采用煅烧氧化铝吸附杂质co的制作方法

文档序号:5012377阅读:337来源:国知局

专利名称::采用煅烧氧化铝吸附杂质co的制作方法
技术领域
:本发明的目的是提供一种在大气深冷分离,具体地采用低温蒸馏分离之前预处理或净化大气的方法。人们知道大气含有将所述空气加入空气分离设备中低温试验箱的热交换器之前应除去的化合物,具体地是二氧化碳(CO2)和水蒸汽(H2O)。事实上,在没有这样一种用于除去其中的杂质CO2和H2O的空气预处理存在下,人们看到在低温下冷却空气时,这些杂质会冷凝并固化成冰,造成设备堵塞,尤其是堵塞热交换器,蒸馏塔等。另外,习惯上还要除去空气中可能存在的烃杂质,以免蒸馏塔塔底杂质烃的浓度太高,减小爆炸危险。实际上,酌情采用TSA法(变温吸附)或采用PSA法(变压吸附),进行这种空气预处理,而所述的PSA法应理解是严格意义上的PSA法,VSA法(变真空吸附),VPSA法等。通常,一个TSA法循环包括下述步骤a)在超大气压和室温下通过吸附杂质净化空气,b)吸附器降压直到大气压或大气压以下,c)在大气压下再生吸附剂,具体地采用典型地来自空气分离设备,并用一台或多台热交换器加热直到温度一般为100-200℃的不纯残留氮气或不纯废气再生吸附剂,d)将吸附剂冷却到室温或亚室温,尤其是连续地往吸附剂加入来自空气分离设备、但未加热的所述残留气体,e)使用例如来自其他处于生产阶段的吸附器的已净化空气使吸附器再加压。通常地,一个PSA法循环包括显然同样的步骤a),b)和e),但是与TSA法不同之处在于再生步骤(步骤c)没有将一种或多种残留气体再加热,因此没有步骤d),通常循环时间也比TSA法短。一般地,空气预处理设备包括两个交替运行的吸附器,即一个吸附器处于生产阶段,另一个吸附器处于再生阶段。这样一种空气净化TSA法具体在US-A-3738084和FR-A-7725845中作过描述。一般地,用多个吸附剂床除去CO2和水蒸汽,即优先用于吸附水的第一个吸附剂床,例如活性氧化铝,硅胶或沸石床,与优先吸附CO2的第二个吸附剂床,例如沸石床。具体可以引用文件US-A-5531808、US-A-5587003和US-A-4233038。然而,用同一种吸附床达到有效除去空气中含有的CO2和水蒸汽不是一件容易的事。事实上,人们知道水对这些吸附剂的亲合力明显地高于CO2的亲合力。据此,吸附剂吸附水一般比吸附CO2更容易,因此,吸附的水量越多,则CO2的吸附量就越少。换言之,一般吸附剂对水的选择性比对CO2更高。另外,为了能够再生被水饱和的吸附剂,通常将这种吸附剂的再生温度升到高于100℃。然而,实际上,只有很少在TSA设备中以工业规模使用的吸附剂具有能够长时间耐受这样一种水热处理的物理-化学结构;氧化铝类型材料属于这种结构,而大多数沸石类型材料则不在此列。简言之,已知的吸附剂可以分成两大类,即-具有高CO2吸附能力的吸附剂,而这仅仅在没有任何水蒸汽的情况下是如此,即用于除去干燥气体中CO2的有效吸附剂,-专用于除去水蒸汽的吸附剂,而这些吸附剂仅对CO2的亲合力很低,甚至没有。基于这一点,可以引用文件US-A-5232474,该文件描述了采用PSA法,使用一种活性氧化铝干燥空气与除去空气中的二氧化碳,在该方法中,规定用高约175毫米的吸附剂床吸附水,而为了吸附所有的CO2,必需配置高1020毫米的床。因此应理解CO2与水没有共吸附,而是被吸附剂床的不同区域吸附。于是,本发明的目的是提出一种使用吸附剂的净化方法,这种吸附剂能够在吸附剂床的同一部位,如果可能,同时吸附在大气中可能存在的水和二氧化碳,以便回收基本上没有CO2和/或水蒸汽的净化空气,接着将这样的空气送到空气分离设备。另外,用同一个吸附剂床同时吸附水蒸汽和二氧化碳这一事实,能够降低吸附剂的用量,还能够因除掉不同吸附剂床之间的分离格栅而降低吸附器的复杂性,并因此能够降低空气分离设备的成本与能耗。现在令人惊奇地观察到,通常用于除去烃流如烯烃中二氧化碳的吸附剂,有利地,可以用于在空气低温分离前使空气脱二氧化碳与使空气干燥的方法中;所述的吸附剂是用碱性溶液浸渍并经煅烧的氧化铝,如US-A-4433981和US-A-4493715文件中描述过这种吸附剂。基于这一点,着重指出,文件US-A-4433981和US-A-4493715最初提出的目的是,在进行这种净化,并没有特定除去CO2情况下避免发生烃链的异构化作用。这种异构化问题在空气净化的情况下并不存在。事实上,出乎意料地证明了,优选地在室温下,煅烧氧化铝能够同时(即在吸附剂床的同一区域)吸附大气中存在的水和二氧化碳。在本发明的范围内,将以一般由氢氧化铝快速脱水所得到的活性氧化铝为主要成分的吸附剂称之煅烧氧化铝,这种氧化铝经成形,例如颗粒状或珠状,再用盐溶液浸渍,最后进行干燥,并接着煅烧;这样一种吸附剂还可以含有浓度不可忽略不计的二氧化硅(SiO2)。另外,应该指出EP-A-0766991描述了一种将空气脱二氧化碳的方法,该方法使用以pH至少为9的碱性溶液浸渍,接着干燥的氧化铝类型的吸附剂。应该强调的是,该文件明确指出浸渍氧化铝(即没有煅烧的氧化铝)的CO2吸附能力高于其他吸附剂。另外,该文件完全没有提到用所述浸渍氧化铝除去或不能除去大气中可能存在的水蒸汽的可能性。本发明的目的是提出一种在大气流中可能存在的CO2和水蒸汽共吸附的方法,以便能够得到干燥,脱二氧化碳的空气。那么本发明涉及一种含有二氧化碳(CO2)和水蒸汽的空气流的净化方法,其中使用至少一种含有至多10%(重量),优选地1-10%(重量)至少一种碱金属氧化物或碱土金属氧化物的煅烧氧化铝吸附所述的杂质,除去至少一部分杂质CO2和水蒸汽,所述的吸附是在温度-10℃至80℃下进行的。在本发明的范围内,空气不仅应理解是大气,而且也应理解是经过预处理的或其中组分的一种或多种的含量发生变化的空气,例如富含或贫含氮或氧的空气,或预先至少部分干燥的空气,所述的空气可以直接从大气收集,或如果需要,可以从已加热或未加热的建筑物或容器中收集。根据具体情况,本发明方法可以包括下述特征中的一种或多种-至少一种煅烧氧化铝是由下述方法得到的a)用至少一种碱金属或碱土金属盐的至少一种溶液浸渍以活性氧化铝为主要成分的吸附剂,所述碱金属或碱土金属选自Li、Na、K、Mg、Ca、Sr和Ba;b)在温度至少15℃,优选地至少80℃下,干燥由步骤a)所得到的以已浸渍氧化铝为主要成分的吸附剂;c)在温度至少120℃,优选地150-600℃下,煅烧由步骤b)所得到的以氧化铝为主要成分的已干燥吸附剂;-至少一种碱金属或碱土金属选自钙、钠、钾和它们的混合物;-煅烧氧化铝含有4-10%(重量),优选地5-8%(重量)碱金属或碱土金属氧化物,或酌情至多5%(重量)碱金属或碱土金属氧化物,例如优选地1-4%(重量)下述金属氧化物K2O、Na2O和CaO;-煅烧氧化铝颗粒尺寸是1-5毫米,优选地2-4毫米;-它包括用至少一种煅烧氧化铝除去水蒸汽;-在至少一个吸附器中,优选地在至少两个交替运行的吸附器中除去CO2和/或水蒸汽;-该方法选自TSA法和PSA法;-在吸附压力105至107帕,优选地4×105至5×106帕下操作;-在温度10-70℃,优选地20-55℃下操作;-该方法包括在再生温度约0-250℃,优选地70-200℃下进行至少一个吸附剂再生步骤;-该方法包括至少一部分已净化空气的至少一个低温分离步骤,优选地一个已净化空气的低温蒸馏步骤。现在通过作为说明性而非限制性的实施例与附图更详细地描述本发明。图1表示了一般13X型沸石的二氧化碳(CO2)吸附能力变化与空气温度的关系;温度(以℃表示)为横坐标,吸附能力(%)为纵坐标。立刻可以看出,当待脱二氧化碳空气的温度升高时,13X沸石的CO2吸附能力显著地降低。然而,如果希望降低空气分离设备的投资成本和能量消耗,就必需或需要去掉到那时为止还使用的冷冻机组和水/气冷却塔。其结果是在这些条件下,待净化空气的温度一般是30-40℃,即由于沸石类型吸附剂的CO2吸附能力很低,其效率变得非常低的温度。另外,图2表示了在压力5.5×105帕下水蒸汽饱和的空气中的水量与其温度的关系;空气温度(以℃表示)为横坐标,所述空气中的水量(以克/分米3)为纵坐标。显然是水蒸汽饱和的空气中的水量随所述空气温度升高而增加。由图1和2可以知道,待净化空气的温度升高时,看到脱二氧化碳能力降低(图1)和待吸附水量增加(图2),这种待吸附水量增加不利于对空气流进行合理有效的脱二氧化碳,因此促使吸附剂CO2吸附能力降低。据此,已测定上述13X沸石、一般类型的活性氧化铝(即未煅烧的氧化铝)与两种煅烧氧化铝的各自CO2吸附能力,并列于表Ⅰ。试验的煅烧氧化铝是采用如下方法得到的用碱性盐溶液,这里是NaOH溶液浸渍氧化铝,然后干燥,再在高于150℃的温度下煅烧,以得到含有约2%氧化钠(Na2O)的第一种煅烧氧化铝,与含有约7%(质量)氧化钠的第二种煅烧氧化铝。以本领域技术人员已知的方式,通过改变盐溶液的浓度与体积达到所要求的氧化钠的质量百分数。在300×60毫米的柱中,使用在压力6×105帕、温度约27℃含有约450ppmCO2的氮气作为载气进行了这些实验。表Ⅰ<tablesid="table1"num="001"><tablewidth="639">吸附剂CO2吸附能力未煅烧活性氧化铝0.22毫摩尔/克13X沸石0.81毫摩尔/克煅烧氧化铝(2%Na2O)0.44毫摩尔/克煅烧氧化铝(2%Na2O)1.47毫摩尔/克</table></tables>由表Ⅰ可以看到,煅烧氧化铝在CO2吸附能力方面高于一般类型的未煅烧活性氧化铝。另外,还看到提高氧化铝中氧化钠的量能够增加这种氧化铝的CO2吸附能力。于是,含有约7%氧化钠的煅烧氧化铝,在室温(在这里约27℃)下得到的CO2吸附能力高于用一般13X沸石得到的CO2吸附能力。不过,人们还看到,只含有2%氧化钠的煅烧氧化铝的吸附能力低于13X沸石的吸附能力。但是,如图1和2所表明的,13X沸石不能够共吸附大气流中可能存在的CO2和水蒸汽。换句话说,在CO2和水蒸汽同时存在情况下,含有2%氧化钠的煅烧氧化铝的共吸附能力高于13X沸石的共吸附能力,而详细情况如下。图3,4和5分别表示穿透曲线,即用未煅烧的活性氧化铝类型吸附剂(图3)、含有约2%氧化钠的煅烧氧化铝吸附剂(图4),含有约7%氧化钠的煅烧氧化铝吸附剂(图5)共吸附CO2和水蒸汽的穿透曲线。在类似的条件下进行测定,即在温度为27-28℃,吸附压力为6-6.2×105帕以及相对湿度约42-50%下进行测定。待净化气流含有约450ppmCO2(CO2in)和约3500ppm水蒸汽(H2Oin)。由图3明显看到,鉴于看到所述CO2几乎立刻穿透,未煅烧活性氧化铝只吸附非常少的CO2(CO2out曲线),即在吸附床下游非常快地再发现CO2,这表明未煅烧活性氧化铝的共吸附非常低。相反地,未煅烧活性氧化铝能够有效地吸附待净化气流中含有的水蒸汽(H2Oout曲线),在约200分钟内未检测到水蒸汽,然后逐渐穿透,直到约400分钟后不再吸附水。由此可见,未煅烧活性氧化铝的CO2吸附能力(QadsCO2)是0.48%,水的吸附能力是约12.61%。类似地,由图4和5可以看到,如果含有2%或7%氧化钠(根据具体情况而定)的本发明煅烧氧化铝的水吸附能力(QadsH2O)基本上相当于非活性氧化铝的水吸附能力(图3),则在用这样一种煅烧氧化铝吸附CO2时的情况却有所不同。事实上,由图4和5可以看到,含有氧化钠的氧化铝在吸附水的同时能够共吸附空气流中存在的CO2。这时含有2%氧化钠的煅烧氧化铝的CO2吸附能力为1.26%,而水的吸附能力为10.58%,含有7%氧化钠的活性氧化铝的CO2吸附能力为5.23%,而水的吸附能力为11.98%。换句话说,含有碱金属或碱土金属氧化物(如氧化钠)的煅烧氧化铝的CO2吸附能力,比一般未煅烧活性氧化铝的CO2吸附能力高3-11倍,而水的吸附能力基本上相当。另外,活性氧化铝的CO2吸附能力随其含有的碱金属或碱土金属氧化物的比例而增加。据此,优选使用含有至少2%,如可能的话,至少约4-5%碱金属或碱土金属氧化物(如氧化钠)的煅烧氧化铝。优选地,当本发明使用含有至多5%至少一种碱金属或碱土金属氧化物的煅烧氧化铝时,其净化方法是PSA类。另外,对于含有约1-10%,优选地4-8%金属氧化物的煅烧氧化铝,本发明方法有利地是TSA类。此外,在某些情况下,可能希望例如采用特定的用于烃杂质的吸附剂床,如沸石床或任何其他合适的类似吸附剂床,除去大气中可能存在的烃杂质。权利要求1.含有二氧化碳(CO2)和水蒸汽的空气流的净化方法,其中用含有至多10%(重量)至少一种碱金属或碱土金属氧化物的至少一种煅烧氧化铝,通过吸附所述杂质除去至少一部分杂质CO2和水蒸汽,所述吸附是在温度-10℃至80℃下进行的。2.权利要求1的方法,其特征在于至少一种煅烧氧化铝是由下述方法得到的a)用至少一种碱金属或碱土金属盐的至少一种溶液浸渍以活性氧化铝为主要成分的吸附剂;b)在温度至少15℃下干燥由步骤a)得到的以浸渍氧化铝为主要成分的吸附剂;c)在温度至少120℃下煅烧由步骤b)得到的以氧化铝为主要成分的干燥吸附剂。3.权利要求1或2中任一项的方法,其特征在于至少一种碱金属或碱土金属选自钠、钾、钙及其混合物。4.权利要求1-3中任一项的方法,其特征在于煅烧氧化铝含有4-10%(重量)碱金属或碱土金属氧化物。5.权利要求1-3中任一项的方法,其特征在于煅烧氧化铝含有至多5%(重量)碱金属或碱土金属氧化物。6.权利要求1-5中任一项的方法,其特征在于煅烧氧化铝颗粒的尺寸是1-5毫米。7.权利要求1-6中任一项的方法,其特征在于除去CO2和水蒸汽是在至少一种吸附器,优选地在至少两个交替运行的吸附器中进行的。8.权利要求1-7中任一项的方法,其特征在于该方法选自TSA法和PSA法。9.权利要求1-8中任一项的方法,其特征在于在吸附压力105-107帕下操作。10.权利要求1-9中任一项的方法,其特征在于包括至少一部分已净化空气的至少一个低温分离步骤,优选地已净化空气的低温蒸馏步骤。全文摘要含有二氧化碳(CO文档编号B01J20/32GK1227134SQ9812277公开日1999年9月1日申请日期1998年12月4日优先权日1997年12月8日发明者C·米莱特,P·布杰奥斯,G·克劳斯,J-P·格比拉德申请人:液体空气乔治洛德方法利用和研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1