真空泵油的制作方法

文档序号:5127205阅读:370来源:国知局
专利名称:真空泵油的制作方法
技术领域
本发明涉及真空泵油,更具体地说,涉及具有良好的热稳定性和良好的产生高极限真空度及有助于低温启动真空泵性能的真空泵油。
真空技术广泛地用于半导体生产、太阳能电池、飞机、汽车和光电子的各种领域。为此,广为已知的是机械真空泵(例如柱塞真空泵、旋转真空泵等)和高真空泵(例如油旋转真空泵,油扩散真空泵等)。使用各种合成油基和矿物油基的真空泵油以便润滑这些真空泵的滑动零件,保证高真空度和延长泵的寿命。
随着最近在其应用领域的发展,要求真空泵具有高的热稳定性并达到高的真空度。为此,到现在为止在真空泵油方面已经进行了各种改进。另外,在真空技术的应用领域中,需要缩短从启动真空泵到其稳定驱动状态的时间以便增加在该领域中的生产能力。可是,常规的真空泵油的低温启动性能常常是差的。因此,当它们在冬天或在寒冷地区使用时,在它们达到稳定驱动状态条件之前要花很长时间。由于这些原因,常规的真空泵油存在的各种问题在于预期产品的生产能力降低和不能够得到稳定质量的产品。
本发明考虑了上述观点,本发明的目的是提供具有良好的热稳定性和良好的产生高极限真空度及有助于低温启动真空泵性能的真空泵油。具体地,本发明的目的是提供了保证甚至在冬天和在寒冷地区也能快速达到真空泵稳定驱动状态的真空泵油。
为了实现这一目的,本发明提供了一种真空泵油,该真空泵油的基础油基本上含有分子量不小于300的烃,并且其粘度指数不小于120,在40℃的动态粘度为10-500mm2/s。
在下文中参考其优选的实施方案更详细地描述本发明。
本发明真空泵油的基础油基本上含有分子量不小于300的烃,并且其粘度指数不小于120。该基础油材料包括合成油和矿物油。
作为合成油,例如可以使用的是聚-α-烯烃。该聚-α-烯烃通常可以是通过均聚任何一个4-14个碳原子的直链或支链α-烯烃或者通过共聚其两种或多种得到的聚合物。原料α-烯烃优选具有10-14个,更优选12-14个碳原子。例如可以通过均聚1-癸烯、1-十二烯、1-十四烯或类似物,或者通过共聚其两种或多种得到该聚-α-烯烃。作为该聚合物的具体例子,提到的是1-十二烯和/或1-十四烯的三聚物、四聚物、五聚物和六聚物。特别优选的是1-十二烯的三聚物、四聚物和五聚物及1-十四烯的二聚物、三聚物和四聚物。
通过在催化剂存在下聚合α-烯烃可以生产这些类型的聚-α-烯烃。该催化剂包括,例如,Friedel-Crafts催化剂例如氯化铝、氟化硼等;和Ziegler催化剂。更优选地,将该聚-α-烯烃加氢以便饱和其不饱和的键。为了加氢,例如,可以在镍基、钯基或铂基加氢催化剂存在下将该聚合物与氢接触。
除了上述指出的那些外,内烯烃的聚合物也可用作该合成油。通过均聚任何一个4-14个碳原子的直链或支链内烯烃或者通过共聚其两种或多种可以生产该内烯烃的聚合物。原料内烯烃优选具有10-14个,更优选12-14个碳原子。例如通过均聚或共聚7-十四烯等得到该聚合物。作为该聚合物的具体例子,提到的是7-十四烯的三聚物、四聚物、五聚物和六聚物。更优选地,将该内烯烃的聚合物加氢以便饱和其不饱和的键。
用于本发明的矿物油包括例如,链烷烃矿物油、环烷矿物油、中间基矿物油等。作为这些油的具体例子,提到的是通过溶剂纯化或加氢纯化生产的轻中性油、中比重中性油、重中性油、光亮油和其它油。特别优选的是链烷烃矿物油例如异链烷烃。
用于本发明中的基础油基本上含有分子量不小于300的烃。其基础油含有分子量小于300的烃的真空泵油可能不具有良好的产生高极限真空度和有助于低温启动真空泵的性能。“基本上”一词在本文中指的是本发明的真空泵油可以在不有损于本发明效果的条件下含有少量的任何其它基础油组份和杂质。更优选地,在用于本发明的基础油中分子量小于450的烃的量不大于30%(重量),因为含有该基础油的真空泵油具有更好的有助于低温启动泵的性能并具有更好的润滑性能。
为基础油材料的矿物油和合成油通常是具有不同分子量的烃的混合物。因此,根据具体情况,必须测定在这些油中分子量小于300的烃的量。也必须测定其中分子量小于450的烃的量。在这些情况下,油可以进行气相色谱、GPC或类似的试验以便测定其中这样的烃的量。例如,在GPC中,用其分子量是已知的校准化合物制出校准曲线。根据该校准曲线,可以测定油中最小分子量的烃。另外,从油的GPC图中分子量小于450的烃的面积比,可以确定该油中分子量小于450的烃的量。
将含有分子量小于300的烃的油进行分馏例如蒸馏等,并且选择满足本发明要求的馏份。将相同的分馏例如类似的蒸馏应用于油以便得到其中分子量小于450的烃的量不大于30%(重量)的馏份。
优选地,用于本发明中的基础油具有1-1.1的分子量分布(其用Mw/Mn表示,Mw是重均分子量,Mn是数均分子量)。通过GPC等可以测定分子量分布。具有窄分子量分布的基础油是优选的,因为含有它的真空泵油具有良好的有助于低温启动真空泵的性能。通常,用于本发明的基础油具有300-1200的分子量。
用于本发明中的基础油的粘度指数(根据JIS K 2283测定)为不小于120,并且通常在120-170之间。其基础油粘度指数为小于120的真空泵油不能够在低温到高温的宽温度范围内稳定地使用。另一方面,具有大于170粘度指数的基础油通常难以生产并且不经济。优选地,用于本发明中的基础油具有130-170的粘度指数。为了用于本发明中,适当地选择基础油材料并将其配制成粘度指数不小于120的基础油。
用于本发明中的基础油在40℃的动态粘度(根据JIS K 2283测定)为10-500mm2/s,并且优选20-200mm2/s。具有太高动态粘度的基础油是不利的,在低温下其粘度太高导致含有它的真空泵油有助于低温启动真空泵的性能差。相反,具有太低动态粘度的基础油也是不利的,因为真空泵的滑动零件例如用于其的转子和叶轮将磨损很大。理想的是基础油的倾点(它是其低温流动性的标志)不高于10℃,更优选不高于-10℃,以便在冬天和在寒冷地区使用该真空泵油。用于本发明中的基础油通常具有310-1000的重均分子量。
本发明的真空泵油单独或混合地含有一种或多种上述基础油。如果需要,为了进一步改进真空泵油性能的目的,它可以含有任何用于润滑油的常规添加剂,例如抗氧化剂、沉淀抑制剂、防锈剂、粘度指数改进剂等。
抗氧化剂包括酚类抗氧化剂、胺型抗氧化剂、硫型抗氧化剂和磷型抗氧化剂。
酚类抗氧化剂包括单酚类抗氧化剂、双酚类抗氧化剂、多酚类抗氧化剂和酚类天然抗氧化剂。单酚类抗氧化剂包括例如,2,6-二叔丁基酚、正十八烷基-3-(4-羟基3’,5’-二叔丁基苯基)丙酸酯、二硬脂基(4-羟基-3-甲基-5-叔丁基)苄基丙二酸酯、6-(4-羟基-3,5-二叔丁基苯胺基)-2,和双辛基-硫代-1,3,5-三嗪。双酚类抗氧化剂包括例如,包括酯键的化合物、包括酰胺键的化合物和包括硫化物键的化合物。双酚类抗氧化剂的实际例子包括例如,2,2’-亚甲基双(4-甲基-6-壬基苯酚)、4,4’-硫代双(2-甲基-6-叔丁基苯酚)、4,4’-亚甲基双(2,6-二叔丁基苯酚)。多酚类抗氧化剂包括包括异氰酸酯键的化合物例如三(3,5-二叔丁基-4-羟基苯酚)氰酸酯。酚类天然抗氧化剂包括例如维生素E。
硫型抗氧化剂包括硫代酯型抗氧化剂和含硫金属络合物例如二戊基二硫代氨基甲酸锌。
胺型抗氧化剂包括例如,单辛基二苯基胺、二辛基苯基胺、苯基-α-萘胺、N,N’-二-β-萘基对亚苯基二胺等。
理想地,可以从酚类抗氧化剂和胺型抗氧化剂中选择抗氧化剂。理想地,该抗氧化剂的分子量不小于300。理想地,相对于真空泵油的总重量,可以以0.01-5%,更理想0.05-3%的量将该抗氧化剂加入到真空泵油中。
沉淀抑制剂包括例如,非离子表面活性剂例如聚乙二醇、聚丙二醇、聚乙二醇-聚丙二醇嵌段共聚物等。理想地,相对于真空泵油的总重量,可以以0.01-5%,更理想0.05-3%的量将它们加入到真空泵油中。
防锈剂包括例如,链烯基琥珀酸单油酸酯、聚酰胺、磺酸钡、苯并三唑衍生物等。理想地,相对于真空泵油的总重量,可以以0.01-5%,更理想0.05-3%的量将它们加入到真空泵油中。
粘度指数改进剂包括例如,聚甲基丙烯酸甲酯、聚异丁烯、乙烯-丙烯共聚物、苯乙烯-异戊间二烯共聚物、加氢的苯乙烯-丁二烯共聚物等。理想地,相对于真空泵油的总重量,可以以0.1-10%,更理想0.2-5%的量将它们加入到真空泵油中。
参考下面实施例更详细地描述本发明,然而,这些实施例并打算限制本发明的范围。
在实施例和比较例中用于试验其性质的方法(1)热稳定性试验根据JIS K 2540,在170℃加热每个样品24小时,并测定蒸发损失。
(2)极限真空度参考JIS B 8316。将要进行试验的真空泵油的样品装进旋转真空泵的压缩机中,并启动该泵。测定在吸气口处的真空度。当其在50℃油温下变得恒定时,读取真空度数值。这就是真空泵的极限真空度。
(3)差热分析参考JIS K 0129。使用Seiko Electronic Industry的TG/DTA200(商标名),将5mg样品从室温以10℃/分钟的加热速度加热,并读取到失重5%的温度。
(4)低温启动性能将具有真空泵油样品的旋转真空泵保持在10℃的环境温度下,并将其启动,随后测定从其启动到其稳定驱动状态(高达1×10-3mmHg的真空度)的时间。时间在2分钟内的样品为极好;时间在5分钟内的样品为良好。
(5)RBOT(旋转弹内氧化试验)值RBOT值是真空泵油氧化和损坏的指标,对于该值参考JIS K 2514。对每个样品测定在压力降低终点前的时间(分钟)。
(6)润滑性能(磨损试验)使用SAE-3135/AISI-C-1137作为针/块材料。将针/块放置在Falex试验机中,将100g要试验的油的样品装进试验容器中。以290rpm的转数在50℃和200磅的负荷下旋转该针/块60分钟,并测定该针的摩耗损失。
实施例1使用聚-α-烯烃(Idemitsu Petrochemical的PAO5010,它是通过α-烯烃的聚合和加氢得到的)作为基础油(A1)。通过其气相色谱,发现该基础油是由49%(重量)的1-癸烯的四聚物氢化物、37%(重量)的其五聚物氢化物和14%(重量)的其六聚物氢化物组成的。通过GPC测定该基础油的分子量分布。根据JIS K 2283测定该基础油在40℃的动态粘度;根据JIS K 2283测定其粘度指数。使用该基础油A1作为真空泵油,并进行上述其性能试验。得到的数据示于表1-1中。
实施例2使用-α-烯烃(Idemitsu Petrochemical的PAO5008,它是通过α-烯烃的聚合和加氢得到的)作为基础油(A2)。用与实施例1相同的方法分析,发现该基础油是由6%(重量)的1-癸烯的三聚物氢化物、58%(重量)的其四聚物氢化物、29%(重量)的其五聚物氢化物和7%(重量)的其六聚物氢化物组成的。用与实施例1相同的方法测定该基础油的物理性质。使用该基础油A2作为真空泵油,并进行上述其性能试验。得到的数据示于表1-1中。
实施例3使用聚-α-烯烃(Idemitsu Petrochemical的PAO5006,它是通过α-烯烃的聚合和加氢得到的)作为基础油(A3)。用与实施例1相同的方法分析,发现该基础油是由34%(重量)的1-癸烯的三聚物氢化物、44%(重量)的其四聚物氢化物、18%(重量)的其五聚物氢化物和4%(重量)的其六聚物氢化物组成的。用与实施例1相同的方法测定该基础油的物理性质。使用该基础油A3作为真空泵油,并进行上述其性能试验。得到的数据示于表1-1中。
实施例4使用通过1-十二烯聚合物氢化物的蒸馏得到的1-十二烯的四聚物氢化物作为基础油(A4)。用与实施例1相同的方法测定其动态粘度和粘度指数。使用该基础油A4作为真空泵油,并进行上述其性能试验。得到的数据示于表1-1中。
实施例5使用通过1-十二烯聚合物氢化物的蒸馏得到的1-十二烯的三聚物氢化物作为基础油(A5)。用与实施例4相同的方法测定物理性质。使用该基础油A5作为真空泵油,并进行上述其性能试验。得到的数据示于表1-1中。
实施例6使用通过1-十二烯聚合物氢化物的蒸馏得到的1-十二烯的二聚物氢化物作为基础油(A6)。用与实施例4相同的方法测定物理性质。使用该基础油A6作为真空泵油,并进行上述其性能试验。得到的数据示于表1-2中。
实施例7使用通过1-十四烯聚合物氢化物的蒸馏得到的1-十四烯的三聚物氢化物作为基础油(A7)。用与实施例4相同的方法测定物理性质。使用该基础油A7作为真空泵油,并进行上述其性能试验。得到的数据示于表1-2中。
实施例8使用通过7-十四烯聚合物氢化物的蒸馏得到的7-十四烯的二聚物氢化物作为基础油(A8)。用与实施例4相同的方法测定物理性质。使用该基础油A8作为真空泵油,并进行上述其性能试验。得到的数据示于表1-2中。
实施例9使用通过异链烷烃矿物油的蒸馏得到的基础油(B1)作为真空泵油,并进行上述性能试验。用与实施例1相同的方法测定该基础油B1的分子量分布、动态粘度和粘度指数。为了确定构成该基础油B1组份的最小分子量,通过GPC制出其分子量是已知的校准化合物的校准曲线。将该基础油B1的GPC图与制出的校准曲线比较,并从该图中第1个出现的峰得到最小分子量。在基础油B1中,根据相同的校准曲线也得到了分子量小于450的组份的量,它是从在基础油B1的GPC图中具有小于450分子量的组份的面积比得到的。得到的数据示于表1-2中。
实施例10使用通过异链烷烃矿物油的蒸馏得到的基础油(B2)作为真空泵油,并进行上述性能试验。用与实施例9相同的方法测定该基础油B2的物理性质。得到的数据示于表1-2中。
实施例11将预定量(示于表1-3中)的抗氧化剂二辛基苯基胺(C1)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-3中。
实施例12将预定量(示于表1-3中)的抗氧化剂4,4’-亚甲基双(2,6-二叔丁基苯酚)(C2)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-3中。
实施例13将预定量(示于表1-3中)的抗氧化剂正十八烷基-3-(4-羟基-3’,5’-二叔丁基苯基)丙酸酯(C3)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-3中。
实施例14将预定量(示于表1-4中)的抗氧化剂2,2-亚甲基双(4-甲基-6-壬基苯酚)(C4)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-4中。
实施例15
将预定量(示于表1-4中)的抗氧化剂4,4’-硫代双(2-甲基-6-叔丁基苯酚)(C5)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-4中。
实施例16将预定量(示于表1-4中)的抗氧化剂三(3,5-二叔丁基-4-羟基苯酚)氰酸酯(C6)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-4中。
实施例17将预定量(示于表1-4中)的抗氧化剂维生素E(C7)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-4中。
实施例18将预定量(示于表1-4中)的抗氧化剂二戊基二硫代氨基甲酸锌(C8)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-4中。
实施例19将预定量(示于表1-5中)的抗氧化剂N,N’-二-β-萘基对亚苯基二胺(C9)加入到基础油A1中制备真空泵油。进行上述其性能试验。得到的数据示于表1-5中。
比较例1矿物油(它是可商业购得的产品)的真空泵油D1进行上述性能试验。用与实施例9相同的方法测定D1中的最小分子量和分子量小于450的组份的量,以及测定D1的动态粘度和粘度指数。得到的数据示于表1-3中。
比较例2烷基苯合成油(它是可商业购得的产品)的真空泵油D2进行上述性能试验。用与实施例9相同的方法测定D2的物理性质。得到的数据示于表1-3中。
比较例3使用1-癸烯二聚物作为基础油(D3)。用与实施例4相同的方法测定D3的物理性质。使用该基础油D3作为真空泵油,并进行上述性能试验。得到的数据示于表1-5中。
比较例4
矿物油(它是可商业购得的产品)的真空泵油D4进行上述性能试验。用与实施例9相同的方法测定D2的物理性质。得到的数据示于表1-5中。
表1-1
表1-2
表1-3
表1-4
表1-5
从实施例和比较例的数据可以注意到下面几点。实施例样品中的蒸发损失小于比较例样品的蒸发损失。这意味着实施例样品的热稳定性比比较例样品的更好。实施例的样品得到了比比较例样品更高的极限真空度。这意味着使用实施例样品的真空泵可以比使用比较例样品的真空泵具有更高的真空度。另外,实施例样品的有助于低温启动真空泵的性能比比较例样品更好。这意味着低温下使用实施例样品的真空泵可以比使用比较例样品的真空泵在更短的时间内达到稳定驱动状态的条件。从这些数据可知本发明的真空泵油对使用它的真空泵的实际使用是有利的,并且大大地改进了使用本发明真空泵油的真空泵的生产能力。另外,还可以知道本发明的真空泵油具有良好的润滑性能。
特别地,本发明其基础油以不大于30%(重量)的量含有分子量不小于450的烃的真空泵油具有好得多的产生高极限真空度并有助于低温启动真空泵的性能。
本发明的真空泵油另外还含有具有高RBOT值的抗氧化剂。
由于具有上述极好的性能,所以本发明的真空泵油可广泛地用于机械真空泵、油旋转真空泵、油扩散真空泵等。
本发明的真空泵油具有良好的热稳定性和良好的产生高极限真空度并有助于低温启动真空泵的性能。
权利要求
1.一种真空泵油,其基础油基本上含有分子量不小于300的烃,并且粘度指数不小于120,40℃的动态粘度为10-500mm2/s。
2.如权利要求1的真空泵油,其中在该基础油中分子量小于450的烃的量不大于30%(重量)。
3.如权利要求1的真空泵油,其中该基础油的分子量分布为1-1.1。
4.如权利要求2的真空泵油,其中该基础油的分子量分布为1-1.1。
5.如权利要求1的真空泵油,其中该基础油是通过具有10-14个碳原子的α-烯烃的共聚生产的聚-α-烯烃。
6.如权利要求5的真空泵油,其中该α-烯烃具有12-14个碳原子。
7.如权利要求5的真空泵油,其中该聚-α-烯烃是1-十二烯的三聚物、四聚物或五聚物。
8.如权利要求5的真空泵油,其中该聚-α-烯烃是1-十四烯的三聚物、四聚物或五聚物。
9.如权利要求1的真空泵油,其中该基础油是矿物油。
10.如权利要求2的真空泵油,其中该基础油是矿物油。
11.如权利要求9的真空泵油,其中该基础油是异链烷烃矿物油。
12.一种真空泵油,其含有95-99.99%(重量)的权利要求2的基础油和0.01-5%(重量)的至少一种选自胺型抗氧化剂和酚类抗氧化剂的抗氧化剂。
13.如权利要求12的真空泵油,其中该抗氧化剂具有不小于300的分子量。
14.使用权利要求1的真空泵油的真空泵。
15.使用权利要求2的真空泵油的真空泵。
全文摘要
公开了一种真空泵油,其基础油基本上含有分子量不小于300的烃,并且粘度指数不小于120,40℃的动态粘度为10—500mm
文档编号C10M107/02GK1212997SQ9811788
公开日1999年4月7日 申请日期1998年9月1日 优先权日1997年9月1日
发明者金子正人 申请人:出光兴产株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1