含碳原料热提质的方法

文档序号:4978657阅读:284来源:国知局
专利名称:含碳原料热提质的方法
技术领域
本发明主要涉及含碳原料的热提质(thermal upgrading),含碳原料例如次烟煤 和褐煤、泥煤和各种形式的生物质燃料。更具体地,本发明涉及通过直接与加热介质接触, 从装料中去除作为热水的水分,对含碳原料进行热提质。
背景技术
Koppelman的美国专利第5, 071, 447号公开了对含碳原料进行蒸汽处理的方法和 装置。在'447专利公开的系统中,蒸汽在加工容器的顶部注入。 Koppelman的美国专利第5, 769, 908号涉及通过在真空下将惰性气体注入到含碳 原料中处理含碳原料,或者将蒸汽注入进含碳原料中,以可控的方式施加或不施加真空,以 更连贯地处理含碳原料的装料。 尽管据信上文引用的Koppelman的两份专利中所讲授的技术已经在解决材料如 煤的热提质领域中存在的许多问题方面得到进展,但是在该领域中仍不断地有需求,以更 可靠地确保含碳原料装料的所有表面均达到相同的最终温度,以尽量减小提质装料所伴随 的游离水分,并更有效地从装料中去除不需要的副产物。

发明内容
因此,将含碳原料装料的能含量(energy content)提质的装置包括具有用于接 受装料的内室(chamber)的加工容器、将装料转移至内室的容器入口 、和将提质的装料转 移至内室外的容器出口。至少一个适合与加热介质源相连的加热介质入口位于加工容器 上,该加热介质入口用于将加热介质在加压条件下转移到加工容器内室中以便与装料直接 接触。另外还提供了至少一个与加工容器内室相连并流体交通的流体出口和至少一个液体 分离器,该液体分离器具有与至少一个流体出口相连的液体出口 ,其操作可将装料与液体 分离。 在本发明的另一个方面,将含碳原料装料能含量提质的装置使用基本上垂直取向 的加工容器(该容器的顶端具有容器入口 )、位于容器底端的容器出口、和从容器入口延伸 至容器出口的用于接受装料的内室。多个加热介质入口适合与加热介质源连接,以便将加 热介质在加压条件下转移到加工容器内室中与装料直接接触,加热介质入口位于容器顶端 和底端之间的预定位置上。多个液体出口与加工容器内室是流体连通的,位于容器顶部和 底部之间的预定位置上。多个加工容器通气口位于容器顶部和底部之间的预定位置上,使 气体能够从加工容器内室中选择性排出。最后,多个液体分离器位于内室内的多个预定位 置上,每个液体分离器具有与多个液体出口中的至少一个连接的液体收集室,其操作将装 料从液体中分离。
4
还是在本发明的再另一个方面,将具有第一平衡水分水平的含碳原料装料的能含 量提质的方法中,开始时使装料与加热介质在加压条件下直接接触,对装料进行加热,从装 料中驱除水分,达到低于第一平衡水分水平的第二水分水平,并将装料的平衡水分水平降 低至第一个平衡水分水平和第二个水分水平之间的数值。将从装料中驱出的水分从其中分离。


在阅读发明内容并结合附图,可以显而易见地了解本发明的目的和特征,其中
图1是显示根据本发明的主加工容器顶上的进料闭锁式料斗的垂直方向的侧视 图,其中产物出料闭锁式料斗在加工容器下方; 图2是显示根据本发明的与加工容器组合在一起以连续进行装料加工的两个进 料闭锁式料斗和两个产物出料闭锁式料斗的侧视图; 图3是图1加工容器的部分横截面剖视图,其显示根据本发明原理入口和出口喷 嘴的安装方式; 图4A是图1加工容器的横截面剖视图,其显示了除根据本发明的原理安装的固体
/水分离装置以外的入口和出口喷嘴的细节; 图4B是图4A装置分离表面的多孔区域的放大视图; 图4C、4D和4E是分别在图4A的A-A、B-B和C-C处获得的图4A容器的俯视图;和
图5是显示根据本发明的典型再水合(rehydration)装置和相关的输入、内部和 输出液流的方向和位置的示意图。
具体实施例方式
参考图l,加工系统100包括位于加工容器106顶部104的进料闭锁式料斗102, 以及位于容器106底部110下方的出料闭锁式料斗108。各个闭锁式料斗102和108的入 口处分别是阀门112和116,阀门112和116将其各自的闭锁式料斗与大气压隔离,使加工 容器106达到操作压力。同样,各个闭锁式料斗102U08的出口处有输出阀门114和118, 它们具有相同的作用。 管道150中的含碳装料原料通过处于打开位置的阀门112间歇式地投入到进料 闭锁式料斗102中,同时底部阀门114处于关闭位置。然后关闭输入阀门112,闭锁式料斗 102达到与加工容器106内相同的操作压力。然后打开阀门114,装料原料通过重力流入加 工容器106。当进料闭锁式料斗102排空时,关闭输出阀门114,闭锁式料斗102内的压力 降低至大气压。然后打开输入阀门112,进料闭锁式料斗102准备开始下一个经由管道150 的给料循环。含碳原料每小时的平均给料率通过每个循环给料的原料重量和每小时的循环 数来确定,因此进入加工容器106的料流是间歇性的。 继续参考图1,出料闭锁式料斗108以类似于进料闭锁式料斗102的操作方式,将 提质的装料原料从加工容器106中通过管道152间歇性地排出。循环操作步骤的简化次序 是排空的出料闭锁式料斗108刚刚将提质原料排出至大气条件,并通过管道152进一步 输送至加工装置。然后关闭输出阀门118,压力平衡至加工容器106的压力,打开输出阀门 116。出料闭锁式料斗108装满后,关闭输入阀门116,闭锁式料斗108中的压力降低至大气压。然后打开输出阀门118,输出闭锁式料斗108通过管道152间歇性地排出提质的装料原 料,以完成循环。闭锁式料斗108中压力的降低还可以用来通过从含碳装料的内部部分蒸 发水分使温度降低。 加工容器106可以在不使用进料或出料闭锁式料斗102和108的情况下,以分批 处理方式操作。需要有输入阀门114和输出阀门116,然后操作的次序可以与前面所述的闭 锁式料斗之一相同,即,关闭输出阀门116,加工容器处于大气压下,进料原料通过打开的输 入阀门114流入加工容器106。然后,加工容器106装满后关闭阀门114,使加工容器106 达到操作压力和温度,在所需的加工时间后,加工容器106的压力降低至大气压,打开输出 阀门116,排除经提质的装料。加工容器被排空后,关闭输出阀门116,分批循环再次开始。 使用多个分批加工容器,以及每个容器的适当循环次序,可以使分批容器的操作达到以下 方式进入和来自多个容器的总进料和出料形成连续的操作。 使用两个进料闭锁式料斗和两个出料闭锁式料斗,可以使进出加工容器106的进 料和出料实现真正的连续。图2显示了一种能实现这种连续过程的安装方式。进料的装料 原料通过分流阀202从入口管252给料,该分流阀门202弓|导料流进入进料闭锁式料斗204 或206。为进行连续给料,这些料斗中的一个在另一个料斗排空之前是装满的,以备向加工 容器106给料。在容器的排料端,出料闭锁式料斗208、210中的一个在另一个出料闭锁式 料斗装满前是排空的,以备接受提质的原料。采取这种操作,向加工容器106给料是连续 的,从加工容器106排料也是连续的。因此,加工容器106以完全连续地方式工作。但是, 由于需要进料闭锁式料斗中的一个是装满的以待给料,出料闭锁式料斗中的一个是排空的 以待接受出料,进入进料闭锁式漏斗的进料和从出料闭锁式料斗排出的排料将会是不连续 的,但是将完成连续的操作。 继续参考图2,加工容器106的连续操作次序如下。进料闭锁式料斗204将会为加 工容器106给料,输入阀门212处于关闭位置,输出阀门214处于打开位置。另一个进料闭 锁式料斗206将是装满进料的,并处于加工容器压力之下。另外,关闭输入阀门216和输出 阀门218。进料闭锁式料斗204 —旦排空,便关闭输出阀门214,同时打开进料闭锁式料斗 206上的输出阀门218,并以连续、不间断的方式向加工容器106中给料。然后将进料闭锁 式料斗204中的压力降至大气压,打开输入阀门212,使分流阀202处于将装料原料给料至 进料闭锁式料斗204中的位置,给料连续进行,直至进料闭锁式料斗204被装满。使进料的 装料原料停止流动,关闭进料闭锁式料斗204上的输入阀门212,使进料闭锁式料斗204中 的压力平衡至加工容器106的压力,然后使进料闭锁式料斗204静止,并等待进料闭锁式料 斗206排空。然后准备重复循环。 仍然参考图2,出料闭锁式料斗208和210的操作次序与上述进料闭锁式料斗 204和206的次序相同,除了出料闭锁式料斗208 (或210)中的一个在加工容器压力下处 于排空状态,输入阀门220是打开的,底部阀门222是关闭的,同时另一个出料闭锁式料斗 210 (或208)正在充填。当出料闭锁式料斗210装满时,分流阀224将加工容器排料导入出 料闭锁式料斗208中。关闭出料闭锁式料斗210上的输入阀门226,使出料闭锁式料斗210 中的压力降低至大气压,打开出料闭锁式料斗210上的输出阀门228,将提质的装料通过输 出管250排出至任何需要的收集和输送装置。当排空时,关闭出料闭锁式料斗210上的输 出阀门228,使出料闭锁式料斗210内的压力与加工容器106中的压力平衡,然后打开输入阀门226。然后使出料闭锁式料斗210处于排空状态,并加压直至配对的出料闭锁式料斗 208被装满。然后重复循环。 图3显示了半连续系统中单个进料闭锁式料斗操作的更多细节。输入和输出阀门 112和114在进料闭锁式料斗102上进行如上操作。加压入口 302和降压出口 304用来控 制进料闭锁式料斗102中的压力。进料闭锁式料斗102将其装料排空至加工容器106中 后,输入阀门112仍然关闭,输出阀门114仍然关闭,但进料闭锁式料斗102仍处于加工容 器的压力下,并包含饱和的蒸汽环境。打开降压出口 304上的阀门,饱和蒸汽从进料闭锁式 料斗102流出直至达到大气压力,关闭降压出口 304上的阀门。然后打开进料闭锁式料斗 102上的输入阀门112,闭锁式料斗用装料原料进行填充。当被充满时,关闭输入阀门112, 打开加压入口 302上的阀门。使用合适的加压介质(如饱和蒸汽、过热蒸汽、空气或其他气 体)来提高内部压力,以与加工容器106中的压力匹配,关闭加压入口 302上的阀门。然后 打开进料闭锁式料斗102上的输出阀门114,原料被加入到加工容器106中。
使用图3中显示的通气口 306、308和310,不可凝结的气体地加工容器106中被连 续排出。不可凝结的气体来自提质过程中从含碳装料原料中释放的挥发性有机物,进入提 质过程中被进料装料原料吸收的空气,以及被引入提质过程中的任何其他气体。不可凝结 的气体通常在加工容器106中较小浓度存在,主要的容积成分是饱和蒸汽。因此,当不可凝 结的气体被排出时,伴随的蒸汽流表示提质过程中有相当大的能量损失。使用全部或部分 的加工容器排出气流作为进料闭锁式料斗102和出料闭锁式料斗108操作中的加压气体, 可以回收并再利用这些能量中的一部分。进料和出料闭锁式料斗102和108上的加压出口 304和312分别将来自加工过程中实质上几乎纯的饱和蒸汽排出。这也造成了能量损失。 当从闭锁式料斗降压出口 304和312第二次排气时,使用来自加工容器106的排出气流用 于闭锁式料斗的加压不会造成提质过程中任何额外的能量损失。 继续参考图3,加入介质通常通过位于加工容器106—侧的入口 314和316被导入 加工容器106,而加工容器通气口 306、308和310位于容器106的相反一侧。入口和通气 口均可位于容器的多个高程位置处,可以包括比图3所示更多的位置。通气口通常由相关 的分流罩318a、 b、 c保护,这些分流罩防止水和固体从排出的蒸汽中逸出,但允许不可凝结 的气体和蒸汽逸出。入口和通气口安装位置的一个要求是防止进入的气流直接短路至通气 口。入口和通气口安装位置的另一个要求是在加工容器106的内部容积内以基本上水平的 方向、下行流动方向或上行流动方向建立气流模式(flow pattern),以有效地控制并从加 工容器106中去除不可凝结的气体。例如,较重的不可凝结气体(如一氧化碳)将会迁移 至加工容器106内部的底部320,如果所有进入和排出的气流都在加工容器106内部的顶 部322,它们将不能有效地被去除。在这种情况下,进入和排出的气流将被控制,以将较重的 不可凝结气体从较低的通气口位置处扫去。在相反的情况下,较轻的不可凝结气体(如氢 气)将迁移至加工容器106顶部322,需要在入口和通气口位置之间建立合适的气流模式, 以控制较轻的不可凝结气体在加工容器106顶部322的浓度。在一些情况下,用加工容器 106入口和通气口位置之间的基本上水平的气流模式实现对较重和较轻的不可凝结气体浓 度的控制。 在通常的操作中,进入加工容器106的加热介质流通过加工容器106中的压力来 控制。如果压力降至低于所需的操作设定点,加热介质输入流314将会增加,以进行补偿。相反,如果压力升高至高于所需的操作设定点,输入流将会减小。加工容器106排出气流通 常通过以下方法加以控制测定加工容器106中不可凝结气体的浓度,然后调节合适的控 制阀门,使在每个所需的通气口位置处流出加工容器106的不可凝结气体(和伴随的水蒸 气)达到所需的质量流。就对加热介质输入流的影响而言,流出加工容器106的排出气流 是重要的变量。大多数加热介质输入流将提供将进料装料加热至工作条件的可感热,提供 加工过程中热损失的能量,以及提供热提质过程中反应所需的热能。 优选的加热介质是分别通过上面和下面的加热介质入口 314和316,或通过位于 容器106外壁上的任何其他入口导入加工容器106的饱和蒸汽或过热蒸汽。同样,加热介 质可以通过内部管道导入容器106的内部322,并用来为选定的位置提供能量。
压縮热水也可以用作加热介质的一部分。例如,当相对较冷的进入的装料原料通 过进料闭锁式料斗102加入到加工容器106的顶部时,饱和蒸汽立即开始凝结,并通过凝结 的潜热将能量通过热力学传递至冷装料。在该位置或加工容器106内其他位置处的热冷 凝物或压縮热水将会比装料原料更热,也可以将热量传递到装料原料中。如果在加工容器 106外可获得合适的压縮热水来源,在热力学条件下能够将热量供应给热提质过程,这种压 縮热水可以在多个位置处被导入,并用作该过程的全部能量供应来源。另外可选地,压縮 热水可以用作饱和或过热蒸汽加热介质的部分补充。在其被去过热后使用饱和蒸汽或过热 蒸汽的一个益处是饱和蒸汽等温凝结,意味着假如装料原料床的孔隙度足以使蒸汽通过 该床中较冷的区域,则蒸汽将会自动流动至加工容器106中比饱和蒸汽温度低的任何位置 处。直至被去过热,过热蒸汽流必须被导入至其应用的点。 在至少两种具体用途中,通过位于加工容器106底部附近的加热介质入口 316向 热提质过程提供过热蒸汽可能是特别有益的。 一种是通过来自过热蒸汽或热气体中的热量 损失以"干燥"形式向装料原料提供热能。这样可以用来从装料原料中去除过量的表面游 离水分,并通过将游离水分转变成饱和蒸汽来提供额外的脱水作用。在加工容器底部附近 使用"干燥"过热蒸汽还可以在装料原料周围提供"干燥"的环境,并且在仍然包含在装料 原料中的固有水分和装料原料固体颗粒外表面上相对干燥的蒸汽空间之间形成分压差异, 为装料内的额外固有水分的释放提供了热力学驱动力。 通过加压入口 324对出料闭锁式料斗108加压、和通过降压出口 312降压可以通 过与上述进料闭锁式料斗102完全相同的方式来实现并控制。如上文所述,来自通气口 306、308和310的排出气体可以用作出料闭锁式料斗108的加压气体。
在装料的提质过程中,加工容器使用的温度在从装料颗粒结构变为弹性的最小温 度到发生任何实际热解的最大温度之间。优选地,该范围为400。 F至50(T F,相应的压力 为247psia至680psia,或者基本上与饱和蒸汽条件下的温度相当。由于容器环境中可能存 在一定量的不可凝结气体,任何指定加工容器总压下的实际温度要比饱和蒸汽条件下所预 计的温度低一些。例如,如果加工容器总压为500psia,不可凝结气体的浓度为10vol. %, 不可凝结气体的分压将为50psia,饱和蒸汽的分压将为450psia。因此,不可凝结气体和饱 和蒸汽的温度将为大约456。 F,相比之下,如果仅存在饱和蒸汽则温度为大约467。 F。
为了使蒸汽向加工容器床较冷的区域均匀地流动以进行等温凝结,也为了促进更 好地排液和从提质的装料中分离水分,需要使用适当大小的含碳给料原料,以便在床中保 持孔隙度。这一点可以通过对过大原料进行挤压和筛分实现,从而获得最大尺寸的给料原
8料。同样,一些细粒需要从给料原料中去除,使得细粒不会填充至较大颗粒之间的空隙空间 中,在加工容器内形成床孔隙度很低的区域。应当认识到,由于质量体积关系,指定重量的 精细原料比相同重量的粗糙原料具有更大的表面积。装料原料的表面积增加也使得表面 游离水分蓄积的面积增加,使对提质装料进行脱水更为困难。给料原料的粒度分布范围为 0. 00英寸/负4英寸(端值),更优选为正0. 125英寸/负3英寸,最优选为正0. 25英寸 /负2英寸。为了使这些尺寸范围更有效,装料原料应该如下筛分在上限和下限之间的粒 度分布应该严格遵循被提质装料的类型典型地所特有的Rosin-Rammler指数。
在加工容器106中时,含碳装料被加热至操作温度和压力。加工容器中装料的平 均保留时间通过加工容器106的容积、装料原料的容积密度和给料原料的重量进行确定。 我们相信大约5分钟至大约1000分钟之间的保留时间是有益的,更优选保留大约15-60分 钟,最优为选大约20-30分钟。 类似地,存在过热蒸汽可以使加工容器内的温度增加至饱和蒸汽条件下所预计的
温度之上。使用上面的例子,如果容器中存在蒸汽中大约具有ir F过热的过热蒸汽,则蒸
汽分压将为450psia,但是蒸汽和不可凝结气体的温度将增加至467。 F,或者达到500psia 下纯饱和蒸汽的温度。 上文所述的基于重量的温度和压力范围中,与当过热蒸汽冷却至饱和条件或当冷 凝后留下来的压縮水冷却并传递热量时释放的能量相比,冷凝时从饱和蒸汽中可以释放更 多的能量。因此,使用饱和蒸汽和当其等温凝结时释放出的能量是优选的为加工容器供热 的方法。 当装料在加工容器中达到所需的温度时,装料变得更有弹性,使得水释放时装料 颗粒破裂的量最小。 根据本发明,装料原料中存在的水分通过几种机制去除。 水分去除的第一种机制是当装料被周围环境加热时,夹带的水体积膨胀。水加热
膨胀的速度比围绕水的装料孔隙结构要快,除了从装料中排出,水没有地方存留。 第二种机制是当孔隙大量坍塌时将多余的水从装料孔隙中挤出。孔隙大量坍塌是
由于水被去除和加工环境对装料表面施加的外部压力造成的。 第三种机制涉及被截留在装料中的水分和蒸汽形式之间的压差,这使其向加工容 器蒸汽相中的低压区域逃逸。 第四种不太容易想到的机制是,当加工温度增加时,通过热动态平衡位移完成的 离子和电荷结合水的去除。优选地,通过此机制从装料中去除水通过限制加工环境中的最 大温度而降至最低。如果通过平衡位移仅去除水,这是可以接受的。但是,在高温下,包含 在含碳装料中的挥发性有机物也被释放。当加工温度升高时,释放的挥发物质的量开始以 更快的速度增加。从装料中释放的挥发物或者与水以溶解或夹带的形式结合在一起,或者 与蒸汽混合为不可凝结的气体。这些过程都是不希望发生的,因为混合进入或溶解在水中 的有机物增加了再利用和/或处理水之前进行水处理的成本,并增加了加工容器蒸汽相中 不可凝结气体的浓度。 本发明中还可以采用间接加热。例如,热交换管350(图3)可以任选地安装在加 工容器中的任何部位,其中在装料原料和管350的间接加热表面之间发生接触。只要间接 表面的温度比装料高,热量便就可以传入装料。这在位于加工容器底部处是特别有益的,如图3所示,其中间接热表面的作用是在出料之前将过量的表面水分从装料表面蒸去。间接
加热介质的来源(未显示)可以通过352和354 口与(多个)部件相连接。 高含水量的含碳原料(如次烟煤)含有高达30wt^的固有或夹带的水分。当被采
掘时,固有水分非常接近于原料的平衡水分,后者通常被定义成当煤暴露于新环境并接着
再次暴露于其原始环境时将重新平衡到的水分水平,除非该原料暴露于新环境时已经发生
结构和/或化学的改变。例如,从煤层中采掘的含30%水分的煤,在低湿度环境中空气干燥
至例如20%的固有水分,仍将具有大约30%的平衡水分值,如果暴露于高湿度的环境中随
着时间变化最终将恢复或重新平衡至大约30%的固有水分。 大多数标准提质过程试图将装料的固有水分水平降低至该过程中所达到的大大 低于平衡水分的水平。当运输和储存时,这些原料将通过从环境中吸收水分而试图平衡至 其平衡水分水平。如果这种吸收发生速度很快,装料可能会过热,甚至在储存或运输过程中 发生自燃。 据信,根据本发明对于待提质的装料原料小心地控制加工条件将制造出运输稳定 和安全的热提质产品。但是,对于含有20至30%固有水分的次烟煤,根据本发明得到的提 质产品的平衡水分水平将在大约8w^和大约16w^之间。根据经验,如果平衡水分水平高 得多,例如15%,固有水分水平为大约7%的煤不能安全运输和储存。对于装料,如果再水 合为IO至14%的固有水分,它就可以安全地运输和储存。可以在可控的环境中进行再水 合,其中将最初从煤中去除的水分添回至煤中,或者高含水量、未提质或部分提质的煤与低 含水量的提质装料混合在一起。 对于许多反应,需要将空气或含活性氧的其他气体注入到加工容器中,上述每种 反应都需要利用氧和装料或加工容器中的某些形式的燃料之间发生的高度放热反应。通过 注入氧,至少一部分从提质的装料中排出的有机挥发物可以被氧化。过量的表面水分可以 烧掉。另外,据信不需要的副产品如汞在进行氧化反应时可以更容易地从装料中分离。最 后,部分提质装料的选择性氧化可以使其在储存中更加稳定。 —种不需要的氧化反应是形成过量的不可凝结气体,如前所述该气体可能必须从 加工容器中排出,以控制不可凝结气体对饱和蒸汽温度的影响。任何氧化反应中产生的热 量几乎抵消了由于将不可凝结气体和伴随的蒸汽排出所造成的能量损失。相反,如果加工 容器中需要更多的不可凝结气体,则空气将是氧化反应的优选氧源,因为空气的氮(不可 凝结气体)含量很高,并且存在以下事实,即,涉及空气中氧的任何氧化反应均形成不可凝 结的燃烧产物。 当加入每磅提质装料(干重)大约0. 00005磅活性氧至每磅提质装料(干重)大 约0. 05磅活性氧时,相信可以满足加入空气或其他含活性氧气体的目的。更优选加入每磅 提质装料(干重)大约O. 00001至大约O. 025磅的活性氧,最优选加入每磅提质装料(干 重)大约0. 005-0. 01磅的活性氧。 图4A显示了如何将加工容器106内的装料原料与从其中排出的水进行分离。从 装料原料中去除的水分和来自加热介质的蒸汽冷凝物均必须从容器106中作为热的生产 用水被去除。这一点可能非常困难,因为装料原料和热水都会因为重力通过加工容器106 向下流动。另外,必须将装料和水分两种流体分开,使得基本上干燥的提质装料原料从加工 容器106中的一条流路中去除,热水则在另一条完全分开的流路或多条流路中被去除。
10
至少有5种不同的安装方式可以用来将通过加工容器106向下移动的热水与装料 原料分离开。这些例子为1)向外倾斜的分离锥402,2)位于加工容器106内部空间的垂 直多孔排水管404a、b、c,3)位于容器106壁上的垂直多孔引流管406,4)向内倾斜的分离 锥408,和5)至少一个可旋转的水平分离台410。 这些不同的分离单元可以在容器106内以多种安装方式组合使用,以实现所需程 度的水/固体分离。而且,尽管在图4中分离表面的开口视图显示为圆形孔洞450,但是各 分离区域中这些开口另外可选地可以包括槽、正方形开口、筛网、格栅、篮筐、多孔管或任何 其它能够使热水通过分离装置中的开口而阻止固体装料流出的装置。开口大小选择成在尽 量减少微细固体原料漏出的情况下确保排水良好。另外,优选使每个开口逐渐变细,使得水 收集一侧的开口略大于装料一侧的开口 。以这种方式,可能搭挂在开口中的固体颗粒有更 多的机会被去除并通过开口。 向外倾斜的分离锥402使热水基本上向下通过锥402表面上的分离开口,而固体 装料原料则向外呈放射状被引向加工容器106壁。通过锥402中开口的热水收集在收集盘 412、或具有类似功能的集水管(header)中,热水通过与热水排放口 416相连的内部排水管 414从加工容器106中排出。 由于固体装料原料被放射状地向外引导,原料流可以绕着内部排水管如404a、 b、 c通过并经过,使得热水通过每根管中的多孔孔洞从固体装料中分离。图4D中的视 图A-A是加工容器106内部空间的平面俯视图,显示了内部排水管404可以排列成同心 (concentric)圆,这可以为热水从固体装料中分离出来提供多种途径。每根管底部的收集 集水管收集热水,并将其引入内部排水管420,该排水管420然后使热水通过一个或多个热 水出口 422从加工容器106中排出。 图4D的视图A-A还显示了一种安装方式,其中内部多孔管406可以分成两半,并 以水密方式以环形阵列连接在加工容器106的壁上,使得热水邻近容器壁便立刻从装料原 料中去除。收集在管中的热水将收集在底部的集水管中,并从加工容器106中作为热水排 至排放口418。一部分或所有多孔管阵列可以被同心壁替换,分离开口以水密方式固定在加 工容器壁顶,收集集水管固定在底部,以收集热水并使其至少通过出口 418和422而排出。
向外倾斜的分离锥402的部分功能是引导固体向外呈放射状流动。向内倾斜的分 离锥408的部分功能是引导固体向内呈放射状流动,同时为热水提供了通过分离锥408中 的开口向下流动从固体装料原料中分离的途径。图4C的视图B-B是向内倾斜的分离锥408 的平面俯视图,显示该锥体是同心的,并连接在加工容器106的外壁上。该锥体通过加工容 器106的整个圆周以弧形延伸。锥体408也可以分段安装,可以是不连续的。通过锥体408 开口 409的热水收集在同心环状的收集盘424中,它通过加工容器106中的至少一个或多 个出口将热水排出。图4A中显示了两个出口 426a和426b作为例子。
继续参考图4A,分离装置402、404a-c、406和408可以安装在多个位置处,使得加 工容器106中基本上向下流动的固体装料原料可以呈放射状向外流动的方式变成呈放射 状向内流动的流体模式,为固体装料在分离装置的表面或从其周围通过提供多种途径。
图4E中的视图C-C是俯视图,说明了基本上水平的具有多孔开口 411的分离台 410,该多孔开口 411使热水向下通过,收集在收集盘428中,并引导其通过内部排水管430 从加工容器106中流出,排水管430与排水口 432是流体连通的。尽管分离台410在图4A和4E的平面图和正视图中显示成单个台子和完整的圆环,但是也可以使用多个直径渐增 的同心台,每一个都堆叠在其上较小的分离台下面,使得固体向下向外流动,同时阶梯式地 从一个台上流到下一个台上。根据(多个)分离台410的安装方式和直径,固体装料原料由 于其休止角从每个台的外缘流出,而热水基本通过台上的孔向下流动。如果分离台410是 可旋转的,固体装料向外的流动则可以大为改善。这样将有效地减少了原料基于水平线的 休止角,并改善该原料向外的流动。另外,应该还可以将固定犁或相似的结构部件安装在旋 转台如410上方,以改善固体的向外流动,并引导固体装料原料从(多个)台的边缘流出。
尽管在图4A中没有具体地显示,加工容器106下部的排放圆锥部分434的内部 和上方可以安装另一个向内倾斜的分离锥或同心多孔壁,以便正好在装料原料从加工容器 106中排出进入出料闭锁式料斗108之前将额外的热水从装料原料中分离出来(图3)。另 外,还可以将上述的任何一种分离装置安装在出料闭锁式料斗108中,以便为从提质的装 料原料中分离热水提供额外的途径。 如果图4A的各种分离装置的分离表面是固体而不是多孔的,这种表面在加工容 器106内部形成内室或导管。如果每个这种室都有分离的入口和出口,加热介质便可以被 导入到入口中,通过传导将热能通过内室或导管传递,然后热能通过传导、对流和辐射热传 递原理间接地提供给加工容器106的装料原料。然后,用过的加热介质从这些内室或导管 中通过加工容器106输出,以补充通过加热介质入口 314和316导入的直接形式的能量(图 3)。 与将能量输入至加工容器106相反,将上文所述的加热介质用冷却介质替代,也 可以从加工容器106中去除能量。 再次参考图4A,如果空气或其他合适的含氧气体被导入进加工容器106中以便对 从装料中排出的部分挥发物进行热氧化,降低所需的能量输入,或者使提质的装料在储存 中更加稳定,可能需要在通过入口 314和316导入加工容器106之前将空气或含氧气体与 加热介质预先混合。尽管这可以是优选的方法,空气或含氧气体也可以在其他任何入口位 置被导入加工容器106。如果预先混合的话,空气或含氧气体基本上是惰性的形式,不能与 在加热介质入口 314和316中或通向该入口的管道中的加热介质反应。同样,空气或含氧 气体也不能与管道和入口结构中的材料发生反应。 一旦进入加工容器106,空气或含氧气体 将能够自由扩散,与加工容器中存在的各种有机燃料混合和反应,并发挥其目标作用。如果 空气或含氧气体在不存在惰性加热介质的情况下通过专用入口输入到加工容器中,氧化反 应可以在入口喷嘴位置附近或之内发生,由于与被提质的各种有机燃料发生局部高度放热 的氧化反应引起极度过热,这些位置的结构完整性会被损坏。 图5的示意图显示了对于在储存和运输之前对从加工容器106中排出的提质装料 原料进行再水合的各种可选方式,通用安装方式500中输入、内部和输出流的细节。两种装 置的配置用于在管道504中将提质的装料再水合。可以应用提供搅拌机_混合机功能的装 置506或再水合装置512或两者同时应用。图5中的安装方式显示了搅拌机_混合机506 在再水合装置512之前,但是也可以反向安装。当从图3的出料闭锁式料斗108中排出时, 如果原料中的固有水分水平极大地低于原料的平衡水分水平,管道504中的提质装料原料 可能是不稳定的。如果是这种情况,再水合水分必须被加回到原料中,以将固有水分水平增 加至低于原料平衡水分水平的安全差限。
12
将提质装料再水合的一种方法是将管道502中湿的部分提质或未提质装料原料 加入到管道504中的提质装料原料中,使得混合的混合物具有所需的平均固有含水量。最 终的混合物必须是相当均匀的,这样便需要有适当的装置,如搅拌机或混合机506。如果混 合作用是完全且均匀的,混合也可在带式输送机或其他输送装置上进行。
可以用作管道502中湿的部分提质或未提质装料原料的原料之一是在多个热水 排放口中从加工容器106中排出的细粒。用于混合物中的这种原料的另一个来源可以是含 表面游离水分的装料原料,特别是如上文所述为制备投入加工容器106的适当大小的进料 装料从含碳原料中筛出来的细粒。 如果混合固体装料不能达到所需的再水合程度,则可以直接将水以蒸汽或液体水 的形式在再水合介质输入流510中通过诸如装置512中的喷嘴加入到提质的装料原料中。 再水合装置512可以是湿化室、搅拌机、混合机或其他在510中的再水合介质和管道508中 为再水合装置给料的装料原料之间提供直接和均匀的接触的装置,使得管道514中再水合 的提质装料原料含有所需的固有水分。
实施例 对于下面的每个实施例,进料煤中的全水分和加工煤中的固有水分均通过ASTM D3302方法测定,而平衡水分通过ASTM D1412-93方法测定。
实施例1 来自Wright,Wyoming附近的Black Thunder Mine的原(ROM)次烟煤以负1-1/2 英寸/正16目进行筛分。按大小分好的煤的含水量为25. 2的重量百分含量(w% ),平衡 含水量为24. 5w^,具有较高的热值(HHV) :9010Btu/磅。将煤在内部体积大约为4升的间 歇式反应釜中进行热提质。反应釜是垂直取向的圆柱体,在顶部有大约1/16英寸筛目的可 移动煤篮,其中可以装入大约350克的原料煤。反应釜被密封,使用饱和蒸汽将压力和相应 的饱和蒸汽温度提高至目标检测条件。当蒸汽冷凝时,热量被释放,得到的冷凝物和从煤中 释放的水分一起被引流并收集在反应釜底部,在煤篮之下。目标加工时间结束时,蒸汽从 反应釜中排出,压力降至环境压力,此时含有热提质煤的煤篮被移开,对已加工的煤进行分 析。在所进行的多次试验中,两个试验用来显示温度对提质煤性质的影响。一个试验在饱和 蒸汽温度43(T F下进行,另一个在46(T F下进行,这些温度分别对应于大约344磅/平 方英寸绝对压强(psia)和467psia的饱和蒸汽压。检测设备海拔高度下的表压比所描述 的绝对压强低大约12. 5psi。每次试验从开始加入蒸汽到开始排气的加工时间为大约52分 钟。当在430° F下加工时,提质煤的固有水分水平为7.81w^,平衡水分水平为16. lw%, HHV为11,397Btu/Ib。当在更高的温度460° F下加工时,提质煤的固有水分水平较低,为 6. 0w^,平衡水分水平也较低,为14. lw%, HHV为11,674Btu/Ib。这两个试验证实了升高 加工温度(和压力)的有益作用,特别是更高的温度降低了提质产物中的平衡水分水平。
备注固有水分之外的其他因素(如挥发物含量、灰分含量和硫含量)对HHV也有 影响。由于这些实施例中使用的给料样品不同,因此固有水分和HHV之间的关系不是恒定 的。 实施例2 实施例1中使用的相同类型的原料煤在460° F的温度下检测的总加工时间为17 分钟,当进行分析时,经加工的煤固有水分水平仍然很低,为6. 3w% ,而HHV仍然相对高,为11, 598Btu/Ib,表明与52分钟的加工时间相比,少于20分钟的加工时间仍然得到非常可接受的结果。使用另一种煤样品进一步证明了加工时间的影响,该样品的初始固有水分水平为24. lw^,并在460° F的温度下加工。加工时间为19分钟、32分钟和52分钟,在提质产物中得到的固有水分水平分别为8. 8w%、8. 4w^和8. 7w%,由于使用了不同的原料煤样品,该组最终的固有水分水平都很高,就加工时间而言,至少在19至52分钟的范围内,三次试验的最终水分水平基本上没有差异。使用能够每批加工大约IO磅煤的不同的间歇式反应釜装置,将类似于实施例1中所述的Black Thunder的另一种煤的样品在467° F下加工更长的时间540分钟。经加工的煤固有水分水平为6. 2w^,表明极长的加工时间也不会影响最终的水分水平。在相对于基本的52分钟来说更短和更长的时间内加工的样品中没有测定平衡水分水平,但是经验告诉我们平衡水分水平与固有水分水平直接呈曲线比例。
实施例3 在使用实施例1中所述相同类型的原料煤的两个不同的实验中,对含大约0.085iig/g(干重)浓度汞的原料煤进行试验,其中一项试验中加入空气,另一项不加。加入空气,从经加工的煤中去除72. lw^的汞,在不加入空气的试验中,仅除去51.6w^的汞。这证明加工过程中加入空气可以提高汞的清除。在试验开始时,在加入蒸汽之前加入空气,在试验过程中空气不连续地流入间歇反应釜,但是应当认识到,也可以半连续或连续地加入空气,只要反应釜进行排气以控制反应釜内不可凝结气体的分压,这一点在下文的讨论中进行解释。 在这两项试验中,温度是相同的,但是压力不同。当空气加入至该过程时,它占据了总压的一部分,饱和蒸汽占据其他部分。例如,如果加工容器中的总压为466psia,空气占的体积百分含量为20 (v% ),蒸汽占其余的80v^,则蒸汽的分压仅为373psia,对应的饱和蒸汽温度为大约437。 F,而不是460。 F,如果加工环境为100v^蒸汽则预计为后者。当空气中的氧在加工过程中由于氧化反应被消耗时,反应产物与消耗氧气的体积相等,则温度没有变化,因为蒸汽分压没有任何变化。在这个具体的试验过程中,加入空气的量为大约0. 06重量份/1单位原料煤,要记住试验开始空气是分批加入的。用来说明空气体积相对蒸汽体积对蒸汽温度的影响的相同推理方法也可以引伸来解释不可凝结气体体积或浓度的影响,因为空气中的氧气和氮气都是不可凝结的气体,氧化产物如二氧化碳和一氧化碳也是不可凝结的。尽管二氧化碳和一氧化碳都是不可凝结的,在本发明中实施的加工条件下仅有一氧化碳中的氧是活性的。加工过程中从装料中释放的其他挥发物也可以是不可凝结气体,如甲烷、丙烷、硫化氢、二氧化硫等等。
实施例4 使用实施例1中所述相同类型的原料煤的另一组两个试验中,一个试验中连续加入空气,另一个不加入。如实施例3中所解释,加工容器也连续排气。两项试验中加工条件基本相同,加工温度和时间相同。对两个试验中收集的液体进行分析时(该液体来自煤、蒸汽冷凝物和可溶挥发性有机物释放的水分),加入空气的试验中液体中总有机碳浓度(约278mg/l)比不加入空气的试验(约620mg/1)低,表明空气中的氧与煤释放的有机物在与水接触之前或同时发生了反应。加入空气的试验中来自可溶有机物的水颜色较浅也可以证明此结论。当有机物在加工容器中被选择性氧化时,整体有益效果是水处理和净化成本得以降低。该具体试验中加入的空气量为大约0. 002重量份/1单位原料煤,要记住空气在整个试验中是连续加入的。
实施例5 回到实施例l,反应釜的上部和下部都有热电偶。由于在煤料加热至加工温度后蒸汽在饱和温度下等温冷凝,人们会预计两个热电偶在热提质进行时指示的温度相同,但事实上并非如此。根据加工前后的煤挥发性测定,基于MAF(无水分无灰分)lw^至5w^的煤料重量作为挥发物而损失。基于不加入空气的试验,对提质过程中产生的不可凝结气体的分析表明,在这一数量中,大约95v^的挥发物是作为二氧化碳气体损失的。在反应釜试验中,任何产生的不可凝结气体没有正常地从反应过程中排出,直至试验结束。如果二氧化碳不可凝结气体与蒸汽均匀混合,我们可以预测反应釜上下部的两个热电偶读出的温度相同,但是如果存在一些不可凝结气体,该温度要略低于通过饱和蒸汽压预计的温度(实施例3)。在所有反应釜试验中,试验过程中液体没有从反应釜底部去除,底部的热电偶最初显示的温度与顶部的热电偶相同,但是随着试验进行,底部热电偶的温度开始下降,达到比顶部热电偶至少低35。 F的温度。根据体积测定,可知当下面的热电偶温度下降时,它仍然位于蒸汽中,而不是浸在液体中,但刚好在液体层的略上方。在一个试验过程中,决定在试验结束之前将液体从下部排出,热电偶的读数立即增加至与顶部热电偶相符,然后开始再次下降,直至排出更多的液体。该观察结果和过程在使用不同的加工装置安装方式时得以重复,无一失败。现在认识到,高分子量的气体,如分子量(丽)为44的一氧化碳不会与丽为18的水蒸气均匀混合,而是分成较低的一层。随着试验进行二氧化碳层不断富集时,二氧化碳富集于刚好在液体界面上的一个分层中,由于蒸汽浓度的分压下降,根据热电偶的测定,饱和蒸汽温度渐进式下降(参见实施例3中不可凝结气体对饱和蒸汽温度的影响的讨论)。当液体界面由于液体被去除而下降时,二氧化碳没有被去除,但是该层水平下降,使设定位置的热电偶测定的气体温度基本上是蒸汽而不是混合高浓度二氧化碳和蒸汽浓度。加工装置中必须采用特殊的方法以保证高分子量的不可凝结气体有效地从加工容器中被去除。在相反的情况下,对于分子量比蒸汽低的不可凝结气体(如丽为2的氢气),通过推理该结论也是适用的。
实施例6 同样以半连续给料方式对煤进行热提质,出料的加工容器包括大约内径6英寸、高60英寸、垂直取向的圆柱体加工容器,其装有进料闭锁式料斗和出料闭锁式料斗,以及合适的闭锁式料斗阀门。该装置每12-14分钟加入大约121bs原料煤,加工时间为大约50至55分钟。加工容器同样每12-14分钟进行排料,以维持水平控制。两个试验也显示了从加工容器中出料之前对提质装料进行适当排水和脱水的益处。使用以负l英寸/正8目筛分的Black Thunder ROM煤作为原料煤,其含水量为25. 8% , HHV为9076Btu/Ib。使用459° F、462.5psia的饱和蒸汽作为加热介质。将提质的装料转移至出料闭锁式料斗之前,液体连续地从加工容器内室底部排出并排向大气中时,出料时提质煤中的固有水分水平为5. 0w^,HHV为11, 554Btu/Ib,所述液体代表从煤和蒸汽冷凝物中去除的水分。当液体从加工容器内室底部不正常地排出时,提质的煤在出料时就会伴有一定体积的游离液体,提质装料中的固有水分水平则高很多,为12. 6w^,HHV为10, 791Btu/Ib。 本发明仅根据实施例的详细描述进行了说明。本发明的精神和范围来自对所附权利要求的适当解释。
权利要求
一种对具有第一个平衡水分水平的含碳原料装料的能含量进行提质的方法,其包括使装料与加热介质在加压条件下直接接触,对装料进行加热,将水分从装料中驱出,达到低于第一个平衡水分水平的第二个水分水平,并将装料的平衡水分水平降低至第一个平衡水分水平和第二个水分水平之间的数值;和将驱出的水分从装料中分离。
2. 根据权利要求1的方法,其进一步包括将装料再水合,至高于装料的第二个水分水平但低于第一个平衡水分水平的第三个水分水平。
3. 根据权利要求l的方法,其中所述的加热介质包括饱和蒸汽。
4. 根据权利要求3的方法,其中所述的装料被加热到装料颗粒的结构变成弹性的最小温度和发生热解的最大温度之间。
5. 根据权利要求4的方法,其中所述的最小温度为400。 F,所述的最大温度为500° F。
6. 根据权利要求5的方法,其中装料在247psia至680psia的压力下加热。
7. 根据权利要求l的方法,其中所述的加热介质包括过热蒸汽。
8. 根据权利要求3的方法,其中所述的一部分加热介质包括从饱和蒸汽凝结的压縮热水。
9. 根据权利要求7的方法,其中所述的一部分加热介质包括从过热蒸汽凝结的压縮热水。
10. 根据权利要求l的方法,其中所述的装料在加压条件下与加热介质直接接触5分钟至1000分钟的时间。
11. 根据权利要求1的方法,其中所述的装料在加压条件下与加热介质直接接触15分钟至60分钟的时间。
12. 根据权利要求1的方法,其中所述的装料在加压条件下与加热介质直接接触20分钟至30分钟的时间。
13. 根据权利要求l的方法,其中所述的第二个水分水平为第一个平衡水分水平的20%至60%。
14. 根据权利要求2的方法,其中所述的第三个水分水平为第二个水分水平的101 %至125%。
15. 根据权利要求2的方法,其中所述的第三个水分水平为第二个水分水平的110%至120%。
16. 根据权利要求2的方法,其中所述的再水合是在加湿室中进行的。
17. 根据权利要求2的方法,其中所述的再水合通过经由至少一个喷雾喷嘴用水对提质的装料进行喷雾来进行。
18. 根据权利要求2的方法,其中所述的再水合通过将提质的装料与未提质的含碳原料混合来进行。
19. 根据权利要求1的方法,其进一步包括向加热介质中加入含活性氧的气体,其量足以使至少一部分从装料中排出的有机挥发物热氧化。
20. 根据权利要求1的方法,其进一步包括向加热介质中加入含活性氧的气体,其量足以形成可接受的氧化反应,从而降低加热装料所需的能量输入。
21. 根据权利要求1的方法,其进一步包括向加热介质中加入含活性氧的气体,其量足以引起装料中反应部位的被动氧化,从而使提质的装料在储存中更加稳定。
22. 根据权利要求l的方法,其进一步包括向加热介质中加入含活性氧的气体,其量为0. 00005磅氧/磅提质装料至0. 05磅氧/磅提质装料,上述量基于干重。
23. 根据权利要求l的方法,其进一步包括向加热介质中加入含活性氧的气体,其量为0. 00001磅氧/磅提质装料至0. 025磅氧/磅提质装料,上述量基于干重。
24. 根据权利要求l的方法,其进一步包括向加热介质中加入含活性氧的气体,其量为0. 0005磅氧/磅提质装料至0. 01磅氧/磅提质装料,上述量基于干重。
25. 根据权利要求1的方法,其进一步包括向加热介质中加入含活性氧的气体,其量足以引起装料中的汞水平下降。
26. 根据权利要求l的方法,其进一步包括经由间接热交换对至少一部分装料进行加热。
27. 根据权利要求1的方法,其进一步包括在与加热介质直接接触之前使装料的尺寸在预定的尺寸上限和下限之内。
28. 根据权利要求27的方法,其中所述的装料原料的尺寸在尺寸上限和下限内遵循装料原料的Rosin-Rammler指数分布。
29. 根据权利要求1的方法,其中所述的含碳原料包括煤。
30. 根据权利要求l的方法,其进一步包括在加热装料的同时将不可凝结的气体排出,以使得整个装料保持均匀的温度条件。
31. 根据权利要求30的方法,其中所述的排气在加热装料的同时连续进行。
32. 根据权利要求30的方法,其中所述的排气在加热装料的同时周期性地进行。
33. 通过根据权利要求28的方法提质的煤。
全文摘要
对含碳原料在加压蒸汽环境中进行热提质,以去除水分和其他副产品。加工容器中可以采用多种水/固体分离装置,以尽量多地从被提质的装料中去除水分。加热介质吸入喷嘴和加工室通气口策略设计在加工容器壁上,以尽量减少加热介质至容器排气口的短路,并连续地从装料和凝结蒸汽中去除热水,使得从加工容器中去除的提质原料在排出时不携带游离水分。提质后,可以对装料进行再水合,以提高运输和储存过程中的稳定性。
文档编号B01J8/00GK101724480SQ20091025347
公开日2010年6月9日 申请日期2005年3月11日 优先权日2004年5月3日
发明者M·F·雷, M·L·施莱格尔, P·J·迈耶, R·F·霍格西特, S·L·舒尔茨 申请人:长青能源公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1