解耦膜片及包括其的液阻悬置的制作方法

文档序号:12795920阅读:173来源:国知局
解耦膜片及包括其的液阻悬置的制作方法与工艺

本实用新型涉及汽车零部件领域,特别涉及一种解耦膜片及包括其的液阻悬置。



背景技术:

随着社会发展及生活水平的提高,人们对汽车乘坐舒适性的要求也越来越高。发动机悬置对提高汽车的乘坐舒适性和降低噪声的作用也越来越重要。但是传统的解耦膜片式液阻悬置在整车过减速带时以及车辆过颠簸路时,解耦膜片在上下流道之间来回敲击,产生噪声异响。



技术实现要素:

本实用新型要解决的技术问题是为了克服现有技术中解耦膜片在上下流道之间来回敲击产生噪声异响的缺陷,提供一种解耦膜片及包括其的液阻悬置。

本实用新型是通过下述技术方案来解决上述技术问题:

一种解耦膜片,其特点在于,所述解耦膜片包括第一环形凸缘和第二环形凸缘,所述第一环形凸缘位于所述解耦膜片外周,所述第二环形凸缘与所述第一环形凸缘同心且直径小于所述第一环形凸缘,在所述解耦膜片的中央开有溢流孔,所述溢流孔在所述第二环形凸缘内。第二环形凸缘加强解耦膜片中心部位的强度。通过溢流孔使解耦膜片上下的液体卸压,避免解耦膜片与上下流道撞击产生异响。

较佳地,所述溢流孔为三叉形。三叉形的溢流孔能够控制液体流动幅度,保持解耦膜片中心的强度。

较佳地,所述溢流孔的每个叉形均包括叉形主体和叉形端部,所述叉形主体为矩形,所述叉形端部为圆弧形,所述叉形端部的直径大于所述叉形主体的宽度。这样避免溢流孔末端的应力集中。

较佳地,所述溢流孔的边棱均有倒圆角。倒圆角避免溢流孔边棱的应力集中。

较佳地,所述解耦膜片上下面对称。这样使得解耦膜片受力对称,提高了抗疲劳强度。

较佳地,所述解耦膜片呈圆形、椭圆形或者多边形。解耦膜片可以采取多种形状,适应不同尺寸的液阻悬置。

一种液阻悬置,其特点在于,所述液阻悬置包括粘性液体、上流道、上液腔、解耦膜片、下液腔和下流道,所述解耦膜片限位在所述上流道和所述下流道之间,所述溢流孔连通上液腔和下液腔,所述粘性液体填充所述上液腔、所述下液腔、所述上流道和所述下流道。通过设置溢流孔,减小了上液腔和下液腔之间的压力差,使解耦膜片与上下流道之间的撞击力减弱,避免了异响。

在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本实用新型各较佳实例。

本实用新型的积极进步效果在于:本实用新型的解耦膜片在上下流道之间运动时不产生噪声异响,本实用新型的液阻悬置噪低声,提高了汽车的乘坐舒适性。

附图说明

图1为本实用新型较佳实施例的解耦膜片的结构示意图。

图2为不同解耦膜片在发动机转动频率20Hz至900Hz范围内加速度对比的示意图。

图3为本实用新型较佳实施例的液阻悬置的结构示意图。

附图标记说明:

解耦膜片1

第一环形凸缘11

第二环形凸缘12

溢流孔13

粘性液体2

上流道3

上液腔4

下液腔5

下流道6

具体实施方式

下面通过实施例的方式进一步说明本实用新型,但并不因此将本实用新型限制在所述的实施例范围之中。

本实施例的解耦膜片1如图1所示,包括第一环形凸缘11和第二环形凸缘12,第一环形凸缘11位于解耦膜片1外周,第二环形凸缘12与第一环形凸缘11同心且直径小于第一环形凸缘11,在解耦膜片1的中央开有溢流孔13,溢流孔13在第二环形凸缘12内。第二环形凸缘12加强解耦膜片1中心部位的强度。通过溢流孔13使解耦膜片1上下的液体卸压,避免解耦膜片1与上下流道撞击产生异响。

在发动机悬置的设计过程中,考虑了下述要求:

a、因悬置元件要承受动力总成的质量,为使其不产生过大的静位移而影响工作,因此要求悬置元件要有足够的刚度。

b、发动机本身的激励以及来自路面的激励都经过悬置元件来传递,因此又要求悬置元件有良好的双向隔振性能。

c、因发动机工作频带宽,大约在20Hz至900Hz范围内,要求悬置元件有减振降噪功能,并要求悬置元件工作在低频大振幅时(如发动机怠速状态)提供大的阻尼特性,而在高频低幅振动激励下提供低的动刚度特性,以衰减高频噪声。

d、悬置原件在恶劣路面上行驶时应保持良好的平顺性,不得产生干涉及异响等情况。

e、悬置元件还应当满足耐机械疲劳、耐油性好、橡胶材料的热稳定性及抗腐蚀能力等方面的要求。

一个理想的液阻悬置应具备以下两点特性:在25Hz的低频范围内,为了有效衰减因路面不平和发动机怠速燃气压力不均勾引起的低频大振幅的振动,需具有高刚度、大阻尼的特性;而在25Hz以上的频带范围内,为了降低车内噪声,提高汽车的操纵稳定性,需具有低刚度、小阻尼的特性。液压悬置则克服了传统动力总成橡胶悬置阻尼偏小的局限性,能够更好地满足汽车动力总成隔振的要求。

当悬置在振动激励作用下,上下液室间产生压力波动,通道内液体质量随着上液室的波动在惯性通道中来回运动而出入下液室,形成振荡液柱。液柱在运动中产生沿程能量损失和在出口、入口时的局部能量损失,从而达到衰减振动能量的目的。在振动过程中,上、下液室的压力克服液柱的惯性阻力而使液柱具有的动能在入口和出口处被损失掉了,而且这种损失所表现的外在阻尼远大于由于液体的粘性引起的沿程能量损失所表现的外在阻尼。在低频大振幅的激励下获得大阻尼特性,衰减振动能量。在高频、小振幅激励下,上液室的体积变化量较小,上下液室间的压力差也较小,由于粘性液体与通道壁之间以及液体分子间的磨擦作用液体流经惯性通道的阻力较大,此时,液体几乎不再经惯性通道流动,即产生动态硬化。当加入开了溢流孔的解耦膜片时,由于解耦膜片在小位移时刚度特别小,解耦通道内的液柱与解耦膜片高速振动,上下腔的压力克服解耦通道内液柱的惯性力而使得液柱具有的动能在解耦通道的入口和出口处被损失掉了。从而可以降低液压悬置高频动刚度,消除动态硬化。实现高频小阻尼、抵动刚度的要求。

在整车过颠簸路及恶劣路况时,此时整车处于低频范围内,相对位移较大,解耦膜片1中间开设的溢流孔13,在解耦膜片1上下运行中,液体随着上下液室的变化通过溢流孔13卸压,消除了解耦膜片1上的冲击力,使得解耦膜片1与上、下流道间的撞击力减弱,避免了由此运动而产生的敲击异响。

作为一种较佳的实施方式,溢流孔13为三叉形。控制液体流动幅度,保持解耦膜片1中心的强度。常用的溢流孔结构为圆形,但是在提供性能上面,圆形解耦膜片由于孔的溢流量较大,会导致低频阻尼角过小,动刚度低,低频衰减振动效果不明显。通过实验验证,采用三叉形溢流孔结构,原有特性保持不变,并抑制了颠簸路面产生的敲击声音。图2中示出了在不同的发动机转动频率下,未开孔、开圆形孔和开三叉形孔的解耦膜片的加速度的值,从图2很清楚地看出,在发动机转动频率20Hz至900Hz的范围内,总体上,开圆孔的解耦膜片的加速度小于未开孔的解耦膜片的加速度,开三叉形孔的解耦膜片的加速度小于开圆孔的解耦膜片的加速度。因此,采用开三叉形孔的解耦膜片可以获得相对更优异的减振性能。

在本实施例中,溢流孔13的每个叉形均包括叉形主体和叉形端部,叉形主体为矩形,叉形端部为圆弧形,叉形端部的直径大于叉形主体的宽度。这样避免溢流孔13末端的应力集中。

溢流孔13的边棱均有倒圆角。这样避免溢流孔13边棱的应力集中。

解耦膜片1上下面对称。这样使得解耦膜片1受力对称,提高了抗疲劳强度。

解耦膜片1呈圆形、椭圆形或者多边形。解耦膜片1可以采取多种形状,适应不同尺寸的液阻悬置。

液阻悬置如图3所示,包括粘性液体2、上流道3、上液腔4、如上述的解耦膜片1、下液腔5和下流道6,解耦膜片1限位在上流道3和下流道6之间,溢流孔13连通上液腔4和下液腔5,粘性液体2填充上液腔4、下液腔5、上流道3和下流道6。通过设置溢流孔13,减小了上液腔4和下液腔5之间的压力差,使解耦膜片1与上下流道之间的撞击力减弱,避免了异响。

本实施例的解耦膜片在上下流道之间运动时不产生噪声异响,本实施例的液阻悬置噪低声,提高了汽车的乘坐舒适性。

虽然以上描述了本实用新型的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本实用新型的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本实用新型的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本实用新型的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1