具有提高的机械稳定性的用于甲醇合成的压片的催化剂的制作方法

文档序号:18299927发布日期:2019-07-31 09:57阅读:205来源:国知局

本发明涉及基于压片的催化剂成形体的改进的催化剂,其含有铜、锌和铝,具有作为粘结剂材料的铝酸钙,用于从合成气合成甲醇,其特征在于,催化剂成形体包含1.0至30.0%的量的铝酸钙的重量份额,基于催化剂成形体计。本发明此外还涉及催化剂的制备以及其在由合成气合成甲醇中的用途。



背景技术:

用于甲醇合成的催化方法在工业中具有重要意义。由于大于8千万吨每年的消耗量,甲醇属于最重要的工业化学品和中间体。在工业规模中,通常从由co、co2和h2组成的合成气出发在升高的压力和升高的温度进行甲醇合成。

作为催化剂,在这种情况下合适的是基于铜和锌的体系。它们通常以片料、挤出物或粒料存在。

wo2004/085356描述了用于羰基化合物的氢化的催化剂的制备,所述催化剂除了铜和铝以外,含有镧、钨、钼、钛或锆的至少一种氧化物,并且此外混入了铜粉或铜薄片、水泥粉末或石墨。

在us6,020,285中描述了含钴或镍的催化剂的制备,所述催化剂此外包含具有大于2.5的al/ca比例的铝酸钙。所述催化剂适合于分解次氯酸盐。

wo98/11985公开了含钴或镍的催化剂,此外其还包含具有大于4.0的al/ca比例的铝酸钙以及氧化铝和/或氧化镁。所述催化剂适合于分解氧化性物质。

在us7,084,312中描述了基于铜、锌和铝的催化剂的制备,为此将铜、锌和铝的氧化性混合物与金属铜、水泥或两种材料的混合物混合并且成形成片料。所述催化剂用于氢化具有羰基的有机化合物。

yakersonetal.(scientificbasesforthepreparationofheterogeneouscatalysts,preparationofcatalysts,第879页及之后)描述了含水泥的金属催化剂,例如含镍、铜或锌的催化剂的制备。为此使用对应的金属羟基碳酸盐。

用于甲醇合成的反应器的填充在工业规模上通过将反应器用催化剂成形体从反应器上端起负载而进行。由此,催化剂成形体在碰撞到底部上时经历强烈的机械负荷,这部分地导致单个催化剂成形体破裂或者导致将单个成分磨掉。这在合成操作期间导致反应器的部分阻塞和压降的明显升高。这与压缩机大幅提高的能量需求并且因此更高的操作成本相关。此外,升高的压降产生反应器的更强的机械负荷,达到反应器的设计极限,即反应器在没有损坏的情况下,例如反应器壁可以承受的压力升高。这样的结果在于,必须降低装置中的体积流量或必须中断装置运行,以实施重新装填。两者都引起可观的生产损失,这降低了工艺的经济性。

除了对于反应器的加载而言重要的在氧化形式下的断裂强度,催化剂成形体还必须具有在其经还原的形式下的足够的抗压强度,其在甲醇合成中的反应条件下以经还原的形式存在,以承受住由工艺反应器中的催化剂床的总重量导致的机械负荷。由于催化剂床的自重和由于在甲醇合成的过程期间的工艺压力,催化剂成形体经受另外的机械负荷。在其经还原的形式下的催化剂的低的机械稳定性导致了,来自破裂的成形体的颗粒的份额随着时间流逝上升以及导致压降的进一步升高和催化活性的可能的降低。



技术实现要素:

本发明的任务因此在于提供用于甲醇合成的催化剂,其特点在于改进的机械断裂强度和侧向抗压强度,尤其是在经还原的状态下。

所述任务通过根据本发明的催化剂得以解决。

本发明涉及片料形式的催化剂成形体,其包含含有铜、锌和铝的含金属的混合物和作为粘结剂材料的铝酸钙,其中铝酸钙的重量份额基于催化剂成形体计在1.0%至30.0%范围内;以及涉及所述催化剂成形体的制备和作为甲醇合成中的催化剂的用途。

根据本发明的催化剂成形体通过以下根据本发明的步骤而制备:

a)混合含有铜、锌和铝的含金属的混合物与铝酸钙和润滑剂和任选的水,

b)在步骤a)之后将混合物压片,以获得压片的成形体,

c)将压片的成形体在介于100℃与500℃之间的温度热处理介于30min与4h之间的时间。

具体实施方式

在步骤c)之后的催化剂成形体中的铝酸钙的重量份额在1.0%至30.0%范围内,优选在5.0%至20.0%范围内,更优选在10.0%至15.0%范围内。

在步骤a)中使用的含有铜、锌和铝的含金属的混合物可以选自氧化物、氢氧化物或碳酸盐。在此优选适合的是对应元素的氧化物。所述元素在这种情况下既可以作为单独的化合物,如氧化铜、氧化锌或氧化铝存在,又可以作为混合化合物,如铜、锌和铝的混合物氧化物存在。

在步骤a)中使用的含金属的混合物可以通过使溶解的金属离子从水溶液中沉淀而获得。作为起始化合物,在这种情况下原则上适合的是可以溶于水、碱性或酸性水溶液中的所有化合物。优选使用硝酸盐、卤化物、氧化物、硫酸盐、乙酸盐或甲酸盐。此外,铝还可以作为铝酸盐存在。

在步骤a)中使用的含金属的混合物可以优选事先经受热处理。在这种情况下,温度为优选200至500℃,更优选250至400℃,最优选300至400℃。

在步骤a)之后获得的混合物含有含金属的混合物、铝酸钙和润滑剂。任选地还可以在步骤a)中添加水,从而使得混合物在步骤a)之后还含有水。如果在步骤a)中添加水,则其以0.5至20.0重量%,优选1.0至15.0重量%并且特别优选5.0至10.0重量%的份额添加,基于来自步骤a)的混合物的干质量计。

如果在步骤a)中添加水,则可以使在步骤a)中获得的混合物随后任选地经历陈化步骤。在这种情况下将混合物储存5min至3h,而不添加其它组分或者使混合物保持运动。陈化温度通常对应于混合物的环境温度,但是可以将其以受控的方式在0℃至90℃范围内进行调节。

在步骤a)之后获得的混合物(还任选地对其进行陈化),随后通常在没有热处理的情况下任选地进行压实和/或造粒,然后经历压片步骤b)。在这种情况下使用市售压片机,例如imakilian公司的pressima型。要使用的压片压力在这种情况下通常在10n/mm2以上的范围。混合物在步骤a)之后含有润滑剂。它们为有益于混合物的压片性质的化合物。合适的润滑剂为石墨、油或硬脂酸盐,优选石墨。将润滑剂优选以0.1至5.0重量%的份额添加至待压片的物料,更优选0.5至5.0重量%并且特别优选1.0至4.0重量%。

片料的热处理在介于100与500℃之间,优选介于150与400℃之间的温度进行。该热处理的时间为介于30min与4h之间,优选介于1与3h之间并且特别优选2h。

来自步骤a)的含金属的混合物中的铜比锌的原子比例可以在宽范围内变化,但是优选使其适应于用于甲醇合成的常规催化剂。来自步骤a)的含金属的混合物中的铜比锌的原子比例为介于4与1之间,优选介于3.0与2.0之间并且特别优选介于2.5与2.2之间。来自步骤a)的含金属的混合物中的铜比铝的原子比例为介于7.0与3.0之间,优选介于6.0与3.5之间,并且特别优选介于5.2与3.8之间。来自步骤a)的含金属的混合物中的锌比铝的原子比例为介于4.0与0.5之间,优选介于2.8与1,3之间,并且特别优选介于2.2与1.5之间。

铝酸钙为含有氧化物和/或氢氧化物形式的ca和al的化合物。例如为通式xcao·yal2o3的经煅烧的铝酸钙或为通式caaalb(oh)c的化学沉淀的铝酸钙。但是取决于铝酸钙的处理,也可以存在这两种经验式的中间阶段,其同样适合于作为粘结剂材料。除了这些元素以外,在铝酸钙中还可以存在其它元素。在一个优选的实施方案中,铝酸钙以基于铝酸钙的重量计小于5.0重量%,优选小于1.0重量%并且特别优选小于0.1重量%的重量份额含有其它元素。

在本发明中使用的铝酸钙的ca/al原子比例可以变化并且为优选介于0.9与3.5之间,还更优选介于1.0与2.0之间。

适合作为铝酸钙的是合成制备的材料。但也可以使用天然存在的铝酸钙,例如加藤石。

压片的催化剂成形体可以以各种各样的尺寸存在。片料的直径在这种情况下可以为介于2与8mm之间并且优选介于4与7mm之间。特别优选地,直径为6mm。片料的高度可以为介于2与6mm之间并且优选介于3与5mm之间。特别优选地,高度为4mm。

铝酸钙在作为粘结剂材料使用之前可以经历热处理(煅烧)。这在介于100与500℃之间,优选介于150与400℃之间并且特别优选介于200与300℃之间的温度进行。

在本发明的一个实施方式中,铝酸钙的颗粒具有d50值在0.5至150μm范围内的平均粒度,这根据激光散射法(低角度激光散射,lowanglelaserlightscattering),例如采用malvernmastersizer2000测量。

在根据本发明的催化剂成形体中的铜比锌原子比例可以在宽界限内变化,但是优选适应于用于甲醇合成的常规催化剂。催化剂成形体中的cu/zn原子比例为介于4与1之间,优选介于3.0与2.0之间,并且特别优选介于2.5与2.2之间。

采用根据本发明的方法制备的片料形式的催化剂在氧化状态下具有50至300n,优选100至250n,特别优选150至250n的侧向抗压强度。优选地,通过压片制备的片料具有在5至7mm范围内的直径,在3至5mm范围内的高度和在160至220n范围内的侧向抗压强度。

在另一实施方案中,将在步骤(c)中获得的压片的成形体在下一个步骤(d)中进行还原。

在这种情况下优选通过在还原性气氛中加热压片的催化剂成形体进行还原。还原性气氛例如为氢气。优选地,向氢气混入惰性气体,例如氮气。氢气-氮气混合物中的氢气的份额在这种情况下典型地在1至4体积%范围内。例如在150℃至450℃范围内,尤其是在180℃至300℃范围内,优选在190℃至290℃范围内的温度,特别优选在约250℃进行还原。

例如取决于待还原的催化剂量,使还原进行1小时(例如对于500g)至10天(例如对于100吨)的时间段,尤其是进行2小时至120小时的时间段,优选进行24至48小时的时间段。优选将生产规模的催化剂量(例如在1至60吨范围内)还原3至8天的时间段。

在优选的实施方案中,将催化剂成形体在还原之后以湿或干的方式稳定化。在湿稳定化的情况下,将催化剂成形体用液体覆盖,以尽可能避免与氧气接触。合适的液体包括有机液体和水,优选有机液体。优选的有机液体为在20℃时具有0.5hpa以下的蒸气压的那些。这样的合适的有机液体的实例为异癸醇、nafol、脂肪醇、十六烷、2-乙基己醇、丙二醇及其混合物,特别是异癸醇。

在干稳定化的情况下,在还原空间中计量添加氧气或含氧气的气体,优选空气与惰性气体,如氩气或氮气的混合物。在混合物中的氧气的浓度优选为从约0.04体积%升高至约21体积%。例如可以计量添加空气与惰性气体的混合物,其中空气比惰性气体的比例在一开始为约0.2体积%空气比99.8体积%惰性气体。然后空气比惰性气体的比例逐渐升高(例如连续或逐步)直至最后例如计量添加100体积%空气(相当于约21体积%的氧气浓度)。不欲受制于理论,推测通过计量添加空气或氧气,在催化剂的表面上形成具有例如0.5至50nm,优选1至20nm,特别优选1至10nm的厚度的薄的氧化物层,其保护催化剂成形体免受另外的氧化。在干稳定化的情况下,反应器温度为优选100℃以下,特别优选20℃至70℃并且最优选30℃至50℃。可以以器外方式或以原位方式在其中填充有作为催化剂的催化剂成形体的反应装置中进行还原。

片料在还原性条件下处理并且随后干稳定化之后具有40至200n,优选40至100n,更优选50至100n,特别优选50至80n的侧向抗压强度。

根据本发明的催化剂成形体的特征在于,其以基于催化剂成形体计1.0%至30.0%的重量份额含有铝酸钙。优选地,所述份额为5.0%至20.0%并且特别优选8.0%至12.0%。

经还原的催化剂成形体的活性铜表面积为介于20m2/g与50m2/g之间,优选介于20m2/g与40m2/g之间,特别优选介于25m2/g与36m2/g之间。

通过根据本发明的方法能够获得的催化剂优选具有在70至150m2/g,尤其是75至140m2/g并且特别优选80至120m2/g范围内的bet表面积。

借助压汞法测量的根据本发明的催化剂成形体的孔体积为介于150mm3/g与400mm3/g之间,优选介于250mm3/g与350mm3/g之间,特别优选介于300与350mm3/g之间。

优选地,根据本发明的催化剂成形体的具有7.0至40.0nm的半径的孔的孔体积份额为总孔体积的介于50与95%之间,优选介于80与90%之间。

此外,本发明的主题为根据本发明的催化剂成形体在由合成气合成甲醇中的用途。在这种情况下将合成气理解为含有co、co2和h2的气态组合物。在这种情况下,合成气通常由5至25体积%的co、6至12体积%的co2、10至30体积%的至少一种在反应条件下惰性的气体,例如氮气和/或甲烷组成,组合物的余量为h2。

甲醇合成的通常的反应温度为介于200与300℃之间,优选介于210至280℃,压力通常在40至150bar,优选60至100bar范围内,和组合物的空速在2000至22000h1范围内。将空速理解为每小时的合成气的体积流量与催化剂的空间体积(在催化剂床的情况下该床的表观体积)的商。

实施例

在本发明的范围内,通过如下进行烧失量的测定:测定约1-2g待分析材料的样品的重量,随后将其在空间气氛下加热至900℃并且在该温度储存3h。随后将样品在保护气氛下冷却并且测量剩余重量。在热处理之前与之后的重量差异对应于烧失量。

侧向抗压强度的测定根据dinen1094-5进行。在此测量在统计学上显著的数量的片料(至少40个片料)并且计算各个测量的算术平均值。该平均值对应于特定样品的侧向抗压强度。

为了测定经还原和干稳定化的催化剂成形体的侧向抗压强度,将特定的量在还原气体(2体积%的h2于n2中)下加热至200℃并且在该温度还原24h。将材料在氮气流下冷却至室温。然后向氮气流计量添加合成空气并且因此将材料钝化。然后如上一段落所描述测定经如此处理的样品的侧向抗压强度。

通过如下进行断裂强度的测定:使100g根据本发明的片料通过具有60mm直径和3m长度的垂直安装的钢管下落。在通过钢管之后,将片料收集在烧杯中。随后通过光学鉴定测定经历了下落过程而没有剥落、产生断裂边缘或与原始圆柱形状的其它偏差的片料的份额。断裂份额能够确定为所使用的片料与经历了下落过程而没有剥落、产生断裂边缘或与原始圆柱形状的其它偏差的片料之间的差异除以所使用的片料的重量。

bet比表面积借助氮气吸附按照din66131进行测定。

催化剂成形体的孔体积按照压汞法根据din66133进行测量。

催化剂成形体中的铝酸钙的重量份额可以借助x射线衍射法确定。为此在5至902°θ(步进为0.0202°θ,每步1.5秒测量时间)范围内测量样品。使用cukα辐射。将获得的反射强度的光谱借助rietveld精修进行定量分析并且测定样品中的铝酸钙的份额。为了测定各个晶相的份额,使用bruker公司的软件topas。

通过如下测定cu表面积:将催化剂成形体首先用研钵研磨并且将约100mg的100-250μm的筛分级分填充至石英玻璃反应器中。随后将催化剂如上文所描述在常压下进行还原/活化。在完成还原之后,将催化剂在he下变温至35℃。设计来检测n2o和n2的经校准的质谱仪位于反应器的废气流中。此时给予7.5sccm于he中的1%n2o的体积流并且分析流出的气流。通过在cu表面处的单质铜与n2o的反应产生经氧化的cu2o以及n2。通过在从反应器溢出的体积流中所含有的n2的信号面积以及n2o/he的校准的流量的积分可以测定以mol计的n2o的消耗。在假设1.47·1019个cu原子/m2的铜比表面积的情况下,可以计算表面积,因此将cu表面积确定为表面积与所称重的样品的商。

催化剂粉末的制备

为了制备催化剂,制备14重量%的碳酸钠水溶液并且升温至50℃。在第二容器中,在50℃将820g硝酸铜、120g氧化锌和260g硝酸铝溶于900g水和270g的68重量%的hno3。将硝酸盐溶液和碳酸钠溶液在65℃的温度同时在将ph值恒定保持在6.5的情况下合并(沉淀)。将悬浮液连续地从沉淀容器泵入陈化容器。在结束沉淀之后,将悬浮液在70℃陈化至少120分钟。颜色从浅蓝色(陈化开始)变成绿色(陈化结束)。在陈化之后,过滤悬浮液并且洗涤滤饼,直至通过原子吸收光谱法测定的滤饼的钠含量小于350ppm。使滤饼通过添加水而悬浮并且在喷雾干燥器中在270℃至275℃的入口温度和105℃至115℃的出口温度进行干燥,以获得固体催化剂前体。将获得的固体催化剂前体用于制备在下文描述的催化剂成形体。

为了以分析方式测定组成,将一部分固体催化剂前体在330℃热处理2h。化学组成为(以重量%计报告):64.0%cuo、27.8%zno、8.2%al2o3,基于在烧失之后的总质量计。这对应于经验式cuzn0.425al0.2o1.725。

然后将经干燥的粉末在320℃热处理2h并且用作压片实施例的起始原料。

对比实施例1(对比催化剂)

通过如下制备对比催化剂a:将500g催化剂粉末与2g石墨混合,然后成形成具有6mm直径和4mm高度的尺寸的片料。

实施例1(催化剂1)

将500g催化剂粉末与50g铝酸钙(secar71型,30重量%cao,70重量%al2o3)和10g石墨混合。随后将混合物成形成具有6mm直径和4mm高度的尺寸的片料。如此压片的样品不经历热处理。测定如此制备的片料样品以及事后还原的和干稳定化的样品的侧向抗压强度。

实施例2(催化剂2)

将500g催化剂粉末与50g铝酸钙(secar71型,30重量%cao,70重量%al2o3)和10g石墨混合。随后将混合物成形成具有6mm直径和4mm高度的尺寸的片料。随后将如此压片的样品在400℃热处理2h。测定如此制备的片料样品以及事后还原的和干稳定化的样品的侧向抗压强度。

实施例3(催化剂3)

将500g催化剂粉末与62.5g铝酸钙(secar71型,30重量%cao,70重量%al2o3)和10g石墨混合。随后将混合物成形成具有6mm直径和4mm高度的尺寸的片料。随后将如此压片的样品在400℃热处理2h。测定如此制备的片料样品以及事后还原的和干稳定化的样品的侧向抗压强度。

实施例4(催化剂4)

将500g催化剂粉末与100g铝酸钙(secar71型,30重量%cao,70重量%al2o3)和10g石墨混合。随后将混合物成形成具有6mm直径和4mm高度的尺寸的片料。随后使如此压片的样品在400℃热处理2h。测定如此制备的片料样品以及事后还原的和干稳定化的样品的侧向抗压强度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1