带分布式储热的太阳能光热发电系统的制作方法

文档序号:9613246阅读:694来源:国知局
带分布式储热的太阳能光热发电系统的制作方法
【技术领域】
[0001]本发明涉及电力技术领域,更具体地说,涉及带分布式储热的太阳能光热发电系统。
【背景技术】
[0002]塔式太阳能光热发电系统具有宽泛的温场与能场匹配设定、聚光比大、聚焦温度高、能流密度大、热工转换效率高、应用范围广等等优长特点,可进行大规模:光热发电、水制氢、海水淡化、金属冶炼等众多太阳能用途开发。因此,塔式太阳能光热发电系统是一种极具价值潜力的太阳能多元化利用平台。
[0003]曾先后有许多发达国家,开展过塔式太阳能发电技术研究。然而至今该项技术的发展仍受到诸多阻困,其原因主要有两点:一是定日镜跟踪成本过高,这是由于远距离跟踪的精度要求极高,必须达到齿轮无间隙传动,由此所引起的苛刻制作是推高跟踪成本的原因;二是发电规模太小,发电扩容受到极大限制,由于塔式发电规模取决于定日镜场规模,光热发电规模越大,成本下降空间越大,但是当定日镜场规模扩大到一定程度之后,其整体效率呈现锐减下降趋势。因此,目前的塔式太阳能发电系统发电成本居高不下,离市场化要求仍有较大的距离。

【发明内容】

[0004]本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种可持续、稳定、高效发电的带分布式储热的太阳能光热发电系统。
[0005]本发明解决其技术问题所采用的技术方案是:
[0006]构造一种带分布式储热的太阳能光热发电系统,包括:用于收集太阳热能的太阳能集热装置,与所述太阳能集热装置连接、用于产生过热饱和蒸汽的换热器,和与所述换热器连接、用于将所述过热饱和蒸汽转换成电能的热动力转换装置;其中,所述太阳能集热装置包括多个具有收集太阳热能的塔式光热模块;多个所述塔式光热模块中包括B类塔式光热模块,其中,
[0007]每个所述B类塔式光热模块包括用于聚焦阳光的第二定日镜,以及包括设置有第二集热器的第二光热塔,还包括与所述第二光热塔连接、用于存储所述第二集热器中被加热热工质热能的分布式储热单元。
[0008]本发明所述的太阳能光热发电系统,其中,所述换热器包括多个子换热器,每个所述B类塔式光热模块包含一个所述子换热器。
[0009]本发明所述的太阳能光热发电系统,其中,每个所述B类塔式光热模块的所述子换热器共同通过一个用于存储过饱和热蒸汽的高温蒸汽储热装置与所述热动力转换装置连接。
[0010]本发明所述的太阳能光热发电系统,其中,所述B类塔式光热模块采用熔盐作为热工质。
[0011]本发明所述的太阳能光热发电系统,其中,多个所述塔式光热模块中还包括A类塔式光热模块;其中,
[0012]所述A类塔式光热模块包括用于聚焦阳光的第一定日镜和设置有第一集热器的第一光热塔;
[0013]多个所述A类塔式光热模块共同通过一个用于储存所述第一集热器中被加热热工质热能的集中式储热单元与所述换热器连接。
[0014]本发明所述的太阳能光热发电系统,其中,所述A类塔式光热模块采用蒸汽或熔盐作为热工质。
[0015]本发明所述的太阳能光热发电系统,其中,所有A类塔式光热模块都采用熔盐作为热工质,所有B类塔式光热模块都采用熔盐作为热工质,所述A类塔式光热模块与所述B类塔式光热模块之间串联或并联连接。
[0016]本发明所述的太阳能光热发电系统,其中,一部分所述A类塔式光热模块采用熔盐作为热工质,另一部分所述A类塔式光热模块采用蒸汽作为热工质,所述B类塔式光热模块都采用熔盐作为热工质;
[0017]采用熔盐作为热工质的所述A类塔式光热模块与采用蒸汽作为热工质的所述A类塔式光热模块之间全部并联连接,所述A类塔式光热模块与所述B类塔式光热模块之间并联连接。
[0018]本发明所述的太阳能光热发电系统,其中,单个所述塔式光热模块发电功率为10-25MW。
[0019]本发明的有益效果在于:通过采用具有模块化太阳能集热装置、且带分布式储热的太阳能光热发电系统,可以简化电站建设流程,减少建设工期,更可以减少电站设计投资成本,还能提高镜场的效率,而且当其中一个单塔出现问题时,不会影响到其他塔式光热模块的工作状态,保证了整个发电系统供电的持续性和稳定性。
【附图说明】
[0020]下面将结合附图及实施例对本发明作进一步说明,附图中:
[0021]图1是本发明较佳实施例的包含B类塔式光热模块的带分布式储热的太阳能光热发电系统原理示意图;
[0022]图2是本发明较佳实施例的单个B类塔式光热模块原理示意图;
[0023]图3是本发明较佳实施例的同时包含A类塔式光热模块和B类塔式光热模块的带分布式储热的太阳能光热发电系统原理示意图一;
[0024]图4是本发明较佳实施例的同时包含A类塔式光热模块和B类塔式光热模块的带分布式储热的太阳能光热发电系统原理示意图二;
[0025]图5是本发明较佳实施例的单个A类塔式光热模块原理示意图。
【具体实施方式】
[0026]本发明较佳实施例的带分布式储热的太阳能光热发电系统原理如图1所示,包括:用于收集太阳热能的太阳能集热装置,与太阳能集热装置连接、用于产生过热饱和蒸汽的换热器,和与换热器连接、用于将过热饱和蒸汽转换成电能的热动力转换装置24;太阳能集热装置包括多个具有收集太阳热能的塔式光热模块11、12 ;多个塔式光热模块11、12中包括类塔式光热模块12。其中,每个B类塔式光热模块12包括用于聚焦阳光的第二定日镜121、设置有第二集热器的第二光热塔122,和与第二光热塔122连接、用于存储第二集热器中被加热热工质热能的分布式储热单元124。通过采用具有模块化太阳能集热装置的太阳能光热发电系统(以下简称太阳能光热发电系统),当再建设大型光热电站时,只需将塔式光热模块复制,可以简化建设流程,减少建设工期,更可以减少发电系统设计投资成本。
[0027]同时,采用上述太阳能光热发电系统,还可以增加整个发电系统的供电稳定性。如果是单塔的光热电站,无论哪一部分出现问题,整个发电系统的稳定性都会受到影响,当采用模块化太阳能光热发电系统后,单塔出现问题不会影响到其他模块的工作状态,保证了整个发电系统供电的持续性和稳定性。另外,采用上述太阳能光热发电系统,还可以提高定日镜镜场的效率。如果是大型的单塔光热发电系统,远端的镜场离塔顶的距离非常远,效率很低,当采用太阳能光热发电系统后,可以减小镜场离塔顶的距离,提高镜场的效率,减小镜场面积和投资。
[0028]上述实施例中,太阳能光热发电系统的热动力转换装置24优选为汽轮发电机组,具体型号不限。
[0029]优选地,上述实施例中,如图1和图2所示,每个B类塔式光热模块12均连接一个子换热器123,每个B类塔式光热模块12的子换热器123经一个共同的高温蒸汽储热装置13连接至热动力转换装置24,以将各个子换热器123所产生的过饱和热蒸汽储存后输送至热动力转换装置24进行发电。
[0030]如图1和图2所示,上述B类塔式光热模块12工作流程为:由第二定日镜121反射阳光,聚焦阳光并加热第二光热塔122塔顶第二集热器中的热工质,被加热的热工质,一部分通过分布式储热单元124储存热量,另一部分通过换热器123产生过热饱和蒸汽,以推动热动力转换装置24发电。
[0031]优选地,如图2所示,上述实施例中,每个B类塔式光热模块12的子换热器123与第二光热塔122之间均连接一个低温蒸汽储热装置125,经子换热器123换热后的热工质再被栗到第二光热塔122塔顶加热,以进行循环利用。
[0032]上述实施例中,太阳能光热发电系统高温蒸汽储热装置13包括一个储热罐,或者由多个储热罐组成。
[0033]在进一步的实施例中,如图3、图4和图5所示,构成上述太阳能光热发电系统中的太阳能集热装置
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1