振动装置和光学检测装置的制作方法

文档序号:24787057发布日期:2021-04-23 10:58阅读:96来源:国知局
振动装置和光学检测装置的制作方法

1.本发明涉及振动装置和光学检测装置。


背景技术:

2.以往,振动装置在去除附着于作为监视装置的光学检测装置的雨滴等、音响装置等各种各样的用途中广泛地使用。在使用振动装置时,振动装置例如固定于外部的设备等。为了抑制振动的泄漏、阻尼,振动装置在成为节点的部分固定于外部的情况较多。
3.在下述的专利文献1中表示了压电振子的支承构造的例子。在该支承构造中,在进行呼吸振动的圆筒型压电振子的侧面配置有圆筒状的支承体。以支承体的顶端成为节点的方式,支承体的长度设为λ(2n+1)/4,并且支承体的顶端固定于外部。
4.现有技术文献
5.专利文献
6.专利文献1:日本特开昭62

254667号公报


技术实现要素:

7.发明要解决的问题
8.在振动时节点不移位,因此在节点处支承振动装置的情况下,振动的泄漏、阻尼被抑制。然而,实际上在成为节点的准确位置处支承振动装置是非常困难的。因此,支承振动装置的位置实际上是成为节点的位置的附近。在振动时,随着从节点远离而位移变大。因此,在支承振动装置的位置从成为节点的位置偏移的情况下,抑制来自支承振动装置的部分的振动的泄漏、振动的阻尼变得困难。
9.在此,在呼吸振动时,在节点的附近部分,施加以节点为中心的旋转力矩。因此,即使像专利文献1那样将成为节点的支承体的顶端与外部连接,对外部也施加以节点为中心的旋转力矩,因此充分地抑制振动的泄漏、阻尼变得困难。
10.本发明的目的在于,提供一种能够抑制振动的泄漏、阻尼的振动装置和光学检测装置。
11.用于解决问题的方案
12.本发明的振动装置具备:振动元件,其具有包括第1开口端面和第2开口端面的筒状的振动体;支承体,在将连结所述振动体的所述第1开口端面与所述第2开口端面的方向作为轴向时,该支承体沿所述轴向延伸,且支承所述振动体;以及连接构件,其连接所述振动体与所述支承体,所述振动体以在所述振动元件的所述轴向上的不同位置产生第1节点和第2节点的方式进行呼吸振动,所述连接构件位于所述第1节点与所述第2节点之间。
13.本发明的光学检测装置具备根据本发明构成的振动装置和光学检测元件,该光学检测元件配置为在所述振动装置所具有的盖体包括检测区域。
14.发明的效果
15.根据本发明,能够提供一种能够抑制振动的泄漏和阻尼的振动装置和光学检测装
置。
附图说明
16.图1是本发明的第1实施方式的振动装置的示意性正面剖视图。
17.图2是本发明的第1实施方式的振动装置的示意性分解立体图。
18.图3是具有本发明的第1实施方式的振动装置的成像设备的示意性正面剖视图。
19.图4用于说明本发明的第1实施方式的振动装置的振动和连接构件的位置的图。
20.图5是用于说明本发明的第1实施方式的振动装置的振动的要素矢量图。
21.图6是表示本发明的第1实施方式的振动体的各位置的径向上和轴向上的振动的位移量的图。
22.图7是表示连接构件在支承体中的位置与支承体的底部的位移量的关系的图。
23.图8是在将节点间的距离设为l+1mm的情况下的振动元件的要素矢量图。
24.图9是在将节点间的距离设为l

0.5mm的情况下的振动元件的要素矢量图。
25.图10是在将节点间的距离设为l+20mm的情况下的振动元件的要素矢量图。
26.图11是表示在将节点间的距离设为l+1mm的情况下的振动体的各位置的轴向上的振动的位移量的图。
27.图12是表示在将节点间的距离设为l

0.5mm的情况下的振动体的各位置的轴向上的振动的位移量的图。
28.图13是表示在将节点间的距离设为l+20mm的情况下的振动体的各位置的轴向上的振动的位移量的图。
29.图14是用于说明本发明的第1实施方式的第1变形例的振动装置的振动的图。
30.图15是本发明的第1实施方式的第2变形例的振动装置的示意性正面剖视图。
31.图16是本发明的第1实施方式的第3变形例的振动装置的示意性俯视图。
32.图17是本发明的第2实施方式的振动装置的示意性正面剖视图。
33.图18是本发明的第2实施方式的变形例的振动装置的示意性正面剖视图。
34.图19是本发明的第3实施方式的支承体的示意性立体图。
35.图20是本发明的第4实施方式的支承体的示意性立体图。
36.图21是本发明的第4实施方式的第1变形例的支承体的示意性立体图。
37.图22是本发明的第4实施方式的第2变形例的支承体的示意性立体图。
38.图23是表示本发明的第5实施方式的支承体的局部的示意性正面剖视图。
39.图24是表示本发明的第6实施方式的支承体的局部的示意性正面剖视图。
具体实施方式
40.以下,通过参照附图说明本发明的具体实施方式,来使本发明明确。
41.此外,要预先指出的是,本说明书中记载的各实施方式是例示性的,在不同的实施方式之间能够进行结构的局部置换或组合。
42.图1是本发明的第1实施方式的振动装置的示意性正面剖视图。图2是第1实施方式的振动装置的示意性分解立体图。
43.图1和图2所示的振动装置1是利用振动使水滴、异物移动而从摄像元件的视野内
去除水滴、异物的振动装置。但是,本发明的振动装置也能够用于上述以外的例如超声波传感器、麦克风、蜂鸣器等产生声压的用途等。
44.振动装置1具有振动元件2、支承振动元件2的支承体15以及连接振动元件2和支承体15的连接构件14。更具体来说,振动元件2具有大致圆筒体状的振动体3。振动元件2的振动体3和支承体15由连接构件14连接。在振动装置1中,构成由振动元件2、连接构件14和支承体15包围的内部空间。
45.图3是具有第1实施方式的振动装置的成像设备的正面剖视图。
46.在由振动元件2、连接构件14和支承体15包围的内部空间内配置有用单点划线表示的摄像元件10a。由此构成作为本发明的一个实施方式的光学检测装置的成像设备10。成像设备10具有振动装置1和摄像元件10a。作为摄像元件10a,例如能够列举出接收从可见区域到远红外区域的任一波长的光的cmos、ccd、辐射热测量计、热电堆等。作为成像设备10,例如能够列举出照相机、radar、lidar设备等。
47.此外,在上述内部空间内,也可以配置有摄像元件10a以外的光学地检测能量线的光学检测元件。作为所检测的能量线,例如可以是电磁波、红外线等活性能量线。光学检测元件的检测区域包含于后述的透光体7。在图3所示的成像设备10中,摄像元件10a的视野包含于透光体7。本说明书中的透光性是指供至少上述光学检测元件所检测的波长的能量线、光透过的透光性。
48.以下说明振动装置1的详细情况。
49.如图1所示,振动元件2具有上述振动体3、作为盖体的透光体7以及压电振子8。振动体3具有第1开口端面3a和第2开口端面3b以及连接第1开口端面3a与第2开口端面3b的外侧面3c和内侧面3d。在本说明书中,将连结振动体3的第1开口端面3a与第2开口端面3b的方向作为轴向,将与轴向正交的方向作为径向。
50.振动体3具有圆筒状的第1振动体部4、圆筒状的第2振动体部5以及连结第1振动体部4与第2振动体部5的圆环状的连结部6。振动体3是第1振动体部4、连结部6和第2振动体部5以各自的中心轴线成为相同位置的方式配置而成的筒状体。第1振动体部4包括振动体3的第1开口端面3a。第2振动体部5包括振动体3的第2开口端面3b。此外,第1振动体部4、第2振动体部5和连结部6的形状不限定于上述形状。第1振动体部4、第2振动体部5和连结部6的形状是以成为一个筒状体的方式连续地连接的形状即可。而且,振动体3也不限定于具有第1振动体部4、第2振动体部5和连结部6的结构,只要是筒状体即可。振动体3例如也可以是大致方筒状。
51.在此,在本说明书中,在没有特别说明的情况下,外周缘和内周缘是指俯视观察时的外周缘和内周缘。在俯视观察时,连结部6、第1振动体部4和第2振动体部5的外周缘重叠。另一方面,连结部6的内周缘位于比第1振动体部4和第2振动体部5的内周缘靠外侧的位置。在将沿着与轴向正交的方向的厚度作为壁厚时,连结部6的壁厚比第1振动体部4的壁厚和第2振动体部5的壁厚薄。在振动体3中,连结部6的内径比其他部分的内径大。
52.振动体3的外侧面3c通过第1振动体部4、连结部6和第2振动体部5的各外侧面连结而构成。同样地,振动体3的内侧面3d通过第1振动体部4、连结部6和第2振动体部5的各内侧面连结而构成。在本实施方式中,内侧面3d在连结部6的部分具有台阶部。另一方面,外侧面3c不具有台阶部。
53.在振动体3的第1开口端面3a上以覆盖开口部的方式设有透光体7。透光体7是具有透光性的盖体。在本实施方式中,透光体7是圆顶状,但透光体7也可以是平板状。作为透光体7的材料,例如能够使用透光性的塑料、玻璃或透光性的陶瓷等。
54.在振动体3的第2开口端面3b上设有压电振子8。此外,设有压电振子8的部分不限定于上述部分。压电振子8具有圆环状的压电体8a。压电体8a例如由pb(zr、ti)o3、(k、na)nbo3等适当的压电陶瓷或litao3、linbo3等适当的压电单晶构成。
55.压电振子8具有设于压电体8a的一个主面上的第1电极9a和设于另一个主面上的第2电极9b。第1电极9a和第2电极9b是圆环状,以彼此相对的方式设置。第1电极9a和第2电极9b分别与外部电连接。虽然在本实施方式中设有一个圆环状的压电振子8,但不限定于此,例如也可以沿着外侧面3c设有多个矩形板状的压电振子。
56.压电振子8在第1电极9a侧与振动体3接合。压电振子8进行呼吸振动,使振动体3呼吸振动,且使振动体3与透光体7的连结体振动。在此,呼吸振动是指沿环状的压电振子或筒状的振动体的径向移位的振动模式。此外,振动元件2也可以未必具有压电振子8,只要具有使振动体3呼吸振动的振子即可。
57.在振动体3的外侧面3c连接有圆环状的上述连接构件14。更具体来说,连接构件14具有外侧面和内侧面。连接构件14的内侧面与振动体3的外侧面3c连接。在振动装置1中,连接构件14以从振动体3的外侧面3c向径向外侧延伸的方式设置。此外,也可以是振动体3与连接构件14作为一体地设置。在此,参照下述的图4,更具体地表示连接构件14的位置。
58.图4是用于说明第1实施方式的振动装置的振动和连接构件的位置的图。图4表示相当于图1所示的剖面的径向的一半的部分。
59.振动体3以在振动元件2的轴向上的不同位置产生第1节点n1和第2节点n2的方式进行呼吸振动。更具体来说,在本实施方式中,第1节点n1位于振动体3,第2节点n2位于透光体7。连接构件14位于第1节点n1与第2节点n2之间。
60.此外,虽然本实施方式的振动体3以产生两处节点的方式进行呼吸振动,但也可以以产生三处以上的节点的方式进行呼吸振动。在该情况下,第1节点n1与第2节点n2也是相邻的节点。
61.返回图1,在连接构件14的外侧面连接有上述支承体15。支承体15具有作为与连接构件14连接的部分的连接部15a。支承体15借助连接构件14与振动体3连接,而支承振动体3。
62.支承体15是沿轴向延伸的圆筒体。此外,支承体15的形状不限定于上述形状,例如只要是方筒状等沿轴向延伸的形状即可。支承体15具有外侧面15c和内侧面15d。上述连接部15a位于支承体15的内侧面15d的图1中的上方端部附近。此外,支承体15与连接构件14也可以作为一体地设置。
63.支承体15具有包括图1中的下方端部的底部15b。振动装置1在支承体15的底部15b固定于外部。或者也可以是,在底部15b接合有底板,由振动元件2、连接构件14、支承体15和底板构成密闭空间。
64.本实施方式的特征在于,振动体3以在振动元件2的轴向上的不同位置产生第1节点和第2节点的方式进行呼吸振动,且连接振动体3与支承体15的连接构件14位于第1节点与第2节点之间。由此,振动不易泄漏到支承体15的底部15b。因此,在将振动装置1固定于外
部时,振动装置1的振动阻尼不易产生。在以下说明该详细情况。
65.图5是用于说明第1实施方式的振动装置的振动的要素矢量图。图5表示与图4同样的部分。
66.如图5所示,振动元件2的第1节点n1和第2节点n2的周围的振动具有旋转力矩。因此,振动元件2的振动具有径向的分量和轴向的分量。在本实施方式中,连接构件14位于轴向上的振动的位移量约为0μm的部分。此外,在本说明书中,在没有特别说明的情况下,位移量表示为绝对值。
67.图6是表示第1实施方式中的振动体的各位置的径向上和轴向上的振动的位移量的图。在图6中,横轴表示振动体的轴向位置。横轴的0mm表示振动体的第1开口端面的位置。图6中的实线表示轴向上的位移量,虚线表示径向上的位移量。单点划线a表示配置有连接构件的位置,单点划线b表示第1节点的位置。
68.如图6所示,在配置有连接构件14的位置,轴向上的振动的位移量约为0μm,径向上的振动的位移量约为3.3μm。另一方面,在第1节点的位置,径向上的振动的位移量约为0μm,但轴向上的振动的位移量约为0.5μm。
69.在此,制作了具有第1实施方式的结构的振动装置和将连接构件配置于第1节点的位置的比较例的振动装置。接着比较了第1实施方式和比较例的振动装置的支承体的底部的位移量。此外,所比较的位移量是将径向上的分量与轴向上的分量合成而得到的位移量。
70.在比较例中,支承体的底部的位移量约为2.4μm。与此相对,在第1实施方式中,支承体的底部的位移量约为0.2μm。这样可知在第1实施方式中能够抑制振动元件的振动泄漏到支承体的底部。
71.在振动体的呼吸振动时,对节点的附近以节点为中心地施加旋转力矩。因此,即使像比较例那样将连接构件连接于振动体的第1节点的位置,也对连接构件施加旋转力矩。在此,在比较例中,连接构件的轴向位置与节点的轴向位置相同。因此,针对由于施加旋转力矩而向连接构件泄漏的振动而言,宽度方向的位移量较小,但轴向上的位移量较大。在针对经由连接构件泄漏到支承体的振动而言轴向上的位移量较大的情况下,沿轴向延伸的支承体的底部的位移量也变大。因此,抑制振动泄漏到支承体的底部变得困难。而且,当在支承体的底部将振动装置固定于外部时,底部的振动被约束,因此抑制振动的阻尼也变得困难。
72.针对于此,在图4所示的第1实施方式中,连接构件14位于第1节点n1与第2节点n2之间。在第1节点n1与第2节点n2之间,将两个节点作为中心的两个旋转力矩合成,因此轴向上的位移量变小。由此,能够有效地减小连接构件14的振动的轴向上的位移量。即使径向的振动向沿轴向延伸的支承体15传递,支承体15的底部15b也不易移位。因此,能够抑制振动元件2的振动泄漏到支承体15的底部15b。而且,底部15b的位移量非常小,因此在振动装置在底部15b固定于外部的情况下,振动的阻尼不易产生。
73.在振动体3中,连接有连接构件14的部分的轴向上的振动的位移量优选为第1节点n1所位于的部分的轴向上的振动的位移量的90%以下,更优选为40%以下。但是,特别优选为轴向上的位移量为0μm。由此,能够进一步抑制振动的泄漏和阻尼。这由下述的图7表示。
74.图7是表示连接构件在支承体中的位置与支承体的底部的位移量的关系的图。此外,在求图7所示的关系时,使用第1实施方式的振动元件、连接构件和支承体,使连接构件的位置各不相同。在图7中,横轴表示振动体中配置有连接构件的轴向位置。横轴的0mm表示
振动体的第1开口端面的位置。
75.图7中的单点划线a表示第1实施方式中配置有连接构件的位置。单点划线c所示的位置是振动体的轴向上的位移量为第1节点所位于的部分的轴向上的振动的位移量的90%的位置。单点划线d所示的位置是振动体的轴向上的位移量为第1节点所位于的部分的轴向上的振动的位移量的40%的位置。双点划线e表示在第1节点的部分配置有连接构件的情况下的支承体的底部的位移量。双点划线f是表示在单点划线d所示的位置配置有连接构件的情况下的支承体的底部的位移量。
76.如图7所示,可知在单点划线c所示的位置配置有连接构件14的情况下,能够进一步可靠地减小支承体15的底部15b的位移量。这样,能够进一步可靠地抑制振动泄漏到底部15b。而且,可知在单点划线d所示的位置配置有连接构件14的情况下,如双点划线e和双点划线f所示,底部15b的位移量是连接构件14位于第1节点n1的部分的情况下的约50%。这样,能够有效地抑制振动泄漏到底部15b。当然,像本实施方式那样,在连接构件14位于轴向上的位移量约为0的部分的情况下,能够进一步抑制振动泄漏到底部15b。
77.如上所述,在第1节点n1与第2节点n2之间,轴向上的振动的位移量减小。而且,振动的位移量为0的部分位于第1节点n1与第2节点n2之间。以下示出它们与第1节点n1和第2节点n2之间的距离无关。此外,在本说明书中,在没有特别说明的情况下,节点间的距离是指第1节点n1与第2节点n2之间的距离。
78.制作了使节点间的距离与第1实施方式不同的多个振动元件。更具体来说,在将第1实施方式中的节点间的距离设为l时,分别制作了上述距离为l+1mm、l

0.5mm和l+20mm的振动元件。此外,通过使振动体的连结部的沿着轴向的长度不同,来使节点间的距离不同。接着测量了各振动元件的振动的位移量。
79.图8是在将节点间的距离设为l+1mm的情况下的振动元件的要素矢量图。图9是在将节点间的距离设为l

0.5mm的情况下的振动元件的要素矢量图。图10是在将节点间的距离设为l+20mm的情况下的振动元件的要素矢量图。
80.如图8~图10所示,在使节点间的距离不同的情况下,第1节点n1也位于振动体3,第2节点n2也位于透光体7。可知透光体7的振动的位移量与节点间的距离无关,并且比振动体3的第1开口端面3a与第1节点n1之间的振动的位移量大。这是由于,在共振区域中激励透光体的情况下的位移量由振动体的位移量与透光体的qm的积来表示。在此,qm是弹性损失系数的倒数。更详细地讲,如果在压电振子中产生的振动向振动体传递,振动体以共振频率振动,则在压电振子中产生的振动的位移放大振动体的qm倍。在将从压电振子产生的振动的振幅设为1并将振动体的qm设为qm1时,振动体的固有振动模式的振幅为1
×
qm1。如果在压电振子中产生的振动经由振动体向透光体传递,透光体以共振频率振动,则在压电振子中产生的振动的位移进一步放大透光体的qm倍。在将透光体的qm设为qm2时,透光体的固有振动模式的振幅为1
×
qm1×
qm2。因此,共振时的振动体的振动的位移比透光体的振动的位移小。此外,上述的关系与作为透光体的盖体和不具有透光性的盖体的材料无关地成立。
81.图11是表示将节点间的距离设为l+1mm的情况下的振动体的各位置的轴向上的振动的位移量的图。图12是表示将节点间的距离设为l

0.5mm的情况下的振动体的各位置的轴向上的振动的位移量的图。图13是表示将节点间的距离设为l+20mm的情况下的振动体的各位置的轴向上的振动的位移量的图。在图11~图13中,横轴的0mm表示振动体的第1开口
端面的位置。
82.如图11所示,可知在将节点间的距离设为l+1mm的情况下,也与第1实施方式同样,轴向上的振动的位移量为0的部分位于第1节点n1与第2节点n2之间。而且,横轴所示的振动体3的位置越靠近轴向上的振动的位移量为0的部分的位置,轴向上的振动的位移量越接近0。因此,可知在横轴的值为0mm的第1开口端面3a与第1节点n1之间,轴向上的振动的位移量较小。同样地,如图12和图13所示,可知在将节点间的距离设为l

0.5mm的情况下和设为l+20mm的情况下,轴向上的振动的位移量为0的部分位于第1节点n1与第2节点n2之间。而且,可知在第1节点n1与第2节点n2之间,轴向上的位移量减小。这样,可知与节点间的距离无关地,轴向上的振动的位移量为0的部分位于第1节点n1与第2节点n2之间,在第1开口端面3a与第1节点n1之间,轴向上的位移量减小。
83.另外,如上述那样,第2节点n2所位于的透光体7的位移量比振动体3的第1开口端面3a与第1节点n1之间的振动的位移量大。因此,可知与节点间的距离无关地,在第1节点n1与第2节点n2之间,轴向上的位移量减小。
84.返回图1,支承体15的材料例如优选为金属材料等具有弹性的材料。在该情况下,支承体15容易变形。由此,在振动元件2的振动经由连接构件14传递到支承体15时,支承体15的连接部15a附近容易变形。因此,能够抑制支承体15整体一体地移位,能够抑制支承体15的底部15b移位。因此,能够有效地抑制振动泄漏到底部15b,并且也能够有效地抑制振动的阻尼。此外,在支承体15的材料是金属材料的情况下,也能够提高刚度,因此除了获得上述效果以外,还不易破损。在振动体3由金属材料构成的情况下,优选在压电振子8与振动体3之间设有绝缘膜。
85.振动体3、连接构件14和支承体15优选由相同的材料构成。在该情况下,能够抑制振动的反射等,振动装置1的振动不易衰减。振动体3、连接构件14和支承体15更优选由金属材料构成。由此,像上述那样,能够有效地抑制振动的泄漏和阻尼。此外,振动体3、连接构件14和支承体15也可以由陶瓷材料等构成。
86.以下表示第1实施方式的第1变形例~第3变形例。在第1变形例~第3变形例中,也能够与第1实施方式同样地抑制振动的泄漏和阻尼。
87.在图14所示的第1变形例中,第1节点n1和第2节点n2这两者位于振动体3,且连接构件14位于第1节点n1与第2节点n2之间。
88.在图15所示的第2变形例中,在振动体3的第1开口端面3a上设有不具有透光性的圆板状的盖体27。盖体27例如由金属材料、陶瓷材料等构成。本变形例的振动装置例如能够用于超声波传感器、麦克风、蜂鸣器等产生声压的用途等。
89.在图16所示的第3变形例中,振动体3和支承体15利用在将轴向作为旋转轴线的周向上分散地配置的多个连接构件24来连接。此外,在图16中,利用阴影来表示连接构件24。各连接构件24具有圆环的弧的形状。与第1实施方式同样地,多个连接构件24位于第1节点n1与第2节点n2之间。
90.图17是第2实施方式的振动装置的示意性正面剖视图。
91.本实施方式与第1实施方式的不同点在于,支承体35的底部35b的壁厚与其他部分的壁厚相比较厚。更具体来说,在支承体35中,在底部35b以外的部分壁厚是相同的。底部35b向径向外侧延伸,并且支承体35的沿着轴向的剖面具有大致l字形的形状。除了上述不
同点以外,本实施方式的振动装置具有与第1实施方式的振动装置1同样的结构。
92.在支承体35中,底部35b以外的部分的壁厚比底部35b的壁厚薄,因此位于比底部35b靠连接部15a侧的位置的部分比底部35b容易变形。由此,在振动元件2的振动经由连接构件14传递到支承体35时,能够进一步使连接部15a侧的部分比底部35b更容易变形。因此,能够进一步抑制支承体35整体一体地移位。而且,由于底部35b的壁厚较厚,因此能够进一步抑制底部35b移位。因此,能够进一步抑制振动泄漏到底部35b,并且也能够进一步抑制振动的阻尼。
93.支承体35的底部35b的延伸方向不限定于径向外侧。在图18所示的第2实施方式的变形例中,支承体45的底部45b向径向内侧延伸,并且支承体45的沿着轴向的剖面具有大致l字形的形状。在该情况下,也能够进一步抑制振动的泄漏和阻尼。而且能够使振动装置小型化。
94.图19是第3实施方式的支承体的示意性立体图。
95.本实施方式与第1实施方式的不同点在于,支承体55为大致方筒状,且外侧面55c相对于轴向倾斜。除了上述不同点以外,本实施方式的振动装置具有与第1实施方式的振动装置1同样的结构。
96.俯视观察时的支承体55的外周缘的形状为正方形。支承体55的外侧面55c具有四个梯形的面连结而成的形状。另一方面,内侧面55d与第1实施方式同样地为圆柱状。
97.支承体55的外侧面55c以随着从底部55b侧朝向连接部15a侧去而壁厚变薄的方式相对于轴向倾斜。由此,位于比底部55b靠连接部15a侧的部分比底部55b容易变形。由此,与第2实施方式同样地,能够有效地抑制振动泄漏到支承体55的底部55b,并且也能够有效地抑制振动的阻尼。此外,俯视观察时的支承体55的外周缘的形状例如可以是正方形以外的多边形、大致多边形,或者也可以是圆形、大致圆形。
98.虽然在本实施方式中支承体55的外侧面55c相对于轴向倾斜,但也可以是,通过外侧面55c成为阶梯状,使得随着从底部55b侧朝向连接部15a侧去而壁厚变薄。在该情况下,也能够抑制振动的泄漏和阻尼。
99.图20是第4实施方式的支承体的示意性立体图。
100.本实施方式的支承体65的形状与第1实施方式不同。除了上述不同点以外,本实施方式的振动装置具有与第1实施方式的振动装置1同样的结构。
101.更具体来说,支承体65具有内周缘和外周缘为正方形的框状的底部65b。在底部65b的各角部上分别连接有柱部65e的一端。柱部65e沿轴向延伸。在本实施方式中,支承体65的柱部65e的壁厚是一定的,且与底部65b的壁厚相同。各柱部65e的另一端与框状部65f连接。更具体来说,框状部65f的外周缘为正方形,内周缘为圆形。各柱部65e连接于框状部65f的各角部上。框状部65f的内周缘是与上述连接构件14连接的连接部15a。
102.在支承体65中,与框状的底部65b相比,柱部65e更容易向与轴向正交的方向变形。由此,与第2实施方式同样地,能够有效地抑制振动泄漏到支承体65的底部65b,并且也能够有效地抑制振动的阻尼。此外,俯视观察时的底部65b和框状部65f的外周缘的形状例如可以是正方形以外的多边形、大致多边形,或者也可以是圆形、大致圆形。
103.在此,支承体65的柱部65e的壁厚与底部65b的壁厚也可以不相同。在如图21所示的第4实施方式的第1变形例的支承体75中,底部75b的壁厚与柱部65e的壁厚相比较厚。由
此能够进一步抑制底部75b移位。因此,能够进一步抑制振动泄漏到底部75b,并且也能够进一步抑制振动的阻尼。此外,虽然在本变形例中底部75b向与轴向正交的方向外侧延伸,但底部75b也可以向与轴向正交的方向内侧延伸。
104.在图20所示的支承体65中,柱部65e的壁厚是一定的,但不限于此。在图22所示的第4实施方式的第2变形例中,支承体76的柱部76e的沿着轴向的剖面具有大致直角三角形的形状。柱部76e的壁厚随着从底部76b侧朝向连接部15a侧去而变薄。由此,位于比底部76b靠连接部15a侧的部分比底部76b容易变形。由此,与第3实施方式同样地,能够有效地抑制振动泄漏到支承体76的底部76b,并且也能够有效地抑制振动的阻尼。
105.图23是表示第5实施方式的支承体的局部的示意性正面剖视图。
106.本实施方式与第1实施方式的不同点在于,支承体85的外侧面85c和内侧面85d具有波状的形状。除了上述不同点以外,本实施方式的振动装置具有与第1实施方式的振动装置1同样的结构。
107.支承体85的外侧面85c和内侧面85d为曲线状,且具有波状的形状。更具体来说,外侧面85c以重复外径在随着从底部侧朝向连接部侧去而变大后随着从底部侧朝向连接部侧去而变小的方式成为波状。内侧面85d以重复内径在随着从底部侧朝向连接部侧去而变大后随着从底部侧朝向连接部侧去而变小的方式成为波状。支承体85是重复在以壁厚随着从底部侧朝向连接部侧去而变厚的方式变化后以壁厚随着从底部侧向连接部侧去而变薄的方式变化的形状。
108.由于支承体85的外侧面85c和内侧面85d具有波状的形状,因此与支承体85的底部相比能够提高连接部侧的部分的弹性。由此,能够抑制支承体85整体一体地移位,能够抑制支承体85的底部移位。因此,能够有效地抑制振动泄漏到底部,并且也能够有效地抑制振动的阻尼。
109.在此,在支承体85的外侧面85c,将支承体85的外径在随着从底部侧朝向连接部侧去而变大后开始变小的点作为山的部分。将外径在随着从底部侧朝向连接部侧去而变小后开始变大的点作为谷的部分。另一方面,在支承体85的内侧面85d,将支承体85的内径在随着从底部侧朝向连接部侧去而变小后开始变大的点作为山的部分。将内径在随着从底部侧朝向连接部侧去而变大后开始变小的点作为谷的部分。外侧面85c的山的部分和内侧面85d的山的部分优选在轴向上相同。同样地,外侧面85c的谷的部分和内侧面85d的谷的部分优选在轴向上相同。由此能够适宜地提高支承体85的弹性。
110.支承体85的沿着轴向的剖面的形状更优选为相对于沿轴向延伸的对称轴呈轴对称。由此能够有效地提高弹性。
111.此外,支承体85的外侧面85c和内侧面85d可以为直线状且具有波状的形状。在该情况下,也能够提高弹性,能够抑制振动的泄漏和阻尼。
112.图24是表示第6实施方式的支承体的局部的示意性正面剖视图。
113.本实施方式与第2实施方式的不同点在于,支承体95的外侧面95c和内侧面95d两者都具有阶梯状的形状。除了上述不同点以外,本实施方式的振动装置具有与第2实施方式的振动装置同样的结构。
114.支承体95在多个部分弯曲为阶梯状。更具体来说,在支承体95中,沿轴向延伸的部分与沿径向延伸的部分交替地连接。由此能够提高支承体95的弹性。因此,与第5实施方式
同样地,能够抑制振动的泄漏和阻尼。
115.而且,在支承体95中,底部95b的壁厚与沿轴向延伸的部分的壁厚相比较厚。因此,与第2实施方式同样地,能够进一步抑制底部95b移位。因此,能够进一步抑制振动泄漏到底部95b,并且也能够进一步抑制振动的阻尼。
116.附图标记说明
117.1、振动装置;2、振动元件;3、振动体;3a、第1开口端面;3b、第2开口端面;3c、外侧面;3d、内侧面;4、第1振动体部;5、第2振动体部;6、连结部;7、透光体;8、压电振子;8a、压电体;9a、第1电极;9b、第2电极;10、成像设备;10a、摄像元件;14、连接构件;15、支承体;15a、连接部;15b、底部;15c、外侧面;15d、内侧面;24、连接构件;27、盖体;35、支承体;35b、底部;45、支承体;45b、底部;55、支承体;55b、底部;55c、外侧面;55d、内侧面;65、支承体;65b、底部;65e、柱部;65f、框状部;75、支承体;75b、底部;76、支承体;76b、底部;76e、柱部;85、支承体;85c、外侧面;85d、内侧面;95、支承体;95b、底部;95c、外侧面;95d、内侧面。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1