。2.根据上面1的氧化铈-氧化锆基混合氧化物,其中在IOO(TC下在空气中热处理3小时后由X-射线衍射峰强度计算出的氧化铈比例为50vol。/。或更高。3.根据上面1或2的氧化铈-氧化锆基混合氧化物,其中混合氧化物含有1-20wtM的一种类型或两种或更多种类型的选自铈除外的稀土元素、过渡金属元素、铝和硅的氧化物。4.一种氧化铈-氧化锆基混合氧化物的制造方法,其包括第一步,将硫酸化剂加入到铈盐中,得到含有硫酸铈-碱金属混合盐的浆料;第二步,将铈盐和锆盐加入到所述浆料中;第三步,将碱加入到第二步得到的混合物中,得到含有氢氧化铈和氢氧化锆的混合氢氧化物;以及第四步,对混合氢氧化物进行热处理,得到含有氧化铈和氧化锆的混合氧化物。5.根据上面4的氧化铈-氧化锆基混合氧化物的制造方法,其中在第二步中,加入一种类型或两种或更多种类型的选自铈除外的稀土元素、过渡金属元素、铝和硅的金属盐。根据本发明,可以提供一种铂分散性优异、OSC合适的氧化铈-氧化锆基混合氧化物及其简单的制造方法,该混合氧化物优选在相关领域中用作汽车三元催化剂的助催化剂或催化剂载体和类似物。图1显示了将实施例1和比较例1得到的氧化物在100(TC下热处理3小时所得到的粉末的X-射线衍射结果;图2显示了将实施例1和比较例1中得到的氧化物载以1wt%Pt,然后在90(TC下热处理3小时得到的粉末的X-射线衍射结果;图3显示了将实施例1中得到的氧化物载以1wt%Pt,然后在900'C下热处理3小时得到的粉末的SEM图像;和图4显示了将比较例1中得到的氧化物载以1wt%Pt,然后在900"C下热处理3小时得到的粉末的SEM图像。具体实施例方式下面提供对本发明氧化铈-氧化锆基混合氧化物及其制造方法的详细描述。而且,本发明提到的氧化锆是指普通氧化锆,包括含有杂质金属化合物(其包括多达10wt^的二氧化铪)的氧化锆。此外,在本发明中,除非特别说明,"%"是指重量百分比。1.氧化铈-氧化锆基混合氧化物本发明的氧化铈-氧化锆基混合氧化物是包括氧化铈和氧化锆的氧化铈-氧化锆基混合氧化物,其中(1)Ce02:Zr02的重量比为60:40至90:10,且(2)氧化铈和氧化锆作为混合物存在,氧化锆由其中正方晶或立方晶氧化锆含有铈的固溶体组成。首先,氧化铈和氧化锆的重量比为Ce02:Zr02=60:40~90:10,优选63:35~85:15,特别优选70:30~80:20。如果氧化铈的比例低于60%,氧化铈的存在比例减少,导致电位很高,Pt可分散性下降,而如果组成比例超过90%,则OSC下降,从而使其不合乎需要。其次,"氧化铈和氧化锆作为混合物存在,氧化锆由其中正方晶或立方晶氧化锆含有铈的固溶体组成"是指根据晶体化学,(1)氧化铈相和(2)形成含有铈的固溶体相的正方晶或立方晶氧化锆相,即氧化钸和正方晶或立方晶氧化锆的两个峰能清晰地被识别。根据粉体工程,将(1)氧化铈相和(2)由含铈固溶体组成的正方晶或立方晶氧化锆相等量地彼此混合(如广辞苑原版日语词典(originalJapaneseintheKojien),第二修订版,1979年10月15日,第四次印刷中所定义)。换句话说,在本发明中氧化锆相基本上分散在氧化铈相中。因此,日本专利申请公开第2002-177781号中所述的"由仅负载于含有锆和铈的固溶体氧化物(A)的二氧化铈组成的混合氧化物(B)",和日本专利申请公开第2005-314134号中所述的"中心部分含有相当大量氧化铈-氧化锆固溶体、外壳部分含有相当大量第二种金属氧化物的金属氧化物颗粒"不包括在本发明中。而且,作为参考,本发明实施例1中得到的粉末的x-射线衍射结果显示于图1。据此,(1)氧化铈和(2)由含铈固溶体组成的正方晶或立方晶氧化锆,即氧化铈和正方晶或立方晶氧化锆的两个峰可以清晰地观察到。如此,由于本发明的氧化铈-氧化锆基混合氧化物具有上述特性,其具有下面所述的优异的铂分散性和合适的OSC。本发明氧化铈-氧化锆基混合氧化物的OSC为0.20mmol-02/g或更高,优选0.25mmol-02/g或更高。如果OSC小于0.20mmol-02/g,实际上起汽车催化剂作用的二氧化铈的OSC下降,从而使其不合乎需要。另一方面,本发明的氧化铈-氧化锆基混合氧化物在90(TC下热处理3小时后其上已经负载有铂的情况下,铂的粒径为200nm或更小,优选170nm或更小。如果粒径超过200nm,催化剂活性位点的数目减少,从而使得催化剂活性可能下降,使其不合乎需要。而且,在100(TC下在空气中热处理3小时后从本发明氧化铈-氧化锆基混合氧化物的X-射线衍射峰强度计算出的氧化铈含量优选为50voP/。或更高,更优选60vol。/。或更高,特别优选70vol。/。或更高。如果氧化铈的比例低于50voin/。,则Pt分散性下降,从而使其不合乎需要。此外,在100(TC下在空气中热处理3小时后本发明的氧化铈-氧化锆基混合氧化物的比表面积优选为10m"g或更高。如果比表面积小于10m2/g,有可能促进起催化剂作用的贵金属的烧结,从而使其不合乎需要。而且,本发明的氧化铈-氧化锆基混合氧化物也可以含有l-20wt%的一种类型或两种或更多种类型的氧化物,所述氧化物选自铈除外的稀土元素、过渡金属元素、铝和硅的氧化物。铈除外的稀土元素的例子包括镧系元素如Sc、Y、La、Pr或Nd。过渡金属元素的例子包括Ti、Cr、Mn、Fe、Co、Ni、Cu、Mo禾BW。如果这些金属氧化物的含量低于1wt%,则没有提高耐热性的作用,而如果含量超过20wt%,则Ce02的比例下降,氧化铈的立方晶比例下降,从而使其不合乎需要。2.氧化铈-氧化锆基混合氧化物的制造方法(第一步)首先,在本发明中,向铈盐中加入硫酸化剂,得到含有硫酸铈-碱金属混合盐的浆料。铈盐可以是提供铈离子的盐,例如可以使用一种类型或两种或更多种类型的硫酸铈、氯化铈或硝酸铈。尽管可以根据所用铈盐的类型等适当地选择溶剂,但通常需要使用水(优选纯水或离子交换水)。尽管对铈盐溶液的浓度没有具体限制,但通常优选1000g溶剂中5-200g、特别优选50-100g氧化铈(Ce02)当量。优选使用通过与铈离子反应形成硫酸铈-碱金属混合盐的硫酸化剂用于所述硫酸化剂,其例子包括硫酸钠和硫酸钾。例如,硫酸化剂可以是粉末或溶液的形式,优选以溶液(特别优选水溶液)的形式使用。作为溶液使用时的浓度可以适当进行设置。例如,加入硫酸化剂,使得在使用Na2S04的情况下使Na2S04/Ce02的重量比为1.5-2.5,混合物的游离酸浓度优选为0.2-2.2N(正常情况)。尽管游离酸的例子包括但不限于硫酸、硝酸和盐酸,但从工业规模生产率优异的角度考虑优选盐酸。将硫酸化剂加入到铈盐中后,将该溶液加热至85X:或更高,并在该温度下保持(老化)一段固定的时间,形成硫酸铈-碱金属混合盐。对硫酸铈-碱金属混合盐没有具体限制,其例子包括Ce2(S04)3'2M2SOjnM3[Ce2(S04)3](其中M代表碱金属)。如此,可以得到含有硫酸铈-碱金属混合盐的浆料。尽管如果需要的话可以为进行固-液分离对产生的硫酸铈-碱金属混合盐进行过滤或者用水冲洗等,但由于本发明包括后续步骤,通常可以在不进行过滤的情况下用于下一步骤。在本发明中,很明显硫酸铈-碱金属混合盐可以直接用作起始物质,这种情况也包括在本发明的范围之内。(第二步)下一步,将铈盐和锆盐加入到第一步中获得的浆料中。铈盐可以是三价铈盐或高铈盐,只要它提供铈离子。例如,可以使用一种类型或两种或更多种类型的铈盐,例如硫酸铈、氯化铈或硝酸铈。此外,锆盐可以是任何锆盐,只要它提供锆离子,例如,可以使用一种类型或两种或更多种类型的锆盐,例如含氧硝酸锆、氯氧化锆或硝酸锆。尽管对铈盐溶液的浓度没有具体限制,但通常优选1000g溶剂中5-200g、特别优选50-100g氧化钸(Ce02)当量。此外,该情况同样可用于锆盐的浓度。对于本发明的氧化铈-氧化锆基混合氧化物,为了在60(TC下保持某一恒定的OSC,除氧化铈之外还需要存在由含铈固溶体组成的正方晶或立方晶氧化锆。因此,铈盐和锆盐的比例,以氧化物当量计,优选为Ce02:Zr02=40-60:60-40,特别优选Ce02:Zr02=50:50。而且,尽管没有具体限制,但当含有硫酸铈-碱金属盐的浆料中所含Ce02的量定义为X,所加铈盐和锆盐中氧化物(Ce02+Zr02)的量定义为Y时,在以氧化物当量CeO2:ZrO2=40:60的比例加入铈盐和锆盐时,为了使本发明氧化铈-氧化锆基混合氧化物中Ce02与Zr02的比例(重量比)为60:40-90:10,X和Y的重量比使得X:Y为1:2-5:1。而且,尽管本发明的氧化铈-氧化锆基混合氧化物可以含有1-20%的一种类型或两种或更多种类型的氧化物,所述氧化物选自铈除外的稀土元素、过渡金属元素、铝和硅的氧化物,但在该情况下,在当前步骤中可以通过加入预定量的一种类型或两种或更多种类型的金属盐进行调整,所述金属盐选自铈除外的稀土元素、过渡金属元素、铝和硅的金属盐。(第三步)将碱加入到第二步中制备的加入有铈盐和锆盐的含有硫酸钸-碱金属混合盐的桨料中,得到含有氢氧化铈和氢氧化锆的混合氢氧化物。对碱没有具体限制。可以使用的碱的例子包括氢氧化铵、碳酸氢铵、氢氧化钠和氢氧化钾。其中,优选氢氧化钠,因为其在工业中使用很便宜。对所加碱的量没有具体限制,只要它能够从前述溶液中引起沉淀形成;通常使溶液的pH为11或更高,优选12或更高。该中和步骤,即中和其中均存在有由固体铈盐、离子型铈盐(铈离子)和离子型锆盐(锆离子)组成的三种组分的溶液,是本发明的主要特征,本发明的氧化铈-氧化锆基混合金属氧化物,包括"氧化铈和正方晶或立方晶氧化锆(其为包括铈的固溶体)的混合物",可以通过对该步骤中得到的含有氢氧化铈和氢氧化锆的混合氢氧化物进行热处理而制成。尽管此机制尚未完全明确,但推测原因如下。艮P,通过分别使用(1)固体铈盐和(2)离子型铈盐,可以控制铈盐和锆盐的混合程度。换句话说,在包括加碱产生Ce和Zr充分分散的氢氧化物的步骤中,(2)离子型铈盐与离子型锆盐共沉淀。另一方面,由于(1)固体铈盐己经是集聚颗粒的形式,而不是离子态,与锆离子的分散不充分,产生了在中和步骤中难以混合的氢氧化物。因此,中和步骤中形成的氢氧化物是其中来自(1)的氢氧化铈和来自(2)的氢氧化铈和氢氧化锆被充分分散的氢氧化物,通过然后将其灼烧,认为形成了含有氧化铈的混合氧化物粉末。而且,中和反应结束之后,从使产生的沉淀物老化以促进过滤分离的角度考虑,优选将含有混合氢氧化物(含氢氧化铈和氢氧化锆)的溶液在35-60'C下保持1小时或更长时间。然后通过固-液分离法对形成的由含有氢氧化铈和氢氧化锆的混合氢氧化物组成的沉淀物进行回收。固液分离可以根据己知方法如过滤、离心分离和倾析进行。在回收沉淀物之后,优选根据需要将含有氢氧化铈和氢氧化锆的混合氢氧化物用水洗涤,以去除任何附着的杂质。而且,产生的混合氢氧化物也可根据需要进一步进行干燥。干燥可以根据已知干燥方法如空气干燥或加热干燥进行。另外,也可根据需要在干燥处理之后对混合氢氧化物进行研磨处理、分级处理等。(第四步)最后,对含有氢氧化铈和氢氧化锆的混合氢氧化物进行热处理,得到氧化铈-氧化锆基混合氧化物。对热处理没有具体限制,其通常可以在400-900。C下进行1-5小时。对热处理气氛没有具体限制,热处理通常在空气或氧化气氛中进行。而且,如此得到的混合氧化物可以根据需要进行粉碎。对粉碎没有具体限制,其通常可以用粉碎机如行星式磨机、球磨机或喷射式磨机进行。实施例下面通过实施例对本发明的特征进行进一步的解释。而且,本发明并不受这些实施例的限制。使用下面实施例中所示的方法测定各种物理性能。(1)比表面积根据BET法使用比表面积测量仪器(FlowsorbII,MicromeriticsCorp.)测定比表面积。(2)储氧能力(OSC)根据程序升温还原法(MultitaskT.P.R.,BelJapanInc.)测定H2-TPR。更具体地,通过加热至60(TC并在高纯氧气中保持60分钟对0.3g粉末进行充分氧化。接下来,在5%氢气-氩气流(100sccm)中以10r:/分钟的加热速率将粉末从IO(TC加热至900°C,在此期间消耗的氢气用四极质谱仪连续测量,得到伴随温度升高的水蒸气产生曲线。将对应于60(TC下的耗氢量的所得氢气消耗曲线下的面积作为60(TC下释放的氧的量。(3)氧化铈比例将相当于立方晶氧化铈(111)平面的20:28.55。的衍射强度定义为Io,并将相当于立方晶或正方晶氧化锆(111)平面的20:3O.5。或30.2。衍射强度定义为时,从IOO(TC下热处理3小时后的粉末X-射线衍射数据,氧化铈的比例定义如下。氧化铈比例(vol%)=10/(10+10x100(4)铂粒径通过在扫描电镜下观察,然后测定平均值,测定通过SEM-EDX观察到的钼颗粒(图3和4中的白点)。实施例1将280g20%硝酸铈溶液(Ce02当量为含有56g)加热至85"C,然后加入624g25%硫酸钠溶液(Na2S04当量为含有156g),在85'C下保持1小时,得到含有硫酸铈-钠混合盐的浆料。将110g20%硝酸锆溶液(Zr02当量为含有22g)和110g20%硝酸铈溶液(Ce02当量为含有22g)加入到该含有硫酸铈-钠混合盐的碱性浆料中。然后将该溶液用500g25%氢氧化钠中和。此时的pH为12或更高。继续,通过过滤和用水冲洗,得到氢氧化物。然后将得到的氢氧化物在65(TC下在空气中灼烧5小时,得到氧化物。得到的氧化物的X-射线衍射结果显示于图1。此外,测定该氧化物的比表面积、在1000。C下热处理3小时后的比表面积、氧化铈比例和OSC。另一方面,在该氧化物上负载铂,然后测定铂的粒径。在该情况下,通过将二硝基二胺硝酸铂溶液(Pt:4.5e/。)分散在氧化物中至1wt%,然后浸渍,在50(TC下干燥5小时,从而进行铂的负载。而且,在900。"C下在空气中热处理3小时后的X-射线衍射结果显示于图2。这些结果以及分析数值均显示于表1。比较例1将20%硝酸锆溶液(Zr02当量为含有22g)和390g20%硝酸铈溶液(Ce02当量为含有78g)混合。然后将该溶液用500g25。/。氢氧化钠中和。此时的pH为10.1。继续,通过过滤和用水冲洗,得到氢氧化物。将得到的氢氧化物在65(TC下在空气中灼烧5小时,得到氧化物。对该氧化物进行与实施例1相同的测定。这些结果以及分析数值均显示于表l。而且,得到的氧化物的X-射线衍射结果显示于图1。而且,负载铂,以与实施例l相同的方式测定铂的粒径。而且,在卯(TC下在空气中热处理3小时后的X-射线衍射结果显示于图2。表1分析数值和测定结果<table>tableseeoriginaldocumentpage12</column></row><table><table>tableseeoriginaldocumentpage13</column></row><table>*1:在100(TC下热处理3小时根据表1,测定本发明的制品具有0.25mmol-02/g的合适OSC,氧化铈比例为80.6vol%,其发现远高于比较例。在90(TC下热处理3小时后的铂粒径为大约170nm,不超过比较例的一半。这些结果表明,在假设载铂量相同且形成粒径相同的铂微晶的情况下,就数量(颗粒数量)而言本发明的产品要高大约8.7倍((350/170)3),就比表面积而言高大约2.1倍(350/170),从而证明其分散性极为优异。权利要求1.一种氧化铈-氧化锆基混合氧化物,其包括氧化铈和氧化锆,其中(1)CeO2∶ZrO2的重量比为60∶40至90∶10,且(2)所述氧化铈和氧化锆作为混合物存在,所述氧化锆由其中正方晶或立方晶氧化锆含有铈的固溶体组成。2.根据权利要求1所述的氧化铈-氧化锆基混合氧化物,其中在100(TC下在空气中热处理3小时后由X-射线衍射峰强度计算出的氧化铈比例为50vol%或更高。3.根据权利要求1或2所述的氧化铈-氧化锆基混合氧化物,其中所述混合氧化物含有1-20wt。/。的一种类型或两种或更多种类型的选自铈除外的稀土元素、过渡金属元素、铝和硅的氧化物。4.一种氧化铈-氧化锆基混合氧化物的制造方法,其包括第一步,将硫酸化剂加入到铈盐中,得到含有硫酸铈-碱金属混合盐的浆料;第二步,将铈盐和锆盐加入到所述浆料中;第三步,将碱加入到第二步得到的混合物中,得到含有氢氧化铈和氢氧化锆的混合氢氧化物;以及第四步,对所述混合氢氧化物进行热处理,得到含有氧化铈和氧化锆的混合氧化物。5.根据权利要求4所述的氧化铈-氧化锆基混合氧化物的制造方法,其中在第二步中,加入一种类型或两种或更多种类型的选自铈除外的稀土元素、过渡金属元素、铝和硅的金属盐。全文摘要本发明提供了一种铂分散性优异、OSC合适的氧化铈-氧化锆基混合氧化物及其简单的制造方法。该氧化铈-氧化锆基混合氧化物包括氧化铈和氧化锆,其中(1)CeO<sub>2</sub>∶ZrO<sub>2</sub>的重量比为60∶40至90∶10,且(2)所述氧化铈和氧化锆作为混合物存在,所述氧化锆由其中正方晶或立方晶氧化锆含有铈的固溶体组成。文档编号B01J32/00GK101096012SQ200710126878公开日2008年1月2日申请日期2007年6月29日优先权日2006年6月30日发明者丸木雅俊,冈本博申请人:第一稀元素化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1