有源消声器的制作方法

文档序号:5203964阅读:348来源:国知局
专利名称:有源消声器的制作方法
技术领域
本发明涉及一种用于内燃机、特别是机动车内燃机的排气系统的有源消声器,其具有权利要求1前序部分的特征。
背景技术
根据DE102009049280A1,已知一种有源消声器,其具有壳体和连接管,该连接管用于壳体与排气系统的声学和流体(fluidic)连接。一扬声器设置在壳体内,其包括活性膜和振动刺激膜的致动器。在壳体内,所述膜将与连接管流体连接的前容积与后容积分离。通过输入测算的声音、特别是抵消声或反声,这种有源消声器用于以期望的方式来影响排气系统的排气噪声,优选抑制它。为此,前容积通过连接管与排气系统流体连接。前容积通常不能直接连接到排气系统外部的大气,即排气系统的环境。后容积由活性膜和吸声器的壳体限定,使得扬声器在封闭容积的后侧和排气系统的前侧工作。由于结构类型,具有电动致动器的这种扬声器的膜相对于在膜前后的不同静态或相应地准静态压力是敏感的。根据膜的面积和膜悬挂装置的刚性,扬声器的膜由于压差偏离于中心位置,这降低了扬声器通过它的电动驱动器(致动器)在膜的前后产生动态交替压力的能力。如果这种从中心位置的偏离持续超过一段较长的时间,加上扬声器的热应力作用,由于扬声器各个部分、特别是膜悬挂装置的蠕变行为,膜会保持永久偏离,此外还不会在前后容积之间存在作用于该膜的压差。在这一点上,出现在前后容积之间的压差可大致彼此区分如下。一方面,由于天气原因(如从低压区到高压区的变化)或例如上坡行驶时海拔高度的变化,分别由大气中的外部气压或相应地排气系统的环境变化而产生了静压差。这些静压变化出现的相对慢些,例如时间常数或持续时间超过10秒,即频率小于0.1赫兹。此外,通过改变排气系统内的流动状态,特别是通过在连接管和排气系统之间的连接处的伯努利效应产生了准静态压差。排气系统内的流动状态根据内燃机各自的运行状态而变化,例如从空闲模式变化到高负荷或满负荷,其涉及更高的质量流和排气温度。例如,出现的这些准静态压力变化的时间常数或持续时间在0.1秒和10秒之间,即频率在0.1赫兹和10赫兹之间。最后,还可能出现动压差,即通常由扬声器,也就是影响排气系统声频发射的声频信号所产生的交变压力。这些动态压力波动一般具有的持续时间或相应时间常数为小于0.1秒,即频率大于10赫兹。为了确保电动扬声器的正常功能,即活性膜和相关电动致动器的组装,因此所有压差的持续时间均大于0.1秒,也就是说静态和准静态压力波动必须平衡。同时,必须确保,在10赫兹的相关频率范围内,电动广生的交变压力不会大幅减少或甚至声频短路。静压力差、即相对于封闭的后容积的大气压力的缓慢波动的补偿或平衡,可以通过设置至少一个相对较小的压力平衡开口来实现,该开口将后容积与消声器的环境流体连接。在某些情况下,壳体轻微的渗透性已经足够平衡静态压力差。根据介绍中提到的DE102009049280A1,可通过至少一个压力平衡开口实现准静态压力波动的平衡,该开口流体连接前后容积。在这里之所以这种压力平衡开口的尺寸较小,是为了避免在前后容积之间的声频短路。前后容积之间的这种压力平衡开口具有透气性且不限制扩散,因此特别是从排气系统通过连接管进入前容积的废气还可进入后容积。与此同时,由于排气系统内的废气通常暴露于比后容积中更高的温度,从而产生了温度梯度。在此出现的问题是与废气有关的湿度,即蒸汽在更冷的后容积内冷凝。根据废气组合物,在此产生的冷凝物是比较有腐蚀性的,特别是冷凝物可包括硫酸。从长远来看,腐蚀性的冷凝物可损坏电动致动器和连接电缆。改进扬声器的冷凝物抗性、电缆的绝缘以及电缆与致动器之间的连接的措施是比较费力的,并增加了生产成本。要避免用于改进冷凝物抗性的高成本措施,有源消声器可只定位在尾管区域内的排气系统上,其中通过各个排气管的结构措施,可以使得由流速所带来的前后容积之间的准静态压差尽可能的小。因此,可省去前后容积之间的压力平衡开口。然而,这显著限制了有源声音阻尼的结构,并阻止或相应防止在远离发动机方向的上游的尾管的区域内使用有源消声器,尽管有源消声器的声学效果在那里可能更好。

发明内容
本发明涉及的问题是提供一种有源消声器的改进实施方式,其特征在于一方面减少或消除或避免了由前后容积之间的准静态压差而产生的缺陷,其中同时减少或消除或避免了由后容积内冷凝物的形成而产生的缺陷。特别的,该问题在本发明中通过独立权利要求的主题得以解决。有利的实施方式是从属权利要求的主题。根据第一个方案,本发明是基于通过至少一条冷凝管路将后容积流体连接到前容积的总体思路。在此设计冷凝管路,从而使包含在废气中的蒸汽冷凝,其中冷凝管路随后将出现的冷凝物引导至前容积。换言之,各条冷凝管路支持冷凝,使得在冷凝管路的内部产生冷凝物,即同时蒸汽从前容积朝向后容积的方向移动。因为后容积是封闭的,不会产生冷凝管路的通流,而只有扩散过程或通过相应压力平衡的很慢的容积位移。冷凝管路中长时间存在的蒸汽一方面通过缓慢的气体移动产生,另一方面可通过相应规格尺寸的线路实现,冷凝基本在冷凝管路的内部发生,使得蒸汽很少进入后容积内。这意味着冷凝不会在后部空间内产生,而是在冷凝管路的内部在到后部空间的路上进行。通过适当设置冷凝管路,冷凝管路可将在其中产生的冷凝物轻松引导进前容积,由于前容积的温度,冷凝物可再次蒸发并由废气流夹带。通过为有源消声器配备这样的冷凝管路,可明显减少或者甚至避免在后容积内产生的腐蚀性冷凝物。因此也会降低腐蚀性冷凝物损坏致动器的风险。此外,值得注意的是,通过由冷凝先建立的在前后容积之间的流体连接,同时还可实现前后容积之间的预期压力平衡。总之,该提出的措施开创了靠近发动机还能使用有源消声器的可能性,使得有源消声器在排气系统内的几乎任意预期位置都能够实现。冷凝管路在这里取代在现有技术中(参见上述的DE102009049280A1)已知的在前后容积之间的压力平衡开口。根据一个有利的实施方式,为了平衡压力且不会产生声频短路,冷凝线冷凝管路可将后容积流体连接到前容积。换言之,冷凝线冷凝管路的尺寸使得它不适合在前后容积之间传递动态压力波动,特别是由于在冷凝线冷凝管路内会产生摩擦。为此,有利地,冷凝线冷凝管路的长度明显长于其内径。特别的,冷凝线冷凝管路的长度至少大于其直径的10倍,优选冷凝线冷凝管路的长度至少大于其直径的100倍。冷凝线冷凝管路基本可配置为直线型。同样地,可以想到这样一个实施方式,其中,为了以短的安装长度实现长的管路线长度,冷凝线冷凝管路是弯曲的,如螺旋形的。在另一个有利的实施方式中,冷凝管路可完全设置在壳体内部,即涉及内部冷凝管路。这种结构类型能降低泄露的风险。根据有利的进一步发展,在壳体内运行的冷凝管路的主要部分现在可设置在后容积内。有利地,冷凝管路长度的一半以上,即50%以上设置在后容积内。特别的,冷凝管路长度的至少75%设置在后容积内。由此,在后容积内的温度对冷凝管路的影响比例较大,使得冷凝管路的主要部分比废气凉,以带来预期的冷凝。根据另一个有利的实施方式,冷凝管路可具有在壳体外运行的部分。有利地,该部分可将与前容积连接的冷凝管路的一个端部连接到与后容积连接的冷凝管路的一个端部。以这种方式,设计的冷凝管路至少部分在外部运行,其开创了支持在冷凝管路内部形成冷凝物的可能性。例如,根据进一步的发展,设置在壳体外部的冷凝管路部分可以进行冷却。例如,可以想到通过消声器环境中的温度进行纯粹的被动冷却。进一步的被动冷却可通过在消声器和冷凝管路外部运行部分的周围的流动产生,例如通过配备内燃机的机动车的气流。同样可以想到在壳体外部运行的冷凝管路部分的主动冷却,例如借助于风扇产生气流作用于所述部分。所述部分可配备散热片或类似物。同样可能的是将所述部分集成到热交换器,其另外可集成到冷却回路,使得通过热交换器,热量可从冷凝管路传输到冷却回路的冷却剂。根据另一个有利的实施方式,冷凝管路可以是管,其特别是由金属材料制成,且其特征在于具有特别的高的热导率。根据一个优选实施方式,后容积相对于消声器的环境可以是密封的。这意味着消声器的壳体在后容积的区域不具有开口,流体可通过该开口进入后容积内或可由此流出。换言之,该后容积是完全封闭的,远离通过冷凝管路与前容积建立的流体连接。特别地,在这种情况下,既不存在流体连接后容积和环境的压力平衡开口,也没有另一连接,通过它流体可供应到后容积或由此移除。根据第二个方案,本发明是基于提供至少一个压力平衡室的总体思路。这种压力平衡室在此围绕平衡容积,其通过至少一条连接管路与前容积流体连接。因此,前容积内的压力在平衡容积内占主导地位。此外,具有至少一个被动膜,其进行定位,使得一方面其暴露于平衡容积内的压力,另一方面其暴露于后容积内的压力。换言之,被动膜根据作用于其上的压差而变形,其通过平衡容积和前容积之间的流体连接而最终对应于前后容积之间的压差。因此,被动膜可通过其硬度将在前容积内的压力传递到后容积中,由此可或多或少的实现预期的压力平衡。在此值得注意的是,通过被动膜的连接,在前后容积之间不再有气体交换。换言之,在于此提出的第二个方案中,前后容积相互流体分离。因此不会在后容积内产生冷凝物。总的来说,该提出的措施开创了靠近发动机还能使用有源消声器的可能性,使得有源消声器在排气系统上的几乎任意预期定位都能够实现。到目前为止,随着冷凝物在平衡容积内产生,其可通过连接管路被引导至前容积内。为了提高压力平衡室的效率,被动膜设计成比扬声器的活性膜更具有弹性。特别的,被动膜的弹性至少是活性膜的两倍。在一个特别有利的实施方式中,压力平衡室可具有设置在后容积内的腔壳,其中被动膜形成腔壳的至少一部分。换言之,在消声器壳体内部的被动膜将平衡容积和后容积分隔开。由此,可减少泄露问题。根据一个有利的进一步发展,被动膜可形成整个腔壳。换言之,将被动膜成型,使得其形成腔壳并围绕平衡容积。特别的,壳体可构造成弹性气球或弹性波纹管(bellows)。这种情况下,被动膜分别限定气球的弹性外皮或弹性波纹管主体。到目前为止,由于被动膜形成整个腔壳,为了调整平衡容积和后容积相互之间的压力,腔壳根据平衡容积和后容积之间的压差相应膨胀或收缩。由于被动膜的内在张力,在此不可能完全实现压力平衡。在此,被动膜越软,平衡容积和后容积之间的压力可调整的越接近。在一个可替换的实施方式中,压力平衡室具有设置在后容积外侧或相应的壳体外侧的腔壳,其中腔壳中的被动膜随后将平衡容积与耦合容积分离。随后提供一个用于耦合容积和后容积之间流体连接的耦合管路。因此,后容积的压力作用于耦合容积。前后容积之间的压差由此导致一个相应的平衡容积和耦合容积之间的压差,其或多或少地通过被动膜的相应变形而平衡。在此同样适用的是,期望的压力平衡越成功,被动膜越软。在一个进一步的可替换的实施方式中,压力平衡室可设置在壳体内,其中壳体内的被动膜将平衡容积和后容积分隔开。该内部结构也减少了泄漏问题。在一个有利的进一步改进中,连接管路可设置在壳体内并可延伸穿过后容积。另外或可替换地,可以规定,由于壳体内的被动膜的相应的选择定位,平衡容积位于前容积的远侧,使得特别是后容积设置在平衡容积和前容积之间。此外,有利地,平衡容积设置在壳体内部,使得被动膜不与前容积接触。在另一个实施方式中,可设置连接管路,从而其将有可能在平衡容积内产生的冷凝物引导到前容积。换言之,连接管路与提供的安装情况相协调,使得其在前容积的方向倾斜。本发明的第三个方案是基于通过致动器的相应激活补偿由前后容积之间的压差形成的活性膜的静态挠曲(deflection)的总体思路。为此,有源消声器配备测量前后容积之间压差的传感器系统。该传感器系统可包括,例如,压差传感器,其直接测量前后容积之间的压差。同样的,可以想到使用两个绝对压力传感器,其中一个测量前容积内的绝对压力,而另一个测量后容积内的绝对压力。两个绝对压力的差值产生了预期的压差。此外,传感器系统还额外结合一控制器,其用于激活致动器。现在分别编程或配置该控制器,使得其根据测得的压差激活致动器,使得其偏转活性膜,且与压差引起的挠曲相反,由此,可以或多或少补偿由压差引起的活性膜挠曲。由于在任意情况下,驱动致动器的控制器都存在于有源扬声器中,所以这里提出的方案仅需要适合于测量压差的传感器系统和与适宜程序连接的相应耦合。因此,该实施方式可以以比较有利的成本实现而几乎不需要改进结构。特别的,这样的实施方式不需要前后容积之间的压力平衡就可以实现。因此,特别的,这种结构形式的特征在于前后容积彼此流体分隔开。由于前后容积的流体分隔,在后容积内形成冷凝物的风险也就不存在了。总之,该提出的措施开创了靠近发动机还能使用有源消声器的可能性,从而使得有源消声器在排气系统上的几乎任意预期定位都能够实现。根据一个有利的实施方式,控制器能根据测得的压差将静态控制信号与动态控制信号叠加,由此该控制器激活致动器以驱动活性膜,使得其产生消声影响,特别是阻尼废气中携带的大气噪音。换言之,产生的静态控制信号补偿压差引起的活性膜的挠曲,该静态控制信号与动态控制信号相调制,据此该控制器激活致动器,致动器激活活性膜,活性膜可将所需的压力脉冲引入到排气系统内。本发明的第四个方案同样是基于通过致动器的相应激活补偿活性膜的静态挠曲的总体思路,静态挠曲由前后容积之间的压差形成。不同于上述第三个方案,在第四个方案中,为了直接使用挠曲作为激活致动器的基础,因此不测量压差,而是测定该活性膜由此从其中心位置的挠曲。为此,消声器包括测定活性膜从其中心位置挠曲的设备。用于激活致动器的控制器与所述设备结合,并根据测定的膜挠曲激活致动器,以补偿膜的挠曲。以这种方式,可省去费劲的压力测量。测定膜挠曲可以不同的方式实现。例如,设备可具有测量膜挠曲的传感器系统。可替代的,设备可评估激活时致动器的电流消耗,并根据电流消耗测定膜的挠曲。这种纯粹的电子测量无需额外的传感器系统即可完成。特别的,可以估算在消音操作中产生的致动器常见的电流消耗。该措施是基于这样的考量,即致动器的电流消耗根据膜挠曲变化,因为致动器(适用的话)是与膜预应力一起或针对膜预应力操作的。可替代的是,可以想到,该设备评估麦克风信号并据此确定膜挠曲,麦克风检测从活性膜发出的声音。该措施是基于这样的考虑,即活性膜发出的声音根据膜的预应力变化。这种麦克风在任意情况中都存在于常用的活性声音阻尼系统内,因此在该方案中也可以省去额外的传感器系统。很清楚的是为了确定实际的膜挠曲,基本上还可以想到其它措施。根据第五个方案,本发明基于借助输送设备平衡前后容积之间的压差的总体思路,为此该输送设备流体连接到后容积。如果后容积内的压力大于前容积内的压力,为了产生压力平衡,通过输送设备可将气体或空气从后容积中排走,并输送到例如环境中或前容积中。另一方面,如果后容积内的压力小于前容积内的压力,为了产生压力平衡,依靠该输送设备从例如环境中或从前容积中将气体或空气引入并供应到后容积内。与压差有关的信号或与膜从其中心位置的挠曲有关的信号,在此可作为用于激活输送设备的输出信号。相应设备已在之前做过描述。根据一个特别有利的实施方式,特别的其能用于所有上述的方案和实施方式,具有至少一个压力平衡开口,其将后容积流体连接到消声器壳体的环境。依靠这种压力平衡开口,通过适当措施将其设置为气体可渗透且防流体,例如通过气体可渗透且流体不可渗透的膜,可以平衡在介绍中所述的后容积和大气环境之间的静压差。上述第一个方案,其中前后容积通过冷凝管路彼此流体连接,其可以在相关实施方式中配置,使得后容积与消声器壳体的环境流体分隔开。因此在这些情况下,可省去在后容积和环境之间的这种压力平衡开口。另一方面,在上述其它解决方案中,包括相关的实施方式,看起来提供这样的压力平衡开口是有利的。本发明进一步的重要特征和优点将在从属权利要求、附图和根据附图的附图相关说明中显现。应当理解的是,上述的在下面仍将进一步的解释的特征将不仅可用在相应指示的组合中,而且在不脱离本发明的范围时还可用于其它的组合或单独应用。本发明的优选示例性实施方式在附图中示出,并在下面的说明书中进一步详细解释,其中相同的附图标记表示相同或相似或功能相同的部件。


在此分别示意地示出,图1是有源消声器区域内排气系统的局部剖面的等距视图,图2至10是各种实施方式的有源消声器的高度简化示意图。
具体实施例方式根据图1,内燃机(未示出)的排气系统I包括排气管2和至少一个有源消声器3,有源消声器3与排气管2连接并因此与排气系统I连接。在该实施例中,消声器3连接于排气管5,排气管5在内燃机运行时引导由图1中箭头指示的废气流,为此在该实施例中使用了 Y型连接件6,在图1中仅示出了 Y型连接件6的一半。很明显地,消声器3基本上可连接于排气系统I的任意预期部件,即不是必须连接于排气管5。有源消声器3在此用于阻尼夹杂在废气流4或在排气管2中传播的大气噪音。消声器3包括壳体7和流体连接壳体7和排气系统I的连接管8。通过连接管8,在消声器和剩余排气系统I之间发生声音耦合。在连接管8内没有废气流过。但是废气可进入连接管8。根据图2至10,有源消声器3包括扬声器9,扬声器9包括活性膜10和致动器11。在壳体7内的活性膜10将与连接管8流体连接的前容积12和后容积13分隔开,图2至8中所示的后容积13位于扬声器9背离连接管8的一侧。因此,前容积12面向连接管8,而后容积13背离连接管8。致动器11电磁式的运行,并用于振动刺激活性膜10。在图2和3所示的实施方式中,消声器3额外配备有至少一条冷凝管路14,其优选的由金属管体形成。基本上,冷凝管路14也可设计为弹性软管,特别是由塑料制成。冷凝管路14使得后容积13与前容积12流体连接,由此在前容积12和后容积13之间产生压力平衡。为了该压力平衡仅为静态或准静态压差产生而不会为动态压差产生,将冷凝管路14设计为其流体连接后容积13和前容积12而不会产生声频短路。这例如通过相应的节流效应、特别是通过冷凝管路14内的摩擦来实现。例如,冷凝管路14的长度15明显大于冷凝管路14的直径16。适当的比例,例如至少是10:1或至少100:1。另外,设计冷凝管路14,使得包含在特别是通过扩散过程渗透进冷凝管路14的废气中中的蒸汽在冷凝管路14中冷凝。另外,设置该冷凝管路14,使得在其中产生的冷凝物可流向前容积12。因此,冷凝管路14在消声器3的安装状态下在前容积12的方向上倾斜。为了在冷凝管路14中产生预期程度的冷凝效应,根据图2中所示的实施方式,冷凝管路14可完全设置在壳体7的内部。有利地,延伸超出整体冷凝管路长度15的50%的主体部分17设置在后容积13内。由此,冷凝管路14的大部分,即主体部分17暴露于后容积13内的温度,后容积13内的温度明显低于进入冷凝管路14中的废气的温度。由此,可在冷凝管路14内通过蒸汽实现预期的冷凝。在图3所示的实施方式中,设置该冷凝管路14,使得其具有在壳体7外部运行的部分18。位于外部的部分18将与前容积12连接的冷凝管路14的第一端部19连接到与后容积13连接的冷凝管路14的第二端部20。位于外部的部分18可通过例如冷却气流21进行冷却,该冷却气流21在图3中由箭头表示。这可是一个空气流,其在车辆的运行过程中产生,该车辆配备内燃机,其废气通过在此呈现的排气系统I进行输送。可替代的是,该冷却气流21还可通过例如风扇22实现。为了改善位于外部的部分18和冷却气流21之间的热传导,冷凝管路14在位于外部的部分18上可具有散热片23。另外的或可替代的,冷凝管路14在位于外部的部分18可集成到热交换器24上,热交换器24相应集成到冷却回路25上,其中在冷却回路25内的冷却介质和冷凝管路14内的废气之间设置一介质分离。根据图4至7,该消声器3可配备至少一个压力平衡室26,其围绕平衡容积27。此夕卜,存在至少一条连接管路28,其流体连接平衡容积27和前容积12。另外,提供至少一个被动膜29, —方面其暴露于在平衡容积27内的压力,另一方面其暴露于在后容积13内的压力。因此,被动膜29根据平衡容积27和后容积13之间的压差变形。因为平衡容积27通过连接管路28与前容积12以连通的方式连接,平衡容积27内的压力与前容积12内的压力相对应。因此,被动膜29根据后容积13和前容积12之间的压差变形。在图4至7中,由实线表示被动膜29的初始状态,而同时由虚线表示一状态,在该状态中被动膜29根据前容积12和后容积13之间的压差而变形。在图4和5的实施方式中,压力平衡室26包括腔壳30,其设置在壳体7内部的后容积13内。被动膜29在此形成腔壳30的至少一部分。因此,在壳体7内部的被动膜29将平衡容积27和后容积13分隔开,使得其间接暴露于后容积13的压力。在所示的例子中,在此整个腔壳30都由被动膜29形成。在图4所示的实施方式中,腔壳30被设置为弹性气球30’。气球30’或其相应外皮或外罩由被动膜29形成。在图5所不的实施方式中,腔壳30被设置为波纹管30”。在此该波纹管主体由弹性被动膜29形成。在图6所不的实施方式中,压力平衡室26被设置在壳体7的外部。另外,腔壳30也设置在壳体7的外部。在该实施方式中,腔壳30内的被动膜29将平衡容积27和耦合容积31分隔开。耦合管路32为耦合容积31和后容积13提供了流体连接。在图6的例子中,腔壳30设置成与消声器3的壳体7通过连接管路28和耦合管路32间隔开。同样可以想到将腔壳30直接安装在壳体7上,其中耦合管路32和连接管路28分别简化为连接开口和耦合开口。各个开口贯通壳体7的壁和腔壳30的壁或壳体7和腔壳30共有的壁。连接开口为平衡容积27和前容积12之间提供了流体结合。耦合开口为耦合容积31和后容积13之间提供了流体结合。在图7所示的实施方式中,压力平衡室26再次构造于壳体7的内部,其中在壳体7内的被动膜29将平衡容积27和后容积13分隔开。在图7的实施例中,尝试将腔壳30的结构简化为分隔壁,其在图7中还用30表示,分隔壁在壳体7内部将包含后容积13的区域和包含平衡容积27的区域分隔开。被动膜29安装或悬挂在分隔壁30上。连接管路28还设置在壳体7内部,其中连接管路28穿过后容积13延伸,以能够连接平衡容积27和前容积12。在图4至7所示的实施方式中,连接管路28分别设置,使得其将冷凝物引导到前容积12,冷凝可发生在连接管路28内和平衡容积27内。为此,在安装状态下的各个连接管路28可在前容积12的方向上具有相应的倾斜。根据图8,所有实施方式中的消声器3基本上都可配备控制器33,控制器33可通过相应的控制线路34激活致动器11。致动器11根据其激活驱动活性膜10,从而产生压力波,特别是声波。此外,图8所示的消声器3的实施方式可具有传感器系统35,依靠该系统可测量前容积12和后容积13之间的压差。在图8的实施例中,传感器系统35包括压差传感器36,一方面其与前容积12以适当的方式结合,例如通过第一传感线路37,而另一方面其与后容积13以适当的方式结合,例如通过第二传感线路38。传感器系统35通过信号线路39与控制器33结合,使得控制器33获知前容积12和后容积13之间的压差。控制器33现在进行配置或编程,使得其根据测得的压差激活致动器11。通过有针对性的激活致动器11,可以或多或少补偿由前容积12和后容积13之间的压差引起的活性膜10的挠曲。例如,前容积12中的超压引起了活性膜10在后容积13方向上的挠曲。根据致动器11的相应激活,致动器11在前容积12的方向上可静态的驱动活性膜10,并特别的将其再次移回到初始位置。因此,由前容积12和后容积13之间的压差引起的活性膜10的挠曲基本上得以平衡或补偿。有利地,配置控制器33,使得其依靠测得的压差产生静态控制信号,以产生活性膜10的预期静态移动来补偿由压差导致的活性膜10的挠曲。与此相反,控制器33产生动态控制信号以生成压力振荡,其通过连接管8传递到排气管2中,通过该控制信号,控制器33激活致动器11来驱动活性膜10。通过激活,活性膜10可产生预期的压力振荡。特别的,其涉及针对夹杂在废气中的大气噪音的消音。提供静态控制信号来补偿由压差引起的活性膜10的挠曲,将该静态控制信号与用于生成压力振荡或消音的动态控制信号叠加。在图9显示的实施方式中,不是导致活性膜10从其中心位置挠曲的压差,膜的挠曲直接进行测定,并用作静态控制信号的输入参数进行补偿。因此,根据图9,提供设备42,通过它确定膜的挠曲。确定活性膜10从其中心位置的挠曲,然后假定压力在前容积12和后容积13中的程度相同。在图9的实施例中,设备42包括麦克风43,其可检测和测量从活性膜10发出的大气噪音。为了评估它们,麦克风信号通过相应的信号线路44供应到控制器33。由于膜10的声音排放分别根据其预应力或其挠曲变化,可通过目标性能比较来确定膜的挠曲。可替换的是,根据图10的设备42可具有传感器系统45,通过它可测量膜10的挠曲。然后相应的信号可再次通过信号线路46在此供应到控制器33。在图10显示的实施方式中,提供输送设备47,其流体连接于后容积13。控制线路48利用输送设备47连接控制器33。输送设备47,例如泵,可作为超压发生器或真空发生器使用,以根据需要能够利用超压或真空作用于后容积13,使得能够完全或部分补偿不需要的静态膜挠曲。膜的挠曲可直接用作基础信号来激活输送设备47,膜的挠曲可再次通过设备42确定。可替换的是,可使用前容积12和后容积13之间的压差来激活输送设备47,因为该压差与膜的挠曲相对应。可使用传感器系统35来测定压差。在该实施例中,输送设备47设置在壳体7的外部。很明显地,输送设备还可设置在壳体7的内部。另外,为了调整后容积13中的压力和前容积12中的压力,实施例中的输送设备47输送入环境41中或从环境41中引入。在图4至10所不的实施方式中,消声器3额外配备有至少一个压力平衡开口 40,其在壳体7上或壳体7的壁上形成,并将后容积13流体连接到消声器3的环境41。可完全设计压力平衡开口 40,使得其气体可渗透但是流体不可渗透。例如,为此,压力平衡开口 40可使用透气膜封闭,其在此未示出。在图2和3所示的实施方式中,基本可同样存在类似的压力平衡开口 40。但是,在一个优选的实施方式中,可省去该压力平衡开口 40。因此,特别的,在图2和3所示的实施方式中,后容积13不与环境41结合。
尽管在此没有说明,但明显地是,只在一个实施方式中示出的特征还可在其它实施方式中实现,只要这是有利的。
权利要求
1.一种用于内燃机、特别是机动车内燃机的排气系统(I)的有源消声器, -具有壳体(7), -具有连接管(8 ),其用于将壳体(7 )隔音且流体地连接到排气系统(I), -具有活性膜(10),其在壳体(7)内并将流体连接于该连接管(8)的前容积(12)和后容积(13)分隔开, -具有振动刺激所述活性膜(10 )的致动器(11), 其特征在于,通过至少一条流体连接后容积(13)和前容积(12)的冷凝管路(14),含在废气中的蒸汽在其中冷凝,并且冷凝管路(14)将产生的冷凝物引导到前容积(12)。
2.根据权利要求1的消声器,其特征在于,为了平衡且不会声频短路,所述冷凝管路(14)流体连接所述后容积(13)和所述前容积(12)。
3.根据权利要求1或2的消声器,其特征在于,冷凝管路(14)设置在所述壳体(7)的内部。
4.根据权利要求3的消声器,其特征在于,所述冷凝管路(14)的主要部分(17)设置在所述后容积(13)中。
5.根据权利要求1或2的消声器,其特征在于,所述冷凝管路(14)具有在壳体(7)外部运行的部分(18),其连接所述冷凝管路(14)的与所述前容积(12)连接的端部(19)和与所述后容积(13 )连接的端部(20 )。
6.根据权利要求5的消声器,其特征在于,设置在所述壳体(7)的外部的所述冷凝管路(14)的部分(18)能够主动或被动冷却。
7.根据权利要求1至6之一的消声器,其特征在于,所述冷凝管路(14)是一个管。
8.根据权利要求1至7之一的消声器,其特征在于,在消声器(3)的安装状态下,所述冷凝管路(14)在所述前容积(12)的方向上倾斜。
9.根据权利要求1至8之一的消声器,其特征在于,所述后容积(13)相对于消声器(3)的环境(41)是密封的。
10.根据权利要求1的前序部分的有源消声器,其特征在于,具有至少一个压力平衡室(26),其围绕平衡容积(27),其中至少一条连接管路(28)流体连接所述平衡容积(27)和所述前容积(12),其中具有至少一个被动膜(29),该被动膜一方面暴露于在所述平衡容积(27)内的压力,另一方面暴露于在后容积(13)内的压力。
11.根据权利要求10的消声器,其特征在于, -压力平衡室(26 )具有设置在后容积(13 )中的腔壳(30 ), -被动膜(29)形成腔壳(30)的至少一部分。
12.根据权利要求11的消声器,其特征在于,所述被动膜(29)形成整个腔壳(30)。
13.根据权利要求11或12的消声器,其特征在于,所述腔壳(30)被设置为弹性气球(30’)或弹性波纹管(30”)。
14.根据权利要求10的消声器,其特征在于, -所述压力平衡室(26)具有设置在后容积(13)外部和/或壳体(7)外部的腔壳(30), -在腔壳(30)内所述被动膜(29)将平衡容积(27)和耦合容积(31)分隔开, -耦合管路(32 )将耦合容积(31)流体连接到后容积(13)。
15.根据权利要求10的消声器,其特征在于,-所述压力平衡室(26)构造在壳体(7)内, -在壳体(7 )内所述被动膜(29 )将平衡容积(27 )和后容积(13 )分隔开。
16.根据权利要求15的消声器,其特征在于,所述连接管路(28)设置在壳体(7)中并延伸穿过后容积(13)。
17.根据权利要求10至16之一的消声器,其特征在于,设置连接管路(28),使得其将平衡容积(27)内产生的冷凝物引导到前容积(12)。
18.根据权利要求1的前序部分的有源消声器,其特征在于,具有测量前容积(12)和后容积(13)之间压差的传感器设备(35),其中用于激活致动器(11)的控制器(33)与传感器设备(35)结合并根据测得的压差激活致动器(11),由此补偿由压差引起的活性膜(10)的挠曲。
19.根据权利要求18的消声器,其特征在于,所述控制器(33)根据测得的压差将静态控制信号和动态控制信号叠加,由此控制器(33)激活致动器(11)来驱动活性膜(10),使得所述活性膜(10)产生消音来阻尼夹杂·在废气中的大气噪音。
20.根据权利要求1的前序部分的有源消声器,其特征在于,具有确定活性膜(10)从其中心位置挠曲的设备(42),其中用于激活致动器(11)的控制器(33)与所述设备(42)结合,并根据确定的膜挠曲激活致动器(11)来补偿膜的挠曲。
21.根据权利要求20的消声器,其特征在于,所述设备(42)具有测量膜挠曲的传感器系统。
22.根据权利要求20的消声器,其特征在于,所述设备(42)致动器(11)在其激活时的电流消耗并据此确定膜的挠曲。
23.根据权利要求20的消声器,其特征在于,所述设备(42)评估麦克风信号,并据此确定膜的挠曲,所述麦克风测定从活性膜发出的声音。
24.根据权利要求1的前序部分的有源消声器,其特征在于,具有流体连接到后容积(13)的输送设备(47),其中与输送设备(47)结合的控制器(33)根据前容积(12)和后容积(13)之间的压差或活性膜(10)从其中心位置的挠曲来激活所述输送设备(47),以减少压差和膜的挠曲,从后容积(13)中抽取或向后容积(13)中输送。
25.根据权利要求1至8和10至24之一的消声器,其特征在于,具有至少一个压力平衡开口(40),其将后容积(13)流体连接到消声器(3)的壳体(7)的环境(41)。
全文摘要
本发明涉及一种用于内燃机、特别是机动车内燃机的排气系统的有源消声器,其包括壳体(7),用于隔音且流体的连接壳体(7)和排气系统(1)的连接管(8),在壳体(7)内的活性膜(10)将流体连接于连接管(8)的前容积(12)和后容积(13)分隔开,以及振动刺激活性膜(10)的致动器(11)。通过至少一条冷凝管路(14)可降低后容积(13)内的冷凝物导致损坏的风险,冷凝管路(14)将后容积(13)和前容积(12)流体连接,含在废气中的蒸汽在其中冷凝,并且其将产生的冷凝物引导到前容积(12)。
文档编号F01N1/06GK103114889SQ201210387028
公开日2013年5月22日 申请日期2012年10月12日 优先权日2011年10月14日
发明者杨·克鲁格, 曼弗雷德·尼古拉, 迈克尔·波墨尔 申请人:J·埃贝斯佩歇合资公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1