压缩机和空调器的制作方法

文档序号:16881793发布日期:2019-02-15 22:13阅读:121来源:国知局
压缩机和空调器的制作方法

本发明属于空气调节技术领域,具体涉及一种压缩机和空调器。



背景技术:

变频空调由于其节能与舒适的显著特点,逐渐成为市场的主流,变频压缩机作为变频空调的核心零部件,同样得到了快速的发展,如何提高变频压缩机的性能并降低成本,实现压缩机的小型化、高速化,一直是行业技术研究的重点方向。

专利公开号为cn103883527a的压缩机,通过降低排量和提升压缩机运转频率的方法实现压缩机的小型化、降低滑动损失、降低成本。具体地,在最大制冷能力40%以下的范围内,将压缩机的转速范围提升为以往技术压缩机的1.1~1.3倍。该专利技术方案,使压缩机在apf评价中运行时间及负荷比率占优势的运行频率落入压缩机cop高的区间(50-60hz),从而使性能得到提升。

经分析研究,压缩机cop较高的区间同时受到泵体各效率及电机效率的综合影响,压缩机的电机最高运行频率受到压缩机排量及电机尺寸的影响,而压缩机的电机最高运行频率又较大程度决定了电机效率较高的区间。如何解决压缩机排量、电机尺寸与电机最高运转频率、电机效率较高区间等因素相匹配,实现小型高速压缩机在宽频率范围内的高效运行,是该领域亟待解决的技术问题之一。



技术实现要素:

因此,本发明要解决的技术问题在于提供一种压缩机和空调器,能够使得压缩机高效运行频率区间和apf中负荷比率较高的区间更易相匹配,提升了制冷系统的全年性能系数,使得压缩机的高效运行范围大幅扩展。

为了解决上述问题,本发明提供一种压缩机,包括电机和泵体组件,电机包括定子组件和转子组件,定子组件的外径为d,泵体组件的排量为v,其中电机最高运转频率满足fmax=kπd3/v,π为圆周率,k的取值范围为0.85≤k≤1.5。

优选地,k的取值范围为1.0≤k≤1.3。

优选地,泵体组件包括曲轴、滚子、气缸和滑片,滚子套设在曲轴的偏心部上,并在曲轴的带动下在气缸的腔体内转动,滑片滑动设置在气缸的侧壁上,滑片的伸出端抵接在滚子上,并与滚子相配合,将气缸的腔体分为吸气腔和压缩腔。

优选地,气缸的侧壁上设置有滑槽,滑槽内设置有弹簧,滑片的一端连接在弹簧上,并在弹簧的弹性作用下抵接在滚子上。

优选地,泵体组件包括至少两个气缸。

优选地,气缸的内径为dc,其中dc与d的比值为λ,λ的取值范围为0.34≤λ≤0.49。

优选地,λ的取值范围为0.4≤λ≤0.45。

优选地,压缩机为旋转式压缩机、滑片式压缩机或摆动转子式压缩机。

根据本发明的另一方面,提供了一种空调器,包括压缩机,该压缩机为上述的压缩机。

本发明提供的压缩机,包括电机和泵体组件,电机包括定子组件和转子组件,定子组件的外径为d,泵体组件的排量为v,其中电机最高运转频率满足fmax=kπd3/v,π为圆周率,k的取值范围为0.85≤k≤1.5。通过上述公式限定压缩机的最高运转频率,相比现有压缩机,降低了电机的负荷并提高了电机的运转频率,从而使电机效率较高(如大于95%)的转速区间大幅扩展,从而使电机高效运行频率区间和apf中负荷比率较高的区间更易相匹配,提升了制冷系统的全年性能系数;另一方面,合理的最高运转频率限定,既能防止机械损耗快速增加对可靠性的不利影响,又避免了转速过高引起曲轴挠度大幅增加而带来的噪声问题。

附图说明

图1为本发明实施例的压缩机的结构示意图;

图2为图1的a-a向剖视结构示意图;

图3为本发明实施例的压缩机k值对压缩机寿命及中间负荷下电机效率的影响曲线图;

图4本发明实施例的压缩机λ值对泵体效率的影响曲线图。

附图标记表示为:

1、定子组件;2、转子组件;3、曲轴;4、滚子;5、气缸;6、滑片;7、滑槽;8、弹簧。

具体实施方式

结合参见图1至图4所示,根据本发明的实施例,压缩机包括电机和泵体组件,电机包括定子组件1和转子组件2,定子组件1的外径为d,泵体组件的排量为v,其中电机最高运转频率满足fmax=kπd3/v,π为圆周率,k的取值范围为0.85≤k≤1.5。

压缩机包括壳体、定子组件1和转子组件2构成的电机、实现制冷剂压缩的泵体组件、及用于润滑的冷冻油等部分。一般来说,来自制冷系统的低压制冷剂经设在壳体外的储液器后进入泵体组件,在泵体组件内压缩成高温高压制冷剂后排入壳体内,流经电机并对其散热,通过壳体上盖的排气管进入冷凝器。

其中,定子组件的外径为d(单位mm),泵体组件的排量为v(单位mm3),电机最高运转频率设置为fmax=kπd3/v,π为圆周率,k值的取值范围为0.85≤k≤1.5。

通过该公式限定压缩机的最高运转频率,相比现有压缩机,降低了电机的负荷并提高了的运转频率,从而使电机效率较高(如大于95%)的转速区间大幅扩展,从而使电机高效运行频率区间和apf(全年性能系数)中负荷比率较高的区间更易相匹配,提升了制冷系统的全年性能系数;另一方面,合理的最高运转频率限定,既能防止机械损耗快速增加对可靠性的不利影响,又避免了转速过高引起曲轴挠度大幅增加而带来的噪声问题。

优选地,k的取值范围为1.0≤k≤1.3。

结合参见图3所示,为本申请的技术方案中k值对压缩机寿命及中间负荷下电机效率的影响,较小的k值不能够充分利用电机在低负荷高转速下效率高的特性;而过大的k值,将导致压缩机机械摩擦磨损加剧,难以保证压缩机的长期寿命。在对k值进行合理的限定后,当0.85≤k≤1.5时,可保证压缩机长期运行的可靠性和较优的电机效率水平;当1.0≤k≤1.3时,可使电机效率在中间负荷下达到最高效率水平。

泵体组件包括曲轴3、滚子4、气缸5和滑片6,滚子4套设在曲轴3的偏心部上,并在曲轴3的带动下在气缸5的腔体内转动,滑片6滑动设置在气缸5的侧壁上,滑片6的伸出端抵接在滚子4上,并与滚子4相配合,将气缸5的腔体分为吸气腔和压缩腔。

气缸5的侧壁上设置有滑槽7,滑槽7内设置有弹簧8,滑片6的一端连接在弹簧8上,并在弹簧8的弹性作用下抵接在滚子4上。

曲轴3的中心与气缸5的内壁中心基本重合,滚子4套在曲轴3的偏心部上,滚子4的一侧与气缸5的内壁相切,另一侧与滑片6的头部相抵接,滑片6将气缸5的内壁与滚子4的外壁间的月牙腔分割为两部分,分别为吸气腔和压缩腔,随着压缩机的旋转,吸气腔和压缩腔的容积周而复始的变化,从而实现吸气、压缩、排气。

所述泵体组件可以仅包括一个气缸5,也可以包括至少两个气缸5。

所述气缸的内孔直径为dc、气缸的高度为h,所述活塞的外径为dr,则该气缸的排量(工作容积)为πh(dc2-dr2)/4。上述泵体组件的排量指的是总的吸气容积:若压缩机为多缸单级压缩机,则所述泵体组件的排量为各气缸工作容积的总和;若压缩机为多缸多级压缩机,则所述泵体组件的排量为第一级压缩气缸工作容积的总和。

所述气缸5的内径为dc,定子组件的外径为d时,假定dc与d的比值为λ,λ的取值范围为0.34≤λ≤0.49。

优选地,λ的取值范围为0.4≤λ≤0.45。

结合参见图4所示,为本申请的技术方案中λ值对泵体效率的影响,较小的λ值使得同排量下气缸高度过高,从而使泄漏增加,不利于容积效率和指示效率;而过大的λ值,则会使得轴承负荷增加,从而使机械效率下降显著。当0.34≤λ≤0.49时,可保证压缩机泵体效率处于较优水平;当0.4≤λ≤0.45时,可使压缩机泵体效率处于最高效率水平。

表1本申请的压缩机与现有技术压缩机对比

表1给出了基于本申请技术方案的压缩机与现有技术压缩机k值及各负荷工况下能效对比情况。采用本专利技术的压缩机相比,由于原外径减小22%,横向截面减小38%,因此材料重量及成本几乎相同比例减小,具有轻量化、便于安装的优点;排量减小47.6%,最大转速提高90.9%,k值处于0.85-1.5之间;最小负荷、中间负荷及额定负荷能效分别提高8.4%、6.0%、1.4%,虽然最大负荷工况下能效降低2.2%,但由于全年运行时间比率占优的中小负荷工况能效大幅提升,综合能效提高4.8%以上。

采用本申请的上述方案之后,可以使电机在轻负荷高频率下效率相对较优,从而实现电机高效运行频率区间和apf中负荷、时间比率较高的区间相匹配,同时又保证了压缩机的可靠性,提升了空调系统的全年性能系数(apf)。

由于本申请技术方案中的压缩机具有小排量、高转速的运行特点,相同制冷量(制热量)下,相比现有技术压缩机具有较小的外观尺寸,既降低了资源成本,又具有轻量化、便于安装等显著优势。

所述压缩机为旋转式压缩机、滑片式压缩机或摆动转子式压缩机,也可以为其它的具有类似结构的旋转式流体机械。

根据本发明的实施例,空调器包括压缩机,该压缩机为上述的压缩机。

本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1