具有深度变化材料性质的涡轮机部件热障涂层的制作方法

文档序号:10663104阅读:394来源:国知局
具有深度变化材料性质的涡轮机部件热障涂层的制作方法
【专利摘要】一种具有深度变化材料性质的热障涂层(TBC)形成于涡轮机部件上。示例性深度变化材料性质包括从所述TBC层内表面到外表面发生变化的物理延展性、强度、和热阻性。用于修改物理性质的示例性方式包括:涂敷不同材料成分的多个单独上方层、或者通过在涂敷TBC层期间使所涂敷的材料成分发生变化。本文描述的各个实施例还在所述TBC层之上涂敷钙镁铝硅(CMAS)阻滞材料,以便阻止包含燃烧颗粒的CMAS与所述TBC层发生反应或者粘合至所述TBC层。在其它实施例中,CMAS阻滞材料还涂敷在形成于所述TBC表面中的设计槽特征(EGF)内。
【专利说明】具有深度变化材料性质的涡轮机部件热障涂层
[0001]优先权声明和相关申请的交叉引用
本申请要求在下列美国专利申请下的优先权,其全部内容通过引用并入本文:
于2014年2月25日提交的、分配的序列号为14/188,941的“TURBINE ABRADABLE LAYERWITH PROGRESSIVE WEAR ZONE HAVING A FRANGIBLE OR PIXELATED NIB SURFACE”;以及于2014年2月25日提交的、分配的序列号为14/188,958的“TURBINE ABRADABLE LAYERWITH PROGRESSIVE WEAR ZONE MULTI LEVEL RIDGE ARRAYS”。
[0002]案卷编号为20 13P20413W0、分配的序列号(未知)、发明名称为“TURBINEABRADABLE LAYER WITH AIRFLOW DIRECTING PIXELATED SURFACE FEATURE PATTERNS”的同时提交的国际专利申请视为是相关申请并且通过引用并入本文。
[0003]为了审查现在提交的申请,将下列美国专利申请视为是相关申请,其全部内容通过引用并入本文:
于2014年2月25日提交的、分配的序列号为14/188,992的“TURBINE ABRADABLE LAYERWITH PROGRESSIVE WEAR ZONE TERRACED RIDGES”;
于2014年2月2 5日提交的、分配的序列号为14/18 8,813的“TURBI NE ABRADABLE LAYERWITH PROGRESSIVE WEAR ZONE MULTI DEPTH GROOVES”;
于2014年2月25日提交的、分配的序列号为14/189,035的“TURBINE ABRADABLE LAYERWITH ASYMMETRIC RIDGES OR GROOVES”;
于2014年2月25日提交的、分配的序列号为14/189,081的“TURBINE ABRADABLE LAYERWITH ZIG-ZAG GROOVE PATTERN”;以及
于2014年2月2 5日提交的、分配的序列号为14/18 9,011的“TURBI NE ABRADABLE LAYERWITH NESTED LOOP GROOVE PATTERN”。
技术领域
[0004]本发明涉及在其暴露于已加热的工作流体(诸如,燃烧气体或者高压蒸汽)的部件表面上具有热障涂层(TBC)层的燃烧或者蒸汽涡轮发动机,其包括包含了这些热障涂层的单独的子部件。本发明还涉及用于减少通常由发动机热循环或者异物损伤(FOD)引起的对这些祸轮发动机部件TBC层的裂纹扩展或者散裂损伤(spallat1n damage)的方法。更具体地,本文中描述的各个实施例涉及:在涡轮机部件上形成具有深度变化材料性质的上方热障涂层(TBC)。示例性深度变化材料性质包括从所述TBC层内表面到外表面发生变化的断裂韧性、弹性模数、多孔性和导热性。用于修改物理性质的示例性方式包括:涂敷不同材料成分的多个单独上层、或者在热喷涂涂敷TBC层期间使所涂敷的材料成分发生变化。本文描述的各个实施例还在所述TBC层之上涂敷钙镁铝硅(CMAS)阻滞材料,以便阻滞包含燃烧颗粒的CMAS与所述TBC层发生反应或者粘合至所述TBC层。
【背景技术】
[0005]公知的涡轮发动机(包括气体/燃气涡轮发动机和蒸汽涡轮发动机)包含在圆周上由涡轮机外壳或者壳体包围的轴安装型涡轮机叶片。虽然本说明书的剩余部分将重点放在燃烧或者气体涡轮机技术应用和环境内的应用,但是本文中描述的示例性实施例可适用于蒸汽涡轮发动机。在气体/燃气涡轮发动机中,热燃烧气体流入开始于燃烧器内的燃烧路径中,并且通过大体上呈管状的过渡件引导到涡轮段中。靠前的或者第I排轮叶将燃烧气体引导通过多排连续交替的涡轮机叶片和轮叶。撞击涡轮机叶片的热燃烧气体使叶片转动,从而将热气体内的热能转换成机械功,该机械功可用于向旋转机械(诸如,发电机)提供动力。
[0006]将在热燃烧气体路径内的发动机内部部件暴露于大约900摄氏度(1600华氏度)的燃烧温度下。在燃烧路径内的发动机内部部件,诸如,例如,燃烧段过渡件、轮叶和叶片,通常由耐高温超合金构造而成。叶片和轮叶通常包括终止于部件外表面上的冷却孔中的冷却通道,以便使冷却剂流体通过到燃烧路径中。
[0007]涡轮发动机内部部件通常包含金属陶瓷材料的热障涂覆或者涂层(TBC),该TBC直接涂敷到部件基板表面的外表面或者在先前涂敷到基板表面的中间金属粘结涂层(BC)之上。TBC在部件基板之上提供绝缘层,这降低了基板温度。TBC涂敷与部件中的冷却通道的结合进一步降低了基板温度。
[0008]由于(尤其)用于制造上述的示例性涡轮机部件的通常金属陶瓷TBC材料与通常超合金材料之间在热膨胀、断裂韧性和弹性模数上的差异,在异种材料的界面处存在使TBC层产生裂纹和TBC/涡轮机部件附着损失的潜在风险。裂纹和/或者附着力损失/分层会负面地影响TBC层结构整体性,并且潜在地导致散裂,即,使绝缘材料与涡轮机部件分离。例如,在TBC层内形成的垂直裂纹可以扩散至TBC/基板界面,然后水平蔓延。同样,水平定向的裂纹可以起源于TBC层内或者靠近TBC/基板界面。TBC结构整体性的这种破裂损失可能会导致对下方部件基板的进一步的过早损伤。当TBC层脱离下方基板时,基板会失去防护的热层涂层。在涡轮发动机的继续运转期间,随着时间的推移,热燃烧气体可能会腐蚀或者另外地损伤暴露的部件基板表面,从而潜在地降低发动机运行使用寿命。当使发动机响应于电网增加的负载需求而在线发电并且随着电网负载需求的降低而空闲时,随着连续的通电/断电循环会增大潜在的散裂风险。为了管理TBS散裂风险和其它发动机运转维护需要,通常在定义数量的通电/断电热循环之后会停止使用燃气涡轮发动机以便用于检查和维修。
[0009]除了易于发生热或者振动应力裂纹之外,发动机部件上的TBC层在热燃烧气体内的污染物微粒撞击较易碎的TBC材料时还容易发生异物损伤(FOD)。异物冲击可能会使TBC表面产生裂纹,最终会引起与道路坑洼类似的表面整体性的散裂损失。一旦异物撞击TBC层的一部分的碎片,其余的TBC材料容易发生绝热层的结构裂纹扩展和/或者进一步散裂。除了由异物引起的TBC层的环境损伤之外,燃烧气体中的污染物,诸如钙、镁、铝和硅(通常称为“CMAS”),可以附着到TBC层上或者与TBC层发生反应,从而增加了TBC散裂的可能性并且将下方粘结涂覆暴露出来。
[0010]过去对提高TBC层结构整体性和与下方涡轮机部件基板的固定的尝试已经包括了对更能够抵抗热破裂或者FOD的更强TBC材料的研发,但是付出的代价是热阻性降低或者材料成本增加。一般而言,用于TBC涂敷的相对较强的、更不易碎的潜在材料具有较低的热阻率。替代地,作为折衷,已经将单独涂敷的具有不同有利性质的多层TBC材料涂敷到涡轮机部件基板,例如,具有更好绝缘性能的更易碎或者更柔软的TBC材料,其又用更牢固的、绝缘值低的TBC材料覆盖以作为更能够抵抗FOD和/或CMAS污染物附着的较硬“盔甲”外涂层。为了提高与下方基板的TBC附着力,已经直接将中间金属粘结涂层(BC)层涂敷于基板之上。也已经从平整的裸露表面修改了到TBC的基板或者BC界面的结构表面性能和/或者轮廓。一些公知的基板和/或者BC表面修改(例如,所谓的“粗糙粘结涂层”或者RBC)已经包括了通过烧蚀或者其它喷射、热喷涂沉积等对表面进行粗糙化。在某些情况下,已经对BC或者基板表面进行了光刻胶或者激光蚀刻以包括高度和间隔宽度为大约几微米(μπι)的跨表面平面的表面特征。已经在涡轮机叶片尖端的基板表面上直接形成特征以缓解叶片尖端涂层中受到的应力。已经对粗糙粘结涂层进行了热喷涂以留下几微米大小的特征的多孔表面。通过局部地改变所涂敷的陶瓷金属材料的同质性,已经涂敷了 TBC层以形成预先弱化的区域以在受控方向下吸引裂纹扩展。例如,在与公知的或者可能的应力集中区域对应的TBC层中形成弱化区域,从而使在该弱化区域中形成的任何裂纹在期望方向上扩散以减小对TBC层的整体结构损伤。

【发明内容】

[0011]本文中描述的涡轮机部件构造和用于制造涡轮机部件的方法的各个实施例有助于在涡轮发动机运转期间保护涡轮机部件热障涂层(TBC)层结构完整性。在某些实施例中,直接形成于部件基板中或者涂敷在基板之上的中间层中的设计表面特征(ESF)提高了 TBC层至其的附着力。在某些实施例中,ESF起到牵制或者隔离TBC层中的裂纹的壁或者屏障的作用,以抑制在该层内的额外裂纹扩展或者与相邻联接层的分层。
[0012]在某些实施例中,在TBC层中形成穿透其外表面的设计槽特征(EGF),诸如,通过激光或者喷水烧蚀或者机械切割到先前形成的TBC层中。EGF起到防止火蔓延过易燃材料中的空隙或者间隙的防火线的等同物的作用,阻止在TBC层中的裂纹进一步扩散通过该槽并且扩散到TBC层中的其它区域。在某些实施例中,EGF与在发动机运转期间容易形成裂纹的应力区域对齐。在这些实施例中,在应力区域中形成槽移除了在发动机运转期间可能或者也许会形成应力裂纹的材料。在其它实施例中,以二维或者多边形平面图案将EGF方便地形成在TBC层中。ESF使在TBC内的热应力诱发的或者异物损伤(FOD)诱发的裂纹扩展局部化,否则该裂纹扩展可能会允许过度的TBC散裂和随后对涡轮机部件下方基板的热暴露损伤。将已经形成一条或者多条裂纹的给定TBC表面区域与在EGF外侧的未裂开部分隔离开。因此,如果由一个或者多个EGF隔离开的裂开部分从该部件散裂,那么由于受牵制的裂纹,在包含槽的裂纹外侧的其余TBC表面不会散裂。
[0013]在某些实施例中,牵制在ESF和/或者EGF内的裂开TBC材料的散裂会留下与道路坑洼类似的部分下方TBC层。形成“坑洼”的底面或者基层的下方TBC材料为涡轮发动机部件下方基板提供持续的热保护。
[0014]在某些实施例中,涡轮机部件具有热喷涂的上方热障涂层(TBC),该TBC具有深度变化材料性质。示例性深度变化材料性质包括从TBC层内表面到外表面变化的弹性模数、断裂韧性和导热性。用于修改物理性质的示例性方式包括:涂敷不同材料成分的多个单独上方层、或者通过在热喷涂涂敷TBC层期间使所涂敷的材料成分发生变化。
[0015]某些实施例还在TBC层之上涂敷钙镁铝硅(CMAS)阻滞材料,以阻止包含燃烧颗粒的CMAS与TBC层发生反应或者附着到TBC层上。当在EGF之上涂敷了CMAS阻滞层时,CMAS阻滞层抑制了异物在槽内的累积并且还提供了更平整的边界层表面以提高燃烧气流空气动力效率。
[0016]更具体地,本文中描述的本发明的实施例的特征在于一种具有暴露到燃烧气体的绝热外表面的燃气涡轮机部件,其包括:具有基板表面的金属基板;建立于基板表面上的锚固层;以及热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的热障涂层(TBC)层,该热障涂层(TBC)层具有TBC总厚度以及联接至锚固层的TBC内表面、和暴露至燃烧气体的TBC外表面。TBC层材料断裂韧性、弹性模数、多孔性和导热性性质从TBC内表面至TBC外表面发生变化。设计表面特征(ESF)的平面图案从所述锚固层突出,该平面图案具有在TBC层总厚度的大约2%至75%之间的突出高度。设计槽特征(EGF)的平面图案形成到TBC外表面中并且使先前涂敷的TBC层穿透TBC外表面。相应的EGF具有槽深度。
[0017]本文描述的本发明的其它实施例的特征在于一种用于通过提供具有基板表面的金属基板来制造具有暴露至燃烧气体的热绝缘外表面的燃气涡轮机部件的方法。锚固层建立于基板表面上。在锚固层之上形成具有TBC层厚度的热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的整体层热障涂层(TBC)。形成的TBC层具有联接至锚固层的内表面和暴露至燃烧气体的TBC外表面。在将TBC层连续地涂敷在锚固层之上时使TBC层材料的成分逐步地发生变化。
[0018]本文描述的本发明的另外的实施例的特征在于一种制造具有暴露至燃烧气体的热绝缘外表面的燃气涡轮机部件的方法。提供了具有基板表面的金属基板。锚固层建立于基板表面上,该锚固层包括从锚固层突出的设计表面特征(ESF)的平面图案。在锚固层之上形成热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的整体层热障涂层(TBC) JBC具有:TBC层厚度、联接至所述锚固层的内表面、和暴露至燃烧气体的TBC外表面。在将TBC层涂敷在锚固层之上时使TBC层材料的成分逐步地发生变化。设计槽特征(EGH的平面图案形成在TBC外表面上并且使先前涂敷的TBC层穿透TBC外表面。相应的EGF具有槽深度。
[0019]本文中描述的本发明的各个实施例的相应特征可以按照任何组合或者子组合进行共同应用或者分别应用。
【附图说明】
[0020]可以鉴于以下具体描述,结合附图,来理解本文中示出并描述的实施例,在附图中:
图1是包含本发明的一个或者多个示例性热障涂层实施例的气体或者燃气涡轮发动机的部分轴向截面图;
图2是图1的涡轮发动机的详细截面正视图,示出了包含本发明的一个或者多个示例性热障涂层实施例的第I排涡轮机叶片以及第I排和第2排轮叶;
图3是涡轮机叶片尖端可磨损(abradable)表面的多高度或者正视脊轮廓构型和相应的槽图案的平面图或者俯视图,适合用于标准或者“快速启动”发动机模式;
图4是图3的涡轮机叶片尖端可磨损表面实施例沿着C-C的截面视图;
图5是具有非对称轮廓脊构型和多深度平行槽轮廓图案的涡轮机叶片尖端可磨损表面的透视图;
图6是具有非对称的且多深度交叉槽轮廓图案的涡轮机叶片尖端可磨损表面的另一个实施例的透视图,其中,上槽垂直于脊尖端并且相对于脊尖端轴向/纵向倾斜; 图7是台阶状轮廓涡轮机叶片尖端可磨损表面脊的透视图,其中,上层脊具有从下脊平台突出的像素化直立嘴部的阵列;
图8是图7的直立涡轮机叶片尖端可磨损表面嘴部的替代实施例,其中,在嘴部尖端近端处的相应嘴部由材料层构成,该材料层具有不同于该层下面的材料的物理性质;
图9是具有多个微表面特征(MSF)的弯曲的细长的像素化主平面图案(PMPP)的涡轮叶片尖端可磨损部件的剥离层的平面图或者俯视图;
图10是图9的可磨损部件的V形微表面特征(MSF)的详细透视图;
图11是具有第一高度微表面特征和更高的第二高度微表面特征(MSF)的锯齿形波状像素化主平面图案(PMPP)的涡轮叶片尖端可磨损部件表面的局部平面图或者俯视图;
图12是图11的涡轮机叶片尖端可磨损部件沿着C-C的截面视图;
图13是具有形成于涂敷在支撑基板之上的金属粘结涂层中的微表面特征(MSF)的涡轮机叶片尖端可磨损部件沿着图9的13-13的截面视图;
图14是具有形成于支撑基板中的微表面特征(MSH的涡轮机叶片尖端可磨损部件沿着图9的14-14的截面视图;
图15是图14的可磨损尖端部件的替代实施例,其具有作为在基板与TBC之间的中间层而涂敷的金属粘结涂层(BC);
图16是具有形成于粘结涂层(BC)中的设计表面特征(ESH的示例性实施例的涡轮机部件(诸如,例如,涡轮机叶片、轮叶或者燃烧段过渡件)的局部视图,该BC具有涂敷于ESF之上的热障涂层(TBC);
图17是具有直接形成于基板表面中的设计表面特征(ESH的示例性实施例的涡轮机部件的局部视图,该基板具有涂敷于ESF之上的热障涂层(TBC);
图18是具有直接形成于基板表面中的设计表面特征(ESH的示例性实施例的涡轮机部件的局部视图,该基板表面具有两层TBC,这两层TBC包括涂敷于ESF之上的下热障涂层(LTBC)和涂敷于LTBS之上的外热障涂层(OTBC);
图19是具有形成于粘结涂层(BC)中的设计表面特征(ESH的示例性实施例的涡轮机部件的局部视图,该BC具有两层TBC,这两层TBC包括涂敷于ESF之上的下热障涂层(LTBC)和涂敷于LTBS之上的外热障涂层(OTBC);
图20是在其基板表面上具有实突出设计表面特征(ESH的六边形平面轮廓的示例性实施例涡轮机部件的局部视图;
图21是图20的ESF的截面图;
图22是具有多个圆柱形或者柱状轮廓设计表面特征(ESH的示例性实施例的涡轮机部件的局部视图,该多个圆柱形或者柱状轮廓设计表面特征(ESF)在其基板表面上按照组合的方式形成六边形平面图案,该多个圆柱形或者柱状轮廓设计表面特征(ESF)围绕或者包围另一个位于中心的柱状ESF ;
图23是图22的ESF的截面图;
图24是具有涂敷于下BC中先前形成的设计表面特征(ESF)之上的粗糙化粘结涂层(RBC)层的示例性实施例的涡轮机部件的局部视图,先前将该下BC涂敷到部件基板;
图25是具有设计表面特征(ESH的示例性实施例的涡轮机部件的截面示意图,该ESF相对于下方基板表面成角度; 图26是在双层TBC中经历垂直和水平裂纹形成的现有技术涡轮机部件的局部截面,其具有涂敷于相似的无特征表面基板之上的无特征表面粘结涂层(BC);
图27是具有形成于下TBC层中的设计表面特征(ESF)的示例性实施例的涡轮机部件的局部截面,其中,已经通过ESF抑制且中断了垂直和水平裂纹扩展;
图28是具有形成于热障涂层(TBC)外表面中的设计槽特征(EGF)的示例性实施例的涡轮机部件的局部透视图;
图29是具有形成于热障涂层(TBC)中的设计槽特征(EGF)的图28的涡轮机部件的截面示意图;
图30是在受到异物冲击而在TBC中引起异物损伤(FOD)之后图29的涡轮机部件的截面示意图,其中,已经阻止了沿着与EGF的交叉点的裂纹扩展;
图31是在裂纹之上发生一部分TBC散裂而留下在裂纹下面的整层TBC继续进行下方涡轮机部件基板的热隔离之后图29的涡轮机部件的截面示意图;
图32是具有正锚固热障涂层(TBC)的梯形截面设计表面特征(ESF)的示例性实施例的涡轮机部件的截面示意图,箭头指向TBC内的应力集中区域;
图33是图32的涡轮机部件的截面示意图,其中,已经将成角度的设计槽特征(EGF)的示例性实施例切割成与应力集中区域对齐的TBC以便缓解潜在的应力集中;
图34是具有设计表面特征(ESF)和设计槽特征(EGF)两者的涡轮机部件的示例性实施例的截面示意图;
图35是图34的涡轮机部件的截面示意图,其中,已经通过设计表面特征(ESF)和设计槽特征(EGF)约束了异物损伤(FOD)裂纹扩展;
图36至图43示出了形成于靠近部件冷却孔的涡轮机部件热障涂层(TBC)中的设计槽特征(EGH的示例性实施例,以便阻止在围绕冷却孔的区域中的TBC层的裂纹或者层离扩散到在槽的相对侧上的表面区域;
图44是具有设计表面特征(ESF)、设计槽特征(EGF)、和热喷涂的或者气相沉积形成的多层热障涂层(TBC)的涡轮机部件的示例性实施例的截面示意图,该多层热障涂层的材料物理延展性、强度和热阻性性质从TBC层内表面到TBC层外表面变化;
图45是图44的涡轮机部件的替代实施例的截面示意图,其进一步包括涂敷于TBC外表面之上且涂敷于EGF中的热喷涂的钙镁铝硅(CMAS)阻滞层;
图46是图44的涡轮机部件的替代实施例的截面示意图,通过在将TBC层涂敷在ESF之上时使TBC的成分逐步地发生变化的过程来形成热障涂层(TBC);
图47是图46的涡轮机部件的替代实施例的截面示意图,其进一步包括涂敷于TBC外表面之上且涂敷于EGF中的热喷涂的钙镁铝硅(CMAS)阻滞层;
图48是具有设计表面特征(ESF)、设计槽特征(EGF)、和热喷涂的或者气相沉积的多层热障涂层(TBC)的弯曲表面涡轮机部件的示例性实施例的截面示意图;
图49是图48的弯曲涡轮机部件的替代实施例,其进一步包括涂敷于TBC外表面之上且涂敷于EGF中的热喷涂的钙镁铝硅(CMAS)阻滞层。
[0021]为了便于理解,在可能的情况下,已经使用相同的附图标记来表示这些附图所共有的相同元件。这些附图并不是按比例绘制。在本文中描述的各个发明实施例中,已经针对尺寸、截面、流体流、轴向或者径向定向、和涡轮机叶片转动使用了以下共同指示符: C-C截面;
Dg槽深度;
F通过涡轮发动机的流动方向;
G至可磨损表面间隙的涡轮机叶片尖端;
H表面特征的高度;
Hr脊高度;
L表面特征的高度;
R涡轮机叶片转动方向;
Ri第一排的涡轮发动机涡轮段;
R2第2排的涡轮发动机涡轮段;
Sr脊中线间距;
Sg槽间距;
T热障涂层(TBC)层厚度;
W表面特征的宽度;
Wg槽宽度;
Wr可磨损脊宽度;
A相对于可磨损脊纵向/轴向轴线的槽倾斜角;以及 σ热障涂层(TBC)中的应力集中。
【具体实施方式】
[0022]本发明的示例性实施例提高了涂敷于涡轮发动机部件(包括燃烧或者气体涡轮发动机和蒸汽涡轮发动机)的表面的热障涂层(TBC)的性能。在本文中更详细描述的本发明的示例性实施例中,在涡轮机部件上形成具有深度变化材料性质的上方热障涂层(TBC)作为外层。示例性深度变化材料性质包括从所述TBC层内表面到外表面发生变化的物理延展性、强度、和热阻性。用于修改物理性质的示例性方式包括:涂敷不同材料成分的多个单独上层、或者在热喷涂涂敷TBC层期间使所涂敷的材料成分发生变化。本文描述的各个实施例还在所述TBC层之上涂敷钙镁铝硅(CMAS)阻滞材料,以便阻滞包含燃烧颗粒的CMAS与所述TBC层发生反应或者粘合至所述TBC层。CMAS阻滞层通过避免微粒累积到另外的光滑的TBC层外表面来提高了表面边界层空气动力。当在设计槽特征(EGF)之上涂敷了 CMAS阻滞层时,CMAS阻滞层通过覆盖该槽来提高了边界层空气动力并且还抑制了碎肩在槽内的累积。
[0023]热喷涂的TBC的总述
在燃气涡轮发动机部件中的应用
参照图1至图2,涡轮发动机,诸如,气体或者燃气涡轮发动机80,包括多级压缩机段82、燃烧段84、多级涡轮段86和排气系统88。沿着涡轮发动机80的轴向长度,在箭头F的流动方向上,将大气压力进气空气引入到压缩机段82中。在压缩机段82中,按行转动压缩机叶片,对进气空气进行逐渐加压,并且通过匹配压缩机轮叶将进气空气引导至燃烧段84,在燃烧段84处使进气空气与燃料混合并且点火。现在在比原进气空气更大的压力和速度下,将点燃的燃料/空气混合物引导通过过渡件85到在涡轮段86中的连续叶片排仏、1?2等。发动机的转子与轴90具有多排截面呈翼形的涡轮叶片92,这些涡轮叶片92终止于压缩机82和涡轮段86中的远端叶片尖端94。为了方便和简洁起见,对发动机部件上的热障涂层(TBC)层的进一步论述将重点放在涡轮段86实施例和应用,但是相似构造可应用于压缩机段82或者燃烧段84和蒸汽涡轮发动机部件。在发动机80的涡轮段86中,各个涡轮叶片92具有凹形轮廓高压侧96和凸形低压侧98。形成于叶片92中的冷却孔99促进冷却流体沿着叶片表面通过。在燃烧流动方向F上流动的高速高压的燃烧气体在叶片92上给予转动运动,以使转子旋转。众所周知,在转子轴上给予一些机械功率可用于进行有用功。通过涡轮机外壳100在转子的远端上并且通过包括可磨损表面的气密封件102在转子的近端上对燃烧气体进行径向约束。参照图2所示的第I排段,相应的上游轮叶104和下游轮叶106分别引导大体上平行于涡轮叶片92的前缘的入射角的上游燃烧气体,并且重新引导排出叶片的后缘以便以期望的进入角度到达下游的第2排涡轮叶片(未示出)的下游燃烧气体。形成于轮叶104、106中的冷却孔105促进冷却流体沿着轮叶表面通过。注意,图2所示的冷却孔99和105仅是示意性表示,为了视觉清晰起见可以进行放大,但是并不是按比例绘制。通常的涡轮叶片92或者轮叶104、406具有围绕相应翼主体分布的更多冷却孔,相应翼主体具有相对于暴露于发动机燃烧气体的相应叶片或者叶片总表面积要小得多的直径。
[0024]如前所述,暴露于燃烧气体的涡轮机部件表面通常构造有用于隔离其下方基板的热障涂层(TBC)层。通常的TBC涂层表面包括涡轮叶片92、叶片104、106以及相关的涡轮轮叶承载表面、和燃烧段过渡件85 ο用于叶片92、轮叶104、106和过渡件85裸露表面的TBC层通常通过热喷涂或者气相沉积或者溶液/悬浮液等离子喷涂方法来涂敷,总TBC层厚度为300-2000 微米(μ??)。
_5] 涡轮机叶片尖端可磨损部件TBC应用
厚度大于1000微米的绝缘层通常涂敷于扇形涡轮机叶片尖端可磨损部件110(下文中统称为“可磨损部件”),该可磨损部件110和与叶片尖端94成相反关系的涡轮发动机80涡轮机外壳100呈直线。可磨损部件110具有保持在外壳内并且联接至外壳的支撑表面112和通过叶片尖端间隙G与叶片尖端成相反的、间隔开的关系的绝缘可磨损基板120。可磨损基板通常由与涂敷到叶片92、轮叶104、106和过渡件85暴露于燃烧气体的表面的TBC涂层材料相似的金属/陶瓷材料构成。这些可磨损基板材料具有高热阻和抗热腐蚀性能,并且在高燃烧温度下保持结构完整性。一般而言,应该理解的是,一些形式的TBC层形成在叶片尖端可磨损部件110裸露的下方金属支撑表面基板112之上以用于绝缘保护,加上在TBC之上的额外高度处突出的绝缘基板厚度。从而,应该理解的是,可磨损部件110具有功能等同于在涡轮过渡件85、叶片92和轮叶102/104之上涂敷的TBC层的TBC层。可磨损表面120的功能类似于保护可磨损部件支撑表面基板112免受磨损并且提供热保护的额外层的鞋底或者鞋后跟。用于叶片尖端可磨损表面脊/槽的示例性材料包括烧绿石、完全立方体的或者部分稳定的氧化钇、稳定的氧化锆。由于可磨损表面120金属陶瓷材料通常比涡轮叶片尖端94材料更有磨损作用,所以保持叶片尖端间隙G以避免两个相对部件之间的接触,该接触在最好的情况下可能会引起过早的叶片尖端磨损而在最坏的情况下可能会引起发动机损伤。
[0026]叶片尖端可磨损组件110通常构造有金属基层支撑表面112,几千微米厚度(即,通常过渡件85、叶片92或者轮叶104/106的TBC层厚度的几倍)的热喷涂的陶瓷/金属可磨损基板层120涂敷到该金属基层支撑表面112。如下文中更详细描述的,在本文中要求优先权的相关专利申请中描述的示例性涡轮动叶尖端相对的可磨损表面的可磨损层平面图和突出轮廓发明实施例包括在可磨损基板层120中的槽、凹陷或者脊以减少可磨损表面材料截面,以用于减少潜在的叶片尖端94磨损和用于引导在间隙区域G中的燃烧气流。提高发动机效率以节省燃料的商业要求已经产生了更小的叶片尖端间隙G规格:优选不超过2毫米并且期望地接近I毫米(1000 μηι)ο
[0027]图3至图15是本文中要求优先权的相关专利申请中描述的示例性涡轮叶片尖端相对的可磨损表面的平面图和突出轮廓发明实施例的简短概要。图3至图8中所示的形成于热喷涂的或者气相沉积的可磨损层中的可磨损部件截面轮廓包括具有不同的上磨损区域(区域I)和下磨损区域(区域II)的复合多高度/深度脊与槽图案。图9至图15所示的可磨损部件截面轮廓包括不连续的微表面特征(MSF)的像素化主平面图案(PMPP),在该PMPP之上涂敷了可磨损层,这样使加工完成的叶片尖端可磨损层120具有与图3至图8所示的实肋和槽构造的图案相似的脊和槽图案的聚合平面和截面图案。
[0028]关于图3至图8的可磨损表面图案,在叶片、轮叶或者过渡件部件暴露于燃烧气体的表面上具有与2000或者更小的TBC层厚度相比在下方基板表面之上突出几千微米的脊和槽,下磨损区域II优化发动机气流和结构特征,而上磨损区域I减少与下区域相比更容易磨损的叶片尖端间隙和磨损。可磨损部件的各个实施例为上区域的简单可磨损性提供具有比下区域肋结构更小的截面面积的上子脊或者嘴部。在某些实施例中,上子脊或者嘴部形成为在较小叶片尖端接触的情况下弯曲或者在其它方面折曲,并且在较大叶片尖端接触的情况下磨损和/或者剪切下。在其它实施例中,将上区域I的子脊或者嘴部像素化成上磨损区域的阵列,从而仅磨损与一个或者多个叶片尖端局部接触的那些嘴部,而在该局部化磨损区域外面的其它嘴部保持完整。在进一步减少了局部化叶片尖端间隙的情况下,叶片尖端磨损在该位置处的区域II下脊部分。然而,在该下脊部分局部化磨损区域外面的相对较高的脊保持较小的叶片尖端间隙以维持发动机性能效率。
[0029]利用本文中要求优先权的现有技术应用的一些叶片尖端可磨损的磨损表面120实施例的渐进式磨损区域构造,可以将叶片尖端间隙G从先前可接受的公知尺寸减小。例如,如果公知的可接受叶片间隙G设计规格是I mm,那么在磨损区域I中的较高脊的高度可以增加,从而将叶片尖端间隙减小至0.5 mm。为磨损区域II建立起边界的下脊以一定高度设置,从而使其远端尖端部分与叶片尖端间隔隔开I mm。通过这种方式,建立缩短50%的叶片尖端间隙G以便常规涡轮机操作,可接受由叶片与区域I中的上脊接触引起的一些潜在磨损。在区域II中连续的局部化逐步叶片磨损将仅在叶片尖端占据到下区域中时才开始,但是在任何情况下,Imm的叶片尖端间隙G不会比一致的叶片尖端间隙规格更糟。在某些示例性实施例中,上区域I高度大约是下区域II高度的1/3或者2/3。如果由于涡轮机外壳100变形使叶片尖端间隙G针对任意一个或者多个叶片减少时,那么在构成区域I的较高脊尖端处会发生快速发动机启动模式或者叶片尖端94与可磨损部件10之间的其它原因初始接触。而在区域I中,叶片尖端94只摩擦交错的较高脊。如果叶片间隙G逐渐变小,那么较高脊会磨损直到将区域I完全磨穿并且开始接触区域II中的较低脊尖端。一旦在区域II中的涡轮机叶片尖端94磨擦掉在局部化磨损区域处的所有其余脊,但是在涡轮机外壳的其它局部化部分中,可能不存在叶片尖端间隙G的减小,并且上脊可以在其全高度上是完整的。从而,一些可磨损部件110实施例的交替高度肋构造调解区域I和II内的局部化磨损,而维持叶片尖端间隙G和在没有涡轮机外壳100或者叶片92变形的局部化区域中的叶片尖端泄漏的气动控制。
[0030]在可磨损部件中的多高度磨损区也有利于要求更快全功率倾斜升温(约为40-50Mw/分钟)的所谓“快速启动”模式发动机。渐进式上升速率会加剧叶片尖端对环形段可磨损涂层120的潜在更大侵入,这是由于在转动部件与静止部件之间的更快热与机械增长、更大变形和增长速率的更大失配。当需要进行标准发动机运行模式、快速启动发动机运行模式或者这两种发动机运行模式时,较高脊区域I形成具有最小叶片尖端间隙G的空隙的主要层,以便为通常利用低上升速率或者不执行热启动的机器提供最佳的能量效率空隙。通常,区域II中的较低脊尖端的脊高度是构成区域I的较高脊尖端高度的20%至75%之间。
[0031]更具体地,图3和图4示出了具有由槽218间隔隔开的、弯曲平面的、双高度轮廓脊212A、212B的叶片尖端可磨损部件210。脊212A/B形成于热喷涂的陶瓷/金属TBC层217的外表面的表面高度之上,该热喷涂的陶瓷/金属TBC层217涂敷于涡轮机部件金属基板211之上。一般而言,参照图3至图8,应该理解的是,一些形式的TBC从形成于裸露的下方金属基板之上以用于后者的绝热保护。在图3的情况下,可磨损部件脊212A、212B以超过TBC层217的额外高度突出。从而,应该理解的是,可磨损部件(诸如,可磨损部件210、220(图5)、230(图6)和240(图7))具有功能等同于涂敷在涡轮机过渡件85、叶片92和轮叶102/104之上的TBC层的TBC层,加上构成可磨损层(通常包括与TBC层相似的材料)的脊和槽的额外厚度。在图3和图4中,通过公知的沉积或者烧蚀材料工作方法将喷涂的金属/陶瓷可磨损层中的脊212A/B和槽218进行沉积并且形成三维脊和槽轮廓。一种形成可磨损部件210可磨损表面轮廓或者本文中示出的任何其它轮廓的简便方式是将槽切割成平整表面的较厚可磨损基板坯表面。
[0032]通过将槽切割成肋,可以将在图5至图8的实施例的可磨损部件表面120中的渐进式磨损区域包含在非对称肋或者任何其它肋轮廓中,这样使在槽切口侧面上的其余直立肋材料具有比其余下方肋更小的水平截面面积。也可以对槽定向和轮廓进行裁剪,以通过减少不期望的叶片尖端泄漏来提高涡轮发动机的气流特性。图5示出了包括双层的槽的可磨损部件220,具有形成于脊尖端222/224中的槽228A和形成于脊222/224到覆盖基板表面227的TBC材料的较薄层之间的槽228B ο上槽228A构成了较浅深度Dga侧向脊,该较浅深度Dga侧向脊包括磨损区域I,而在上槽深度下面的其余脊222或者224包括下磨损区域II。
[0033]在图6的涡轮机叶片尖端可磨损部件230中,相对于脊232的脊尖端234将多个上槽238A倾斜角度△。上磨损区域I超过槽深度Dga,而磨损区域II低于该槽深度直到隔离基板237的下方金属主体的TBC层的外表面。如所示的上槽388A还垂直于脊尖端384表面。
[0034]利用热喷涂的叶片尖端可磨损部件构造,通过在脊的顶部限定微肋或者嘴部的阵列(如在图7和图8中示出的),可以将上磨损区域I热喷涂的可磨损材料的截面和高度构造为符合不同程度的叶片尖端侵入。可磨损部件240包括先前描述的用TBC表面层绝缘的金属支撑表面241。下槽和脊的阵列形成下磨损区域II。具体地,下脊242B具有终止于脊平台(plateau)244B中的侧壁245B和246B。下槽2488B是由脊侧壁245B和246B以及覆盖基板247的基板TBC层外表面来限定的。通过公知的增材工艺或者通过在下脊242B内形成交叉槽248A和248C的阵列,在下脊平台244B上形成像素化微肋或者嘴部242A。在图7的实施例中,嘴部242A具有由终止于共同高度的脊尖端244A中的直立侧壁245A、245C、246A和246C限定的正方形或者其他矩形截面。可以利用其它像素化嘴部242A截面平面形状,包括,例如,梯形或者六边形截面。也可以利用包括不同局部化截面和高度的嘴部阵列。
[0035]在图8的替代实施例中,直立像素化嘴部242A’的远端肋尖端244A’由热喷涂的材料250构成,该热喷涂的材料250具有与下热喷涂的材料252不同的物理性质和/或者成分。例如,上远端材料250可以构造有比下部材料252更易于有磨损作用的磨损性质或者更少有磨损作用的磨损性质(例如,更柔软或者更多孔或者两者)。通过这种方式,可以将叶片尖端间隙G设计为小于以前的公知的可磨损部件中使用的以减少叶片尖端泄漏,从而使任何到材料250中的局部化叶片侵入不太可能磨损叶片尖端,即使这种接触变得更有可能。通过这种方式,涡轮发动机可以设计有更小的叶片尖端间隙,以增加其运行效率及其在标准或者快速启动模式下运转的能力,而不会对叶片磨损有显著影响。
[0036]在图7和图8中确定了像素化嘴部242A和槽248A/C的尺寸边界,这与现有技术实施例中描述的一致。一般而言,嘴部242A高度Hra在叶片尖端间隙G的大约20%至100%的范围内或者在下脊242B和嘴部242A的总脊高度的大约1/3至2/3的范围内。嘴部242A截面在嘴部高度Hra的大约20%至50%的范围内。
[0037]—般而言,可磨损部件中的上磨损区域I脊高度可以选择以使理想的叶片尖端间隙为0.25 mmd10和9:00涡轮机外壳圆周的磨损区域在整个发动机运行周期中可能保持期望的0.25 _叶片尖端间隙,但是存在在其它圆周位置处的涡轮机外壳/可磨损部件变形的更大可能性。可以选择下脊高度以在1.0 mm的理想化叶片尖端间隙处设置其脊尖端,从而,在较高磨损区域中,叶片尖端只更深地磨损进入到磨损区域I中并且不会接触为下磨损区域II设置边界的下脊尖端。如果不管最佳计算,叶片尖端继续磨损进入到磨损区域II中时,结果的叶片尖端磨损操作情况不会比以前公知的可磨损层构造更糟。然而,在围绕可磨损层的其余局部化圆周位置处,涡轮机利用较低叶片尖端间隙G成功运行并且因而具有较高运行效率,而在叶片尖端上具有很少或者没有增加的不利磨损。
[0038]在图9至图15的叶片尖端可磨损实施例中,可磨损部件包括用于联接至涡轮机外壳的金属支撑表面和联接至支撑表面的热喷涂的陶瓷/金属可磨损基板,该热喷涂的陶瓷/金属可磨损基板包括涂敷在整个支撑表面上的绝缘TBC层。包括多个不连续微表面特征(MSF)的细长像素化主平面图案(PMPP)跨从涡轮机叶片的尖端至尾部的大部分圆周掠扫路径从金属基板表面及其绝缘TBC层突出。在某些示例性实施例中,PMPP集合了图3至图8的实突出肋可磨损部件的通用平面的平面模拟物。PMPP沿着掠扫路径在叶片尖端转动方向上径向地重复,以在叶片尖端与基板表面之间选择性地引导气流。各个MSF由限定宽度、长度和高度的一对相对的第一侧壁来限定,该对第一侧壁占据1-12立方毫米的体积包络。在某些实施例中,MSF长度和各个MSF之间限定的间隙的比值在大约1:1至1:3的范围内。在其它实施例中,MSF宽度和间隙的比值在大约1:3至1:5的范围内。在某些实施例中,MSF高度和宽度的比值为大约0.5至1.0。特征尺寸可以(但不限于)在I mm与3 mm之间,壁高度在0.1 mm与2mm之间,壁厚度在0.2 mm与I mm之间。在某些实施例中,PMPP具有第一高度MSF和更高的第二高度MSF。
[0039]在某些实施例的PMPP中的MSF由铸件或者直接成形在基板材料中的设计表面特征产生。在其它实施例中,PMPP中的MSF通过烧蚀或者增材表面修改技术(诸如,水射流或者电子束或者激光切割)或者通过激光烧结方法产生于基板或者下方粘结涂层(BC)层中。随后,在利用或者没有利用涂敷于PMPP中的设计MSF特征上的中间粘结涂层层的情况下,使设计表面特征涂覆有高温可磨损热障涂层(TBC),以产生将比现有技术的涂层更有效地具有磨损作用的不连续表面。一旦接触(由经过的叶片尖端),经由弯曲的盘旋状(在上面或者表面下)路径将释放出的(磨损掉的)颗粒移除到在MSF之间的间隙中或者在MSF之间的可磨损表面内形成的额外狭槽中。将可选的连续狭槽和/或者间隙定向以提供用于热气喷射的弯曲路径,从而保持主(接触)表面的密封效率。减小在叶片尖端和不连续MSF之间的潜在摩擦接触表面积的表面构型减少了在叶片尖端中产生的摩擦热。减少叶片尖端中的摩擦热潜在地减少了由尖端过热和可磨损表面上的金属涂抹/传递引起的已磨损叶片尖端材料损失。其它益处包括在MSF之上沉积比通常可能公知的连续可磨损肋设计更厚、更稳健的热障涂层,从而给予环形段潜在延长的设计寿命。
[0040]最简单形式的微表面特征(MSF)可以是基本形状几何结构,利用相应单元格之间的间隙跨环形段的表面在单元格中重复。单元格MSF与整体形成PMPP的较大图案的像素类似。在更优化的形式中,可以根据运行期间部件的热行为的叶片尖端关系的要求来对MSF进行修改。在这种情况下,可以在表面内修改特征深度、定向、角度和纵横比,以从叶片掠扫的开始到结束都产生优化的可磨损性能。其它优化参数包括形成TBC的热喷涂设备完全穿透表面内的捕捉区域并且跨整个表面允许有效的连续TBC涂层的能力。
[0041]如前所述,具有包括MSF的阵列的PMPP的可磨损部件是通过在制造期间将MSF直接铸造在可磨损基板中形成的或者建立在基板上(诸如通过热喷涂或者增材制造技术,例如,电子束或者激光束沉积)或者通过烧蚀基板材料来形成的。在首先提到的形成过程中,在每个标准化熔模铸造程序中,可以在蜡模中形成表面特征,然后去壳并且进行浇铸。替代地,可以在蜡模外侧使用陶瓷壳插件以形成壳结构的一部分。在利用陶瓷壳插件时,可以使MSF在可磨损部件制造处理过程中得到更有效的保护并且具有更独特的特征形状和几何结构(即,可以包含不会在正常去壳操作中存在的底切或者易碎的突出特征)。
[0042]可以使MSF交错(形成台阶)以接收等离子溅射并且具体地使等离子溅射转向以用于最佳的TBC穿透。在基板上铸造并且沉积的表面特征可以不一定在形式上完全过渡至全TBC涂层表面。在涂覆期间,陶瓷沉积将会以通常变化的性质建立在基板上,但是不会直接复制原来的设计表面特征。热喷涂厚度也可以是决定最终的表面形式的因素。一般而言,热喷涂涂层越厚,最终的表面几何结构越消散。在设计设计表面特征(初始大小和纵横比两者)时,这不一定是问题,但是需要考虑。例如,在随后用中间粘结涂层层和TBC顶部层进行涂覆时,形成于基板中的V形MSF可以消散为在加工完成的可磨损表面突出轮廓中的新月形的或者堆形的突起。
[0043]在图9至图15中示出示例性MSF单元格的情况下,存在尺寸考虑。为了有效的尺寸引导,可以将单元格大小考虑成大小在I mm至12 mm范围内的立方体。立方体尺寸的变化也可以适用于单元格高度。根据特征的几何结构和待涂敷的涂层的厚度,这可以比立方体大小更小或者更大。通常,该尺寸的大小范围可以在I mm与10 mm之间。
[0044]在不同组合中共同包含或者分别包含了不连续微表面特征(MSF)的像素化主平面图案(PMPP)的本文中所述的各个示例性实施例至少具有下列特征的一些:
?由于增加的粘结表面面积和表面特征经由本文中已经描述的各种互锁几何结构将涂层法线互锁至表面的唯一性,MSF设计表面特征提高了等离子喷涂的可磨损涂层的附着力和机械互锁性能。
?由于减少了可磨损表面与涡轮机叶片尖端的接触面积,不需要比标准成本8YSZ热障涂层材料(诸如,33YBZ0 (33% Yb2O3 -氧化锆)或者Talon型YSZ (用聚合物共喷涂的高孔隙率YSZ))更加可磨损的成本相对较高的涂层。叶片尖端的较小可磨损性(S卩,更硬)YSZ的磨损由与转动叶片尖端的更小表面面积潜在摩擦接触取消。
?由于与下方热障涂层的增加的附着表面接触面积,微表面特征(MSF)(其中一些的高度小到100微米(μπι))减少了潜在的热障涂层散裂。
[0045]在图9至图15中示出了包括非连续微表面特征(MSF)的像素化主平面图案(PMPP)的涡轮机可磨损部件的示例性实施例。为了绘制简单性起见,图9示意性地示出了包括两排MSF的ΡΜΡΡ。然而,在任意可磨损部件中的一个或者多个PMPP可以包括单排或者两排以上的MSF。例如,图9是分裂成上部分和下部分的可磨损部件260的平面示意图,该可磨损部件260具有金属基板261。在分裂之上的上部分上,基板261具有弯曲的整体轮廓像素化主平面图案(ΡΜΡΡ)262,该整体轮廓像素化主平面图案(ΡΜΡΡ)262包括直接形成于基板上的V形微表面特征(MSF)263的阵列。如前所述,通过在基板初始形成期间直接形成MSF的任意一个或者多个浇铸过程、在先前形成的基板261表面上建立MSF的增材过程;或者通过将金属从基板切除或者移除以在剩余材料中留下形成的MSF的烧蚀过程,来形成MSF 263。
[0046]在可磨损部件260的最上面部分上,直接在MSF263之上涂敷热障涂层(TBC)266,以在排列为在可磨损部件与转动涡轮机叶片尖端之间引导热气体的PMPP 262中的可磨损部件上留下堆形的或者新月形的轮廓突起267。在叶片尖端与可磨损部件260的相对表面接触的情况下,相对较小的截面表面积的MSF 263会摩擦抵靠叶片尖端并且由叶片尖端磨损。与不具有可磨损上区域和下区域I和11(诸如,图3至图8所示的)的益处的以前公知的连续单高度或者实表面可磨损部件相比较,MSF 263和涡轮机叶片尖端不太可能会引起叶片尖端腐蚀或者可磨损表面260从接触处散裂。
[0047]在可磨损部件260的最下面部件上,将金属粘结涂层(BC)264涂敷于裸露的金属基板261,并且通过增材或者烧蚀制造过程在BC中形成V形MSF 265。然后用TBC 266覆盖PMPP262中排列的BC 264和MSF 265,以留下从基板260表面突出的大体上呈V形的MSF 268。
[0048]在图10中示出了示例性V形MSF 272的尺寸。V形MSF 272具有封闭的连续前缘273、后缘274、面向转动涡轮机叶片的顶部表面275。交错的多排V形272形成用于热气流的弯曲路径。各个V形MSF实施例272具有占据了 1-12立方毫米的体积包络的宽度W、长度L和高度H尺寸。在某些实施例中,MSF长度和在各个MSF之间限定的间隙的比值大约在1:1至1:3的范围内。在其它实施例中,MSF宽度和间隙的比值大约为1: 3至1: 8。在某些实施例中,MSF高度和宽度的比值大约为0.5至1.0。特征尺寸可以(但不限于)在3 mm与10 mm之间,壁高度和/或者壁厚度在100-2000微米(μπι)之间。
[0049]如具有图3至图8所示的叶片尖端可磨损部件实施例,在PMPP内可以改变MSF高度以促进具有普通可磨损部件轮廓的涡轮发动机中的快速启动模式和正常启动模式。在图11至图12中,可磨损部件280在其PMPP中具有双高度的V形MSF阵列,其与先前描述的实肋实施例中的区域I和区域II脊高度相比较,具有相应的较高高度^和较低高度Η2。可磨损部件280利用表面281上的Z形MSF 282和283的交错高度不连续的图案。
[0050]如前面所论述的,微表面特征MSF可以形成于基板中或者可磨损部件的粘结涂层中。在图13中,可磨损部件260的截面示出了平滑的无特征基板261,在该平滑的无特征基板261上涂敷了粘结涂层(BC)层264,通过先前描述的任意一个或者多个增材或者烧蚀过程将MSF 265形成到(BC)层中。在BC 264之上涂敷喷涂的热障涂层(TBC)266,其包括MSF 265,从而产生大体上呈V形的MSF 268。如图14所示,替代地,在没有中间BC层的情况下可以将TBC层266直接涂敷于下方基板260及其设计表面MSF 265,从而产生堆形的或者新月形的轮廓突起267。在图15的另一个替代实施例中,可磨损部件260’基板261具有设计表面特征263,在基板制造、烧蚀或增材过程期间可以通过直接浇铸来形成设计表面特征263,如前所述。在该示例中,在包括设计特征MSF 263的基板261之上涂敷粘结涂层264’。随后,用TBC层266来覆盖BC 264’,从而产生堆形的或者新月形的轮廓突起267’。在图13至图15的各个PMPP可磨损实施例截面中,MSF高度在大约100-2000微米(μπι)之间。如前所述,MSF 263或者265可以有助于TBC对下方BC或者基板层的机械互锁。
[0051 ] 设计表面特征(ESF)提高TBC附着和裂纹隔离
一些示例性涡轮机部件实施例包含了设计表面特征(ESH的锚固层,其有助于TBC层的机械互锁并且有助于隔离TBC层中的裂纹,从而使裂纹不会扩散到ESF之外。在某些叶片尖端的可磨损应用中,根据实脊和槽突出表面特征的物理尺寸和其之间的相对间距,实脊和槽突出表面特征以及MSF起到ESF的作用,但是它们对更通常应用于除了叶片尖端可磨损部件之外的涡轮机部件来说太大。对于示例性涡轮机叶片、轮叶或者燃烧器过渡应用,在联接至TBC层的内表面层的锚固层中形成ESF,并且在不改变另外的暴露于燃烧气体的TBC层的大体上平整的外表面的情况下这些ESF的大小确定成锚固涂敷到这些部件的厚度范围为300-2000微米(μπι)的TBC层涂层。一般而言,ESF在涡轮机部件表面上具有在TBC层的总厚度内足够以提供机械锚固和裂纹隔离的高度和三维平面间距。从而,ESF将比总TBC层厚度更短而比蚀刻的或者雕刻的表面特征更高,这些蚀刻的或者雕刻的表面特征据称提供成提高在TBC与邻接下层(例如,下层裸露的基板或者介于裸露的基板与TBC层之间的中间粘结涂层层)之间的附着粘结。一般而言,在示例性实施例中,ESF具有在TBC层的总厚度的大约2%至75%之间的突出高度。在某些优选实施例中,ESF具有TBC层的总厚度的至少大约33%的突出高度。在某些示例性实施例中,ESF限定比等同平整表面大至少20%的整体表面面积。
[0052]图16至图19示出了形成于联接至TBC层的内表面的锚固层中的设计表面特征(ESF)的示例性实施例。TBC层可以包括多层TBC材料,但是基本上至少会具有热障涂层(TBC),该TBC具有用于暴露于燃烧气体的外表面。在图16中,涡轮机部件300(例如,燃烧器段过渡件、涡轮机叶片或者涡轮机轮叶)具有受上方热障涂层在(TBC)保护的金属基板301。粘结涂层(BC)层302建立并且涂敷于在另外的无特征基板301上,该无特征基板301包含设计表面特征(ESF)304的平面图案。这些ESF304通过下列方式直接形成在BC中:(i)熔化颗粒的公知热喷涂以建立表面特征;或者(ii)表面特征的公知增材层制造建立应用,诸如,通过3D印刷、烧结、电子或者激光束沉积;或者(iii)基板材料制造过程的公知烧蚀移除,以通过未移除的部分来限定特征。ESF304和BC层302的其余暴露表面可以接收其它表面处理,例如,表面粗糙化、微雕或者光蚀刻过程,以提高随后热喷涂的TBC层306的附着。从而,ESF和BC层302的其余暴露表面包括用于TBC层306的锚固层。将TBC层306的外表面暴露于燃烧气体。
[0053]在图17中,涡轮机部件310具有金属基板311,设计表面特征(ESF)314的平面图案通过公知的直接浇铸直接形成在另外的无特征基板311中,或者通过热喷涂、增材层建立或者基板材料制造过程的烧蚀移除建立在基板表面上,该烧蚀移除通过未移除的基板的剩余部分来限定特征。ESF 314和裸露基板311的暴露表面可以接收其它表面处理,例如,表面粗糙化、微雕或者光蚀刻过程,以提高随后热喷涂的TBC层316的附着。从而,在没有任何中间BC层的情况下,ESF 314和裸露基板表面包括用于TBC层316的锚固层。
[0054]在图18中,涡轮机部件320具有与图17所示的部件310相似的锚固层构造,其中,在部件金属基板321中直接形成ESF324的平面阵列,而在锚固层之上涂敷多层TBC 326。多层TBC层326包括联接至锚固层的下热障涂层(LTBC)327层(在某些实施例中,LTBC起锚固层的一部分的作用)和具有暴露于燃烧气体的外表面的外热障涂层(OTBC)层。可以在LTBC层与OTBC层之间涂敷额外热障涂层中间层。同样,图19的涡轮机部件330还具有涂敷在基于粘结涂层(BC)的锚固层之上的多层TBC层336AC层332具有形成于该BC层中的ESF 334的平面阵列,这类似于图16中所示出的锚固层实施例。TBC层336包括LTBC层337和具有暴露于燃烧气体的外表面的OTBC层338。如下面详细讨论的,多层TBC可以包括具有不同材料性能(诸如,强度、延展性、热阻性或者脆性)的一系列按顺序涂敷的层。可以通过涂敷分等级的TBC层来改变这些材料性能,其中,在涡轮机部件上在不同物理位置处热喷涂不同的材料成分,或者在涂敷期间随着建立TBC层来改变这些材料性能。
[0055]在涡轮机部件的设计和制造期间,可以改变设计表面特征(ESF)截面轮廓、其平面阵列图案和其相应尺寸,以通过抑制裂纹形成、裂纹扩展和TBC层散裂来优化热保护。在图16至图25中示出了 ESF截面轮廓、其三维平面阵列图案和其相应尺寸的不同示例性排列。在这些附图中,示出了ESF高度Hr、ESF脊宽度W、脊间距Sr和脊之间的槽宽度Sg。在图16、19、23和24中,相应的ESF 304、334、354和364具有矩形或者正方形截面轮廓。在图17中,ESF314具有大体上呈三角形的截面轮廓,而在图18中,ESF具有梯形截面轮廓,该梯形截面轮廓具有终止于平台中的一对相对的、向内倾斜的第一侧壁。在图25的涡轮机部件370中,形成于BC372中的ESF 374相对于下方金属基板371表面成角度,以用于TBC层376的额外低切机械锚固。还要注意的是,通过在锚固层表面之上涂敷粗糙粘结涂层(RBC)层,诸如图24所示的涡轮机部件360的RBC层365,来实现额外锚固能力。虽然RBC 364示出为涂敷于BC 362及其ESF364之上,但是也可以在部件的金属基板361之上直接涂敷RBC 364或者其它类型的粘结层。
[0056]在示例性实施例中,将ESF选择性地排列在三维平面线性或者多边形图案中。例如,图16、19、23和24中所示的平行的垂直突起的ESF平面图案也可以在附图中或者之外突出的平面中正交地或者成倾斜角度地重复。在图20和21中,涡轮机部件340具有金属基板341,在金属基板341中形成有ESF 354,包括限制上槽的双槽的六边形平面,这类似于涡轮机可磨损部件220双高度脊228A的截面轮廓。在图22和23中,涡轮机部件350具有金属基板351,在金属基板351中形成有ESF 354,包括圆柱形销。为了图20-23的视觉简洁性起见,示出了不具有覆盖ESF 344或者354的TBC层的涡轮机部件340和350 JSF 344或者354通常在其相应基板的表面的至少一部分之上重复。三维平面图案也可以针对涡轮机部件表面拓扑结构而局部变化。虽然图20至图23中所示的ESF直接形成在其相应的基板中,但是如前所述,它们可以形成在无特征基板之上涂敷的粘结涂层中。
[0057]如前所述,除了本文中所述的ESF提供的TBC层锚固优点之外,它们也局部化TBC层裂纹扩展。在图26的涡轮机部件380中,在双层TBC 386的外TBC层388中形成了热诱发的和/或者外物诱发的裂纹389V和389H。通常具有不同于外TBC层388的材料性能的内TBC层387联接至粘结涂层层382,而BC层又联接至部件金属基板381。最右侧的垂直裂纹389V’渗透到外TBC层388与内TBC层387的界面,并且现在正在随着裂纹389H水平扩展。裂纹389H的进一步扩展可能会引起外TBC层388从其余的涡轮机部件380层离,并且最终引起位于最右侧垂直裂纹389V与最左侧垂直裂纹389V’之间的全部外TBC层材料的潜在散裂。散裂最终会减少对散裂区域下面的下方金属基板381的整体绝缘保护。
[0058]现在比较图27所示的涡轮机部件390的抗裂纹扩展构造。金属进班391还具有TBC层396附接到的层382之上的BC13TBC层396进一步包括下热障涂层(LTBC)层397,在该LTBC层397具有形成在其中的ESF 394以便与外热障涂层(OTBC)层398的互锁。从而,具有ESF 394的LTBC层397有效地起到用于OTBC层398的锚固层的作用。在某些实施例中,LTBC层397具有比OTBC层398更大的强度和延展性材料性能,而OTBC层398具有更大的热阻性和脆性材料性能。垂直裂纹399V已经扩展通过OTBC 398的整个厚度,但是在LTBC的界面处阻止了进一步的垂直扩展。虽然垂直裂纹399V沿着0TBC/LTBX界面扩散以形成水平裂纹399H,但是在与位于水平裂纹区域侧面的ESF 394的垂直壁的相交时进一步阻止了水平裂纹扩展,这样将OTBC的潜在层离限制在ESF之间的槽宽度。如果在水平裂纹399H之上的全部或者部分OTBC层从其余的部件碎裂,那么现在暴露的LTBC的相对较小的表面面积会更好地抵抗对下方涡轮机部件基板391的潜在热损伤。同样,在与邻接该裂纹的ESF的顶部脊表面的相交时阻止了垂直裂纹399V’的垂直扩展。阻止裂纹399V’的进一步垂直扩展减少了裂纹周围的OTBC散裂的可能性。
[0059]设计槽特征(EGF )提高TBC裂纹隔离
某些示例性涡轮机部件实施例包含设计槽特征(EGF)的平面阵列,该平面阵列在TBC层涂敷之后形成于TBC的外表面中。EGF槽轴线相对于TBC外表面以任意倾斜角度选择性地定向,并且延伸到TBC层中。类似于消防队员火灾前线,EGF隔离TBC层中的裂纹,从而使裂纹不会垮槽空隙的边界扩展到相邻TBC材料的其它部分。一般而言,如果在TBC中的裂纹最终导致在裂纹之上的材料的散裂,则围绕该裂纹的EGF阵列形成散裂位置的局部化边界周长,以在边界整体外留下TBC材料。在由EGF界定的散裂区域内,通常会将损坏限制到在EGF槽深度之上的材料损失。从而,在许多示例性实施例中,将EGF深度限制于小于所有TBC层的总体厚度,这样完整TBC材料的体积和深度保持而为局部的下方部件金属基板提供热保护。在某些实施例中,EGF阵列与ESF阵列组合以提供除了EGF阵列或者ESF阵列单独可能提供的之外的额外TBC整体性。
[0060]图28和图29示出了具有下方金属基板401的涡轮机部件400,TBC基板402附接到下方金属基板401上,TBC基板402具有在TBC层涂敷之后形成的正交相交的设计槽特征EGF403、404的示例性三维平面阵列。槽403和404构造有一个或者多个槽深度Dg、槽宽度WG、槽间距Sg和/或者多边形平面阵列图案。任意多个不同的槽深度、间距、宽度和多边形平面图案可以在涡轮机部件表面周围局部地变化。例如,三维平面多边形图案可以跨全部部件表面或者部分部件表面重复,而槽深度可以跨该表面变化。虽然TBC层402示出为直接联接至基板401,但是在其它实施例中可以代替先前所述的中间锚固层构造,包括一个或者多个粘结涂层或者下热障涂层层。
[0061]在图30和31中示出了示例性设计槽特征裂纹隔离能力,其中,涡轮机部件(诸如,燃烧段过渡件85、涡轮机叶片92或者涡轮机轮叶104/106)遭受到外物FO冲击损坏,从而导致在其TBC 402外表面405内的垂直和水平裂纹408H和408V。在冲击损坏侧面上的EGF 404阻止了跨槽空隙的进一步裂纹扩展,以使槽边界外面的TBC材料免受进一步的串联裂纹扩展。如果在冲击区域中TBC材料从TBC外表面405散裂,那么由裂纹和有坑洞的底面406界定的剩余的完整且未损坏的“坑洼” TBC层402材料保护下方金属基板401免受进一步损坏。
[0062]不像在涂敷的热喷涂的或者气相沉积的TBC层内产生空隙或者间断的现有技术公知的TBC应力裂纹减轻机构,诸如,通过改变层涂敷定向或者材料孔隙性,本文中的设计槽特征(EGF)实施例形成通过先前形成的TBC层外表面到达期望深度的切割的或者烧蚀的槽或者其它空隙。如图32和33所示,涡轮机部件410具有锚固层412,锚固层412包括梯形截面轮廓的设计表面特征414。图32中的箭头指示在TBC层416中用于在涡轮发动运转期间在ESF414的相交边缘或者顶点处的实际的或者潜在的热应力或者机械应力集中区域σ的可能位置。相应地,在倾斜槽轴线角度处沿着应力线σ以一定角度将EGF 418以足够深度切割到TBC外表面中以与ESF 414顶点相交。在EGF 414的任意一侧上的TBC层中诱发的应力不会从一侧扩展到另一侧。在EGF 418的任意一侧上的TBC层416沿着槽空隙自由伸展或者收缩,以进一步减少产生平行于槽的裂纹的可能性。
[0063]图33至图35的涡轮机部件实施例示出了通过结合设计槽特征(EGF)和设计表面特征(ES1而提供的额外TBC裂纹抑制和隔离优势。在图33中,通过形成一直贯穿TBC 418深度直到其与锚固层的ESF 414相交的EGF 418,实现缓解实际的或者潜在的应力线σ的优点。在图34和35的实施例中,涡轮机部件420(例如,涡轮机叶片或者轮叶或者过渡件)金属基板421具有粘结涂层(BC)422锚固层,该粘结涂层422锚固层限定了定向在三维平面图案中的设计表面特征(ESF)424。在锚固层之上涂敷TBC层426,并且在此之后,使EGF 428的另一个平面三维图案切割穿过暴露于燃烧气体的TBC层外表面427 JGF 428平面图案可以不同于ESF 424平面图案。如果将相同的平面图案用于ESF和EGF,则其相应的图案不一定必须在TBC层内垂直对齐。换言之,EGF和ESF可以跨部件限定单独的三维的、独立对齐的平面图案。在某些实施例中,ESF和EGF分别具有重复的三维平面图案。这些图案可以在部件表面周围局部变化。
[0064]在图34中,EGF 428平面图案不具有与ESF 424图案重复对应的任何具体对齐。使一些EGF 428切割到ESF 424脊平台中,而使其它EGF 428仅切割到TBC 426层中。在图35中,外物FO冲击TBC上表面427,以产生由ESF 424A、424B和EGF 428A和428B阻止的裂纹,ESF424A、424B和EGF 428A和428B界定或者另外地外切FO冲击区域。如果在裂纹上面的TBC材料426B与其余的涡轮机部件420TBC层分离,那么仍然附接至在“坑洼”的基部处的BC锚固层422的其余未损坏的TBC材料426A向其下方金属基板421提供热保护。
[0065]设计槽特征(EGF)
抑制冷却孔周围的TBC层离
有利的是,设计槽特征可以形成于围绕涡轮机部件冷却孔或者其它表面间断的部分或者全部周向的TBC层中,以便限制在沿着部件基板中的冷却孔或者其它间断边缘的层之上的TBC的层离。在冷却孔的极端边缘处的TBC层可以发起与金属基板的分离,该分离可以在TBC层内远离该孔侧向地/水平地蔓延。在与冷却孔边缘侧向地间隔一定距离处处(诸如,在接触锚固层或者金属基板的深度处)形成EGF限制了在槽之外的进一步层离。
[0066]在图36至图43中示出了各种冷却孔周向EGF实施例。在图36至图37中,涡轮机部件430(例如,涡轮机叶片或者涡轮机轮叶)具有完全受泪滴状平面EGF 432限制的多个相应冷却孔99/105。在限制EGF 432的相交处,阻止了沿着一个或者多个冷却孔周向边缘的TBC层离。为了简洁起见,对孔周向EGF的进一步描述限制于槽形状和定向。根据先前所述的现有技术描述来构造下方基板、锚固层、ESF和任何其它EGF。
[0067]在图38中,涡轮机部件440具有限制多个冷却孔99/105的EGF442,其类似于围绕孔群的沟渠或者壕沟。将在由EGF 442围绕的冷却孔99/105的群内的任何表面层离的扩展限制在EGF 442内。在图39-41的实施例中,EGF没有完全围绕任何一个冷却孔,但是通过靠近一个或者多个孔的一个或者多个部分限制EGS可能阻止层离蔓延。在图39中,在涡轮机部件450TBC外层表面中的一个或者多个水平定向的EGF 452或者垂直定向的EGF 454部分地或者完全围绕各个冷却孔99/105。在图40中,涡轮机部件460的冷却孔99/105由波状的带状EGF 462或者464完全地或者部分地限制。在图41的涡轮机部件实施例470中,线性EGF 474和半圆形或者弓形EGF 476的组合至少部分地限制了冷却孔99/105。图42的涡轮机部件480具有与将多排冷却孔99/105相互隔离的分段线性EGF 486—起重叠的线性EGF 482和484。在图42中,涡轮机部件490的线性EGF段494和496完全地或者部分地将冷却孔99/105相互限制。
[0068]材料不同的多层且分级的TBC构造
如前所述,本文中描述的任何涡轮机部件实施例的整体热喷涂的TBC层均可以具有横向地跨部件表面或者在TBC层厚度尺寸内的不同局部材料性能。作为一个示例,离锚固层最近的一个或者多个单独涂敷的TBC层可以具有离部件外表面较远的层更大的强度、延展性、韧性和弹性模数材料性能,但是较高层次的层可以具有更大的热阻性和脆性材料性能。在图44和45中示出了多层TBC实施例。替代地,在连续的热喷涂过程中,通过选择性地改变用于形成TBC层的成分材料,可以形成分级的TBC层构造,如图46和47所示。在某些实施例中,在TBC外表面之上涂敷钙镁铝硅(CMAS)阻滞层,以防止污染沉积物附着到TBC外表面上。不利的污染沉积物可以改变TBC层的材料性能并且减少沿着部件表面的空气动力边界情况。在CMAS阻滞层涂敷于并且浸润在TBC外表面层中形成的EGF槽的实施例中,通过形成相对平滑的TBC外表面提高了空气动力边界情况,并且抑制了槽内的碎片累积。
[0069]热障涂层(TBC)层的示例性材料分包括氧化钇稳定的氧化锆、具有烧绿石结构的稀土稳定的氧化锆、稀土稳定的完全稳定的立方结构、或者复杂的氧化物晶体结构,诸如,磁铅石或者钙钛矿或者缺陷晶体结构。其它示例性TBC材料成分包括具有高缺陷浓度的多元素掺杂氧化物。CMAS阻滞剂成分的示例包括巩土、氧化招乾石植石(yttrium aluminumoxide garnet)、浆料沉积的/渗透的高孔隙度TBC材料(相同的材料用于OTBC或者LTBC成分)、和氧化形成多孔氧化铝的多孔铝。
[0070]在图44中,涡轮机部件500具有金属基板501,金属基板501用包括设计表面特征(ESF)504的粘结涂层(BC)层502覆盖。该BC层又用粗糙的粘结涂层(RBC)层505覆盖。在RBC层505之上涂敷包括下热障涂层(LTBO507和随后涂敷的外热障涂层(0TBO508的多层TBC层506。虽然在该示例中仅示出了两层,但是在LTBC 507与OTBC 508层之间可以涂敷额外层。随后,使设计槽特征(EGF)519切割到TBC层的外表面中:在该实施例中,足够深到接触RBC层505。
[0071]在图45的实施例中,涡轮机部件510具有顺序与图44的实施例相似的整体构造,在TBC外表面上涂敷了额外的钙镁铝硅(CMAS)阻滞层520。部件510包括金属基板511、包括设计表面特征(ESF)514的粘结涂层(BC)层512、和粗糙粘结涂层(RBC)层515。在RBC层515之上涂敷包括下热障涂层(LTBC)517和随后涂敷的外热障涂层(0TBO518的多层TBC层516。随后,使设计槽特征(EGF)519切割至IjTBC层的外表面518中,以便TBC中的应力释放和潜在裂纹隔离。在TBC层的外表面上涂敷CMAS阻滞层520,在该TBC的外表面处将CMAS阻滞层520浸润并且锚固在EGF 519内。CMAS阻滞层520抑制了在EGF 519内的碎片累积,并且其相对平滑的表面提高了沿着燃烧气体接触表面的表面边界层空气动力。示例性CMAS阻滞层厚度范围在20-200微米之间。
[0072]图46所示的连续涂敷的、热喷涂的、分级的TBC层构造涡轮机部件530具有与图44的构造相似的总构造。图46的实施例用前者的分层TBC 506代替分级TBC层536。涡轮机部件530包括由粘结涂层(BC)层532覆盖的金属基板531,BC层532包括设计表面特征(ESF)534,并且又用粗糙粘结涂层(RBC)层535覆盖。分级的TBC层536涂敷在RBC层535上,该层的下部分536A具有不同于该层的上部分536B的材料性能。随后,使设计槽特征(EGF)切割到TBC外表面中以便TBC中的应力释放和潜在裂纹隔离。
[0073]在图47的实施例中,涡轮机部件540具有顺序与图46的实施例相似的整体构造,在TBC外表面上涂敷了额外的CMAS阻滞层550。部件540包括金属基板541、包括设计表面特征(ESF)544的粘结涂层(BC)层542、和粗糙粘结涂层(RBC)层545。在RBC层535之上涂敷分级的TBC层546,该层的下部分546A具有不同于该层的上部分546B的材料性能。随后,使设计槽特征(EGF)549侵入到TBC层的外表面中,以便TBC中的应力释放和潜在裂纹隔离。在TBC层的外表面上涂敷CMAS阻滞层550,在该TBC的外表面处将CMAS阻滞层550浸润并且锚固在EGF 549内。CMAS阻滞层的优势参照先前所述的图45的实施例。
[0074]分段TBC构造
分段TBC构造实施例在概念上类似于谷穗或者玉米穗,结合了设计表面特征(ESF)和设计槽特征(EGH实施例以及多层的或者分级的不同材料的热障涂层和CMAS阻滞表面涂层的可选组合。分段TBC构造适合于涡轮发动机部件(诸如燃烧段过渡、叶片和轮叶)的弯曲表面和平整表面。在图48和49中示出了示例性的分段TBC保护的、弯曲表面涡轮机部件。这些示例性实施例具有相似的构造EGF和ESF以及双层TBC层的特征,但是不同之处在于是否涂敷暴露于燃烧气体的CMAS阻滞外层。CMAS阻滞层厚度通常在20-200毫米的范围内。
[0075]在图48中,涡轮机部件实施例560诸如在涡轮机叶片或者轮叶的前缘上具有弯曲表面基板561。粘结涂层BC 562涂敷于该基板,并且包括网格图案状的ESF 564的三维平面阵列,该网格图案状的ESF 564限定了用于锚固双层热障涂层566的井或者孔。TBC 566包括下热障涂层(LTBC)567和外热障涂层(0TBO568。使EGF 569侵入到网格状三维平面阵列中的OTBC 568的外表面中,该网格状三维平面阵列不一定与TBC层566内的ESF 564阵列图案同中心地对齐。如果这样对齐的话,那么在ESF 564内形成的相似槽中捕捉到的各个双层三维段类似于嵌入到其芯内的核、谷物或者玉米。
[0076]图49的涡轮机部件实施例570将CMAS阻滞层580添加到穿透EGF 579的OTBC层578的表面。或者,基板571、BC 572以及ESF 574、TBC层576、LTBC层577和OTBC层578的另外构造基本上与图48的实施例560相似。已经参照图45对额外的CMAS阻滞层的优势进行了论述。
[0077]虽然在本文中已经示出并且描述了包含本发明的启示的各个实施例,但是本领域技术人员可以轻易构思仍然包含这些启示的许多其它不同的实施例。本发明在其应用上并不限于本说明书中陈述的或者附图中图示的构造的示例性实施例细节和部件的布置。本发明能够有其它实施例,并且能够以各种方式来实践或者实施。例如,各种脊和槽轮廓可以包含在不同的平面阵列中,这些不同的平面阵列还可以围绕特定发动机应用的圆周而局部变化。此外,应该理解的是,本文中使用的措辞和术语用于说明目的,而不应该视为限制性的。“包含”、“包括”或者“具有”及其变型的使用意为包含其后列举的项及其等同物和额外项。除非另有规定或者限制,术语“安装”、“连接”、“支撑”、“联接”及其变型是广义的,并且包含直接的和间接的安装、连接、支撑和联接。另外,“连接”和“联接”并不限制于物理的或者机械的连接或者联接。
【主权项】
1.一种具有暴露至燃烧气体的绝缘外表面的燃气涡轮机部件,其包括: 金属基板,所述金属基板具有基板表面; 锚固层,所述锚固层建立于所述基板表面上; 热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的热障涂层(TBC)层,所述热障涂层(TBC)层具有:TBC总厚度、联接至所述锚固层的内表面、和暴露于燃烧气体的TBC外表面,所述TBC层材料断裂韧性、弹性模数、多孔性和导热性性质从所述TBC内表面至所述TBC外表面发生变化; 从所述锚固层突出的设计表面特征(ESF)的平面图案,所述平面图案具有在TBC层总厚度的大约2%至75%之间的突出高度;以及 形成于所述TBC外表面中并且使先前涂敷的TBC层穿透所述TBC外表面的设计槽特征(EGF)的平面图案,所述EGF具有槽深度。2.根据权利要求1所述的部件,所述锚固层进一步包括热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的下热障涂层(LTBC)层部分,所述下热障涂层(LTBC)层部分限定出ESF的平面图案,并且所述热障涂层(TBC)层进一步包括外热障涂层(OTBC)层部分,所述外热障涂层(OTBC)层部分单独地涂敷在所述LTBC之上,具有联接至所述LTBC的OTBC内表面和暴露于燃烧气体的OTBC外表面; 所述LTBC层部分具有比所述OTBC层部分大的断裂韧性和弹性模数;以及 所述OTBC层部分具有比所述LTBC层部分大的多孔性和更小的导热性。3.根据权利要求2所述的部件,其进一步包括涂敷在所述OTBC外表面之上和到所述EGF中的热喷涂的钙镁铝硅(CMAS)阻滞层。4.根据权利要求1所述的部件,所述锚固层进一步包括粘结涂层(BC)层,所述粘结涂层(BC)层联接至所述基板和形成于所述BC中的ESF。5.根据权利要求1所述的部件,所述TBC层包括热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的分级材料整体层,所述分级材料整体层是通过如下过程形成:在将所述TBC层连续地涂敷在所述锚固层之上时,使所述TBC层材料的成分逐步地发生变化。6.由权利要求5所述的过程形成的部件,所述过程进一步包括:通过在将所述TBC层涂敷在所述锚固层之上时使断裂韧性、弹性模数和导热性逐步地减小并且使多孔性逐步地增加,来在将所述TBC层涂敷在所述锚固层之上时使所述TBC层的成分逐步地发生变化。7.根据权利要求6所述的部件,其进一步包括涂敷在所述OTBC外表面之上和到所述EGF中的热喷涂的钙镁铝硅(CMAS)阻滞层。8.根据权利要求6所述的部件,所述锚固层进一步包括粘结涂层(BC)层,所述粘结涂层(BC)层联接至所述基板和形成于所述BC中的ESF。9.根据权利要求1所述的部件,所述锚固层进一步包括粘结涂层(BC)层,所述粘结涂层(BC)层联接至无特征基板和形成于所述BC中的ESF。10.根据权利要求9所述的部件,所述锚固层进一步包括涂敷在所述BC层之上的粗糙粘结涂层层。11.一种燃气涡轮发动机,所述燃气涡轮发动机包括权利要求1所述的部件,所述部件TBC外表面与所述发动机的燃烧路径连通以暴露至燃烧气体。12.根据权利要求11所述的燃气涡轮发动机,所述部件ESF限定出比等同平整表面大至少20%的整体表面面积。13.—种制造具有暴露至燃烧气体的绝缘外表面的燃气涡轮机部件的方法,所述方法包括: 提供具有基板表面的金属基板; 在所述基板表面上建立锚固层;以及 通过在将所述TBC层连续地涂敷在所述锚固层之上时使所述TBC层材料的成分逐步地发生变化,来形成热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的整体层热障涂层(TBC),所述整体层热障涂层(TBC)具有:TBC层厚度、联接至所述锚固层的内表面、和暴露至燃烧气体的TBC外表面。14.根据权利要求13所述的方法,其进一步包括:通过在将所述TBC层涂敷在所述锚固层之上时使断裂韧性、弹性模数和导热性逐步地减小并且使多孔性逐步地增加,来在将所述TBC层涂敷在所述锚固层之上时使所述TBC层的成分逐步地发生变化。15.根据权利要求14所述的方法,其进一步包括:形成设计槽特征(EGF)的平面图案,所述设计特征(EGF)使先前涂敷的TBC层穿透所述TBC外表面,所述EGF具有槽深度。16.根据权利要求15所述的方法,其进一步包括:将钙镁铝硅(CMAS)阻滞层热喷涂在所述TBC外表面之上和到所述EGF中。17.根据权利要求13所述的方法,其进一步包括:形成设计槽特征(EGF)的平面图案,所述设计槽特征(EGF)使先前涂敷的TBC层穿透所述TBC外表面,所述EGF具有槽深度。18.根据权利要求17所述的方法,其进一步包括:将钙镁铝硅(CMAS)阻滞层热喷涂在所述TBC外表面之上和到所述EGF中。19.一种制造具有暴露至燃烧气体的绝缘外表面的燃气涡轮机部件的方法,所述方法包括: 提供具有基板表面的金属基板; 在所述基板表面上建立锚固层,所述锚固层包括从所述锚固层突出的设计表面特征(ESF)的平面图案; 通过在将所述TBC层涂敷在所述锚固层之上时使所述TBC层材料的成分逐步地发生变化,来形成热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的整体层热障涂层(TBC),所述整体层热障涂层(TBC)具有:TBC层厚度、联接至所述锚固层的内表面、和暴露至燃烧气体的TBC外表面;以及 形成设计槽特征(EGF)的平面图案,所述设计槽特征(EGF)使先前涂敷的TBC层穿透所述TBC外表面,所述EGF具有槽深度。20.根据权利要求19所述的方法,所述锚固层形成进一步包括: 涂敷热喷涂的或者气相沉积的或者溶液/悬浮液等离子喷涂的下热障涂层(LTBC)层部分,所述下热障涂层(LTBC)层部分限定出ESF的所述平面图案;以及 所述热障涂层(TBC)层进一步包括单独地涂敷在所述LTBC之上的外热障涂层(OTBC)层部分,所述外热障涂层(OTBC)层部分具有联接至所述LTBC的OTBC内表面和暴露至燃烧气体的OTBC外表面; 所述LTBC部分具有比所述OTBC层部分大的断裂韧性和弹性模数;以及 所述OTBC层部分具有比所述LTBC层部分大的多孔性和更小的导热性。
【文档编号】F01D11/12GK106030039SQ201580010523
【公开日】2016年10月12日
【申请日】2015年2月18日
【发明人】N.希奇曼, R.苏布拉马尼安, C.施利希
【申请人】西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1