一种机动车尾气处理用电加热型泡沫合金滤芯催化方法与流程

文档序号:24411171发布日期:2021-03-26 19:23阅读:155来源:国知局
一种机动车尾气处理用电加热型泡沫合金滤芯催化方法与流程

1.本发明属于合金滤芯催化方法技术领域,具体涉及机动车尾气处理用电加热型泡沫合金滤芯催化方法。


背景技术:

2.现有控制汽车尾气排放中的污染物减排技术中,均采用尾气催化处理技术,既在汽车尾气排放管中装有催化转化器,而催化剂的最佳工作温度均在250℃以上,否则达不到催化转化的效果;现实中汽车冷启动、间歇停车后的再启动以及短暂停车、怠速及小负荷工况下,尾气排放温度一般均低于250℃,催化剂大多不起作用或作用极小,因此,造成尾气排放污染普遍而大量的存在,现有的大部分是蓄热兼换热器及旁通管路分体式组合,占用空间大,导气兼换热管系统结构复杂,不易制作,且易出故障,并且对尾气加热升温速度低,需要研发一种催化方法来解决现有的问题。


技术实现要素:

3.本发明的目的在于提供一种机动车尾气处理用电加热型泡沫合金滤芯催化方法,以解决催化器载体加热不均匀,升温速度慢的问题。
4.为实现上述目的,本发明提供如下技术方案:一种机动车尾气处理用电加热型泡沫合金滤芯催化方法,包括以下步骤:将催化剂涂敷在催化器载体的泡沫表面上,所述催化器载体安装在滤芯中,再把所述滤芯安装到加热器中;将所述催化器载体的两个电极上分别连接电源正极和负极;在所述加热器的上游管道内设置第一温度传感器,用于获取催化器载体入口气流的温度;在所述催化器载体上设置第二温度传感器;在所述催化器载体的下游管道内设置第三温度传感器,用于获取催化器载体出口气流的温度;使用常温气流,将lpg喷入上游管道内与空气混合后进入催化器载体,使催化器载体的两个电极通电,所述催化器载体对气态hc产生了氧化作用,所述第二温度传感器得到的温度上升到500℃,而第三温度传感器测量的温度未上升;在发动机排气气流温度下,使催化器载体的两个电极通电后,所述催化器载体对尾气中的co产生净化,在将电源关闭后,尾气中的co恢复到初始状态;在发动机排气气流温度下,对催化器载体的两个电极通电后,然后向上游管道内喷入柴油,所述催化器载体对柴油产生了氧化作用,第二温度传感器的温度上升到600℃,在将燃油喷射停止,且电源关闭后,柴油浓度再次上升,吸附在上游管道、下游管道以有及催化器载体表面的柴油不能被氧化从尾管中排出。
5.优选的,所述第二温度传感器安装位于距离催化器载体出口0.5cm

1cm处。
6.优选的, 所述常温气流的温度为30℃;所述发动机排气气流温度为160℃。
7.优选的,所述lpg的主要成分为c3h8。
8.优选的,所述电源的电压为dc 24v。
9.优选的,所述催化器载体对尾气中的co转化效率为50%。
10.优选的,所述催化器载体为合金材料,呈泡沫状,所述催化剂的材质为贵金属。
11.本发明的技术效果和优点:该机动车尾气处理用电加热型泡沫合金滤芯催化方法,催化器载体使用泡沫合金材质,合金材质具备导电性,可直接通电发热并加热催化器载体表面的催化剂,对催化剂的加热更均匀,升温速度更快。
附图说明
12.图1为本发明的安装结构图;图2为本发明对气态hc的氧化实验图;图3为本发明对co的氧化实验图;图4为本发明对柴油的氧化实验图;图5为本发明催化器载体的结构图。
13.图中:1、催化器载体;21、第一温度传感器;22、第二温度传感器;23、第三温度传感器;31、上游管道;32、下游管道;4、电极。
具体实施方式
14.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
15.本发明提供了如图中所示的一种机动车尾气处理用电加热型泡沫合金滤芯催化方法,包括以下步骤:将催化剂涂敷在催化器载体1的泡沫表面上,催化器载体1安装在滤芯中,再把所述滤芯安装到加热器中;催化器载体1的两个电极4上分别连接电源正极和负极;加热器的上游管道31内设有第一温度传感器21,用于获取催化器载体1入口气流的温度;催化器载体1上设有第二温度传感器22;加热器的下游管道32内设有第三温度传感器23,用于获取催化器载体1出口气流的温度;泡沫合金材料,作为催化器载体1,具有比表面积大,可定制规格,具备一定的韧性,低热容,可导电等特点,加热型泡沫合金doc对气态hc的氧化:如图2所示,其中t1表示第一温度传感器21获取的温度数值,t2表示第二温度传感器22获取的温度数值,t3表示第三温度传感器23获取的温度数值,lpg表示c3h8浓度,当使用常温气流的温度约30℃,将lpg(主要成分为c3h8)在催化器上游喷入管道内与空气混合后进入催化器载体1,之后对涂覆有贵金属的泡沫合金进行通电,本实施例实验中采用dc 24v,该催化器对气态hc产生了明显的氧化作用,催化器载体1的温度迅速上升到接近500℃左右,而催化器出口气流温度并未大幅度上升。
16.加热型泡沫合金doc对co的氧化 :如图3所示,其中t1表示第一温度传感器21获取的温度数值,t2表示第二温度传感器22获取的温度数值,t3表示第三温度传感器23获取的
温度数值,co表示气体污染物浓度,在较低的发动机排气气流约160℃的温度下,对涂覆有贵金属的泡沫合金进行通电,本实施例实验中采用dc 24v后,该催化器对尾气中的co产生了明显的净化效果,本实施例实验中的转化效率为50%左右,在将电源关闭后,尾气中的co基本恢复到初始状态。
17.加热型泡沫合金doc对柴油的氧化 :如图4所示,其中t1表示第一温度传感器21获取的温度数值,t2表示第二温度传感器22获取的温度数值,t3表示第三温度传感器23获取的温度数值,thc表示柴油浓度,在较低的发动机排气气流约160℃温度下,对涂覆有贵金属的泡沫合金进行通电,本实施例的实验中采用dc 24v,然后向催化器前管道中喷入柴油(hc),该催化器对hc产生了明显的氧化作用,催化器载体1的温度迅速上升到600℃左右,在将燃油喷射停止,且电源关闭后,hc浓度再次上升,应为吸附在管路及载体表面的hc不能被氧化而从尾管中排出,本实施例中,对泡沫合金材料的催化器载体1进行合理的结构设计后,可在一定的范围内形成合适的电阻;对合金泡沫的催化器载体1通电后,催化器载体1能较快的发热,进而将涂敷在催化器载体1表面的催化剂加热至所需的反应温度,经过验证,即使催化剂前的气流的温度低于一般意义的起燃温度,只要将催化器本身加热至适当的温度以上,则常见的气体污染物(hc co)即可被催化氧化,因此次泡沫合金载体体积较小,为达到适当的空速,在气流的控制上采用了样件前粗略的by

pass分流的方式,故对流量的控制不甚精确,对试验结果的绝对值有一定的影响,但并不影响得出上述结论,因合金泡沫材料具备一定的电阻,可直接发热,并进一步加热涂敷在泡沫表面的催化剂。即使待反应气体的温度仍较低,但仍可使催化剂达到可反应的温度,相比电阻丝加热陶瓷载体的形式,因泡沫合金载体具备导电性,故可直接通电发热并加热催化剂,对催化剂的加热更均匀,升温速度更快 。
18.最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1