用于高传导性阀的控制板的制作方法

文档序号:19734070发布日期:2020-01-18 04:16阅读:155来源:国知局
用于高传导性阀的控制板的制作方法

相关申请的交叉参考

本申请要求基于美国专利法35u.s.c.§119(e)条,于2017年6月5日提交的,题为“用于阀的具有高通量通道的控制板”美国临时申请62/515,063,其全文引入本文用于所有目的。本申请与以下申请有关:2016年7月7日提交的题为“阀中的控制板”的美国专利申请15/204,245、2016年6月15日提交的题为“用于阀的低迟滞隔板”的美国专利申请15/182,978、2015年11月4日提交的题为“阀门行程放大器机构组件”的美国专利申请14/932,086、以及2015年6月12日提交的题为“用于流体和蒸气的高传导性阀”的美国专利申请14/737,564,它们每一个都全文引入本文用于所有目的。



背景技术:

本发明涉及流体控制阀的可移动部分,其可在极端打开状态和极端关闭状态之间的任何位置主动地定位,以调节通过该阀的流体的流动。该可移动部分包括使一部分流动的流体穿过控制板的配置,从而通过减少潜在的流体停滞来提高清洁度。本发明特别适用于半导体器件、药品、或精细化学品工业制造过程中旨在高纯度按比例控制或调节控制流体输送的阀门中,以及许多类似的同时需要既在完全关闭状态中密封关闭又进行比例控制的流体输送系统。



技术实现要素:

考虑到前述内容,申请人发明了一种高纯度流体控制阀,其包括可移动的控制板,该可移动的控制板具有至少一个流通通道以增强内部阀容积的流体冲扫(fluidsweep)。所述阀有喷射式和阀座式,其中在流体通道的开口处形成相对较窄的平坦平台,可以使平坦阀座通过移动与该平台接触来封闭流体流。在本申请中,喷射元件通常被描述为孔脊(orificeridge),而阀座元件通常被描述为控制板。所述阀使用嵌套的孔脊,通过提供较大的控制间隙长度和较小的封闭面积,从而以较小的致动器移动实现了高传导性。控制板具有连续不间断的平坦部分,其大小经过设置可以桥接相邻的孔脊节段(segments),以在完全关闭的状态下切断流体流动。这些孔脊节段是共面的,可以拼起来以为控制板落座提供光滑的表面。所述流通控制板特别适用于快速动作的比例控制应用,例如半导体制造中的气体输送。

根据一个实施方案,控制板包括形成为具有平坦侧的基本圆形盘的控制板主体,其中该控制板体被至少一个流体通道刺穿,并且至少一个流体通道从该平坦侧延伸到相反一侧。

根据另一实施方案,一种阀组件包括阀体和控制板,阀体包括限定孔脊间的中间阀室部分的嵌套的孔脊,该中间阀室与流体通道有流体连通;控制板包括至少一个贯通控制板的流体通道,所述至少一个贯通控制板的流体通道使得流体能够在位于两个嵌套孔脊内侧的内部阀室部分和位于两个嵌套孔脊外侧的外部阀室部分之间进行可控流动,从而使一些受控流体流在整个阀组件内部冲扫过可能停滞的体积。

根据本发明的一方面,提供了一种用于高传导性阀的控制板。该控制板包括形成为基本圆形的盘的控制板主体,该盘具有平坦侧和与该平坦侧相反的相反侧,该控制板配置为由致动器使之在阀内移动,该平坦侧具有连续不间断的平坦部以切断阀内的流体流;限定在控制板主体内的至少一个流体通道,所述至少一个流体通道从所述平坦侧延伸到相反侧。根据各种实施例,所述至少一个流体通道包括限定在控制板主体中、并从平坦侧延伸到相反侧的多个流体通道。

根据一个实施例,所述多个流体通道围绕控制板主体的中心布置,并且平坦侧的连续不间断平坦部分围绕所述多个流体通道的每一个。根据另一实施例,控制板还包括形成于控制板主体的平坦侧中、位于控制板主体的中心处的凹口,所述多个流体通道成角度地从该凹口向外延伸到相反侧,并且平坦侧的连续不间断平坦部分围绕多个流体通道中的每一个。

根据另一实施例,所述多个流体通道包括,围绕控制板主体中心布置的第一多个成角度流体通道,以及,围绕控制板主体径向外部布置、并且基本直线贯通控制板主体的第二多个直线流体通道,第一多个成角度流体通道从所述相反侧向所述平坦侧径向地向内倾斜。根据本实施例的另一方面,所述平坦侧包括,设置在多个成角度流体通道和多个直线流体通道之间的第一连续不间断平坦部分,以及,设置在多个直线流体通道的径向外侧的第二连续不间断平坦部分。根据上述每一个实施例的一个方面,控制板进一步包括贯通控制板主体中心部的中心通孔和形成于控制板主体中心处相对侧中的盲孔这两者之一,所述中央通孔和盲孔中的一个构造成将控制板主体安装到控制轴上。

根据另一实施例,控制板可进一步包括耦接到控制板主体的放大器盘。该放大器盘具有内部节段和外周,内部节段通过连接臂耦接到外周并通过连接臂与外周间隔开,使得内部节段的轴向位移导致放大器盘外周相对(opposing)部分的不对称位移。根据该实施例,控制板进一步包括限定在控制板主体中的环形凹槽,该环形凹槽具有位于平坦侧反面的凸出表面,其中,至少一个流体通道包括限定在控制板主体中并与环形凹槽相交的通孔。

根据本发明的另一方面,提供了阀组件。该阀组件包括阀体和控制板。阀体具有阀室,至少一个与所述阀室流体连通的第一流体导管孔,至少一个与所述阀室流体连通的第二流体导管孔,以及至少一对相邻的孔脊节段,所述至少一对相邻孔脊节段从阀体延伸到阀室中、并限定了位于所述至少一对相邻孔脊节段之间的中间阀室区域。控制板包括具有第一侧和与第一侧相反的第二侧的控制板主体,该控制板主体可在关闭位置和打开位置之间移动,在关闭位置,第一侧的一个表面区域与所述至少一对相邻孔脊节段发生密封接触,在打开位置,所述表面区域与所述至少一对相邻孔脊节段之间存在开放间隙。控制板具有至少一个流体通道,该流体通道在所述至少一对相邻孔脊节段的周界内从第一侧延伸穿过控制板主体到达第二侧。根据各种实施例,所述至少一对相邻孔脊可以彼此同心并且在阀室内基本居中,或者它们可以在阀室内偏离中心并嵌套。

根据一个实施例,所述至少一对相邻孔脊节段包括两个均基本呈圆形的相邻孔脊节段,它们进一步限定出位于所述两个相邻孔脊节段外侧的外部阀室部分和位于两个相邻孔脊段内侧的内部阀室部分。根据本实施例的一个方面,阀组件还包括与所述至少一个第一流体导管孔流体连通的第一流体导管,以及,与所述至少一个第二流体导管孔流体连通的第二流体导管,其中当所述控制板主体处在关闭位置时,至少一个第一流体导管孔与内部阀室部分发生流体连通,至少一个第二流体导管孔与中间阀室部分发生流体连通,且控制板主体的第一侧的表面区域与两个相邻孔脊节段密封式地接触,以防止流体在所述至少一个第一流体导管孔和所述至少一个第二流体导管孔之间流动。根据本实施例的另一方面,当所述控制板主体处于关闭位置时,控制板的至少一个流体通道在内部阀室部分和外部阀室部分之间提供流体连通。

根据本实施例的另一方面,阀组件还包括与所述至少一个第一流体导管孔流体连通的第一流体导管,以及,与所述至少一个第二流体导管孔流体连通的第二流体导管,其中,当所述控制板主体处在关闭位置时,至少一个第一流体导管孔与外部阀室部分发生流体连通,至少一个第二流体导管孔与中间阀室部分流体连通,并且控制板主体的第一侧的表面区域与两个相邻孔脊节段密封式地接触,以防止流体在所述至少一个第一流体导管孔和所述少一个第二流体导管孔之间流动。根据本实施例的又一方面,当控制板主体处于关闭位置时,控制板的至少一个流体通道在外部阀室部分和内部阀室部分之间提供流体连通。

根据备选实施例,所述至少一对相邻孔脊节段包括四个基本呈圆形的相邻孔脊节段,所述四个相邻孔节脊节段包括,最大孔脊节段,被最大孔脊节段包围的第一较小孔脊节段,被第一较小孔脊段包围的第二较小孔脊节段,以及被第二较小孔脊节段包围的最小孔脊节段,所述四个相邻孔脊节段限定了位于四个相邻孔脊节段外侧的外部阀室部分,位于四个相邻孔脊节段内侧的内部阀室部分,位于最大孔脊节段和第一较小孔脊节段之间的第一中间阀室部分,位于第一较小孔脊节段和第二较小孔脊节段之间的第二中间阀室部分,以及位于第二较小孔脊节段和最小孔脊节段之间的第三中间阀室部分。

根据备选实施例的一个方面,阀组件还包括与所述至少一个第一流体导管孔流体连通的第一流体导管,以及,与所述至少一个第二流体导管孔流体连通的第二流体导管,其中当控制板主体处在关闭位置时,所述至少一个第一流体导管孔与内部阀室部分发生流体连通,所述至少一个第二流体导管孔与第一中间阀室部分发生流体连通,并且控制板主体第一侧表面区域的第一连续不间断平坦部分与最大孔脊节段和第一较小孔脊节段密封式地接触,以防止流体在所述至少一个第一流体导管孔和所述至少一个第二流体导管孔之间流动。

根据该备选实施例的又一方面,阀体还包括与第二流体导管发生流体连通的至少一个第三流体导管孔,并且,当控制板主体处在关闭位置时,所述至少一个第三流体导管孔与第三中间阀室部分发生流体连通,并且控制板主体第一侧表面区域的第二连续不间断平坦部分与第二较小孔脊节段和最小孔脊节段密封式地接触,以防止流体在所述至少一个第一流体导管孔和所述至少一个第三流体导管孔之间流动。

根据该备选实施例的又一方面,所述至少一个流体通道包括,围绕控制板主体的径向内部布置的第一多个成角度流体通道,以及,围绕控制板主体的径向外部布置、并且基本直线地延伸穿过控制板主体的第二多个直线流体通道,所述第一多个成角度流体通道从控制板主体的第二侧面向第一侧发生径向地向内倾斜。根据该备选实施例的另一方面,控制板主体第一侧表面区域的第二连续不间断平坦部分在所述多个成角度流体通道和多个直线流体通道之间布置,所述表面区域的第二连续不间断平坦部分在所述多个直线流体通道的径向向外布置。根据该备选实施例,当控制板主体处于关闭位置时,控制板上第一多个成角度流体通道在内部阀室部分和外部阀室部分之间提供流体连通,并且第一多个成角度流体通道和第二多个直线流体通道在内部阀室部分、外部阀室部分、及第二中间阀室部分之间提供流体连通。

附图说明

图1a示出了具有居中的同心孔脊的代表性高传导性阀主体的平面图。

图1b示出了图1a的高传导性阀主体沿线i-i截取的剖视图。

图1c示出了图1a的高传导性阀主体的俯视立体图。

图1d示出了图1a的高传导性阀主体沿线i-i截取的俯视立体剖视图;

图2a示出了用于高传导性阀的具有流通通道的控制板的一个实施例的平面图。

图2b是图2a控制板的沿ii-ii线截取的剖视图。

图2c示出了图2a控制板的俯视立体图;

图2d示出了图2a控制板沿线ii-ii截取的俯视立体截面图;

图3a示出了用于高传导性阀的具有流通通道的控制板的另一实施例的平面图;

图3b是图3a的控制板沿iii-iii线截取的的剖视图。

图3c示出了图3a的控制板的俯视立体图。

图3d示出了图3a的控制板沿线iii-iii截取的俯视立体截面图;

图4a示出了图2a-d所示具有流通通道的控制板与安装在图1a-1d所示具有居中同心孔脊的高传导性阀体顶部的阀执行机构(topworks)组合的实施例的平面图。

图4b示出了图4a的实施例沿线iv-iv截取的剖视图。

图4c示出了图4a的实施例的俯视立体图;

图4d示出了图4a实施例沿线iv-iv截取的俯视立体截面图;

图5a示出了图3a-3d所示具有流通通道的控制板与安装在图1a-1d所示具有居中同心孔脊的高传导性阀体顶部的阀执行机构组合的实施例的平面图。

图5b示出了图5a的实施例沿线v-v截取的剖视图。

图5c示出了图5a的实施例的俯视立体图;

图5d示出了图5a的实施例沿线v-v截取的俯视立体截面图;

图6a示出了具有偏置的同心孔脊的另一种代表性高传导性阀主体的平面图;

图6b是图6a的高传导性阀主体的vi-vi线剖视图。

图6c示出了图6a的高传导性阀主体的俯视立体图。

图6d示出了图6a的高传导性阀主体沿线vi-vi截取的俯视立体截面图;

图7a示出了具有流通通道的控制板与阀行程放大器盘组合的实施例;

图7b示出了图7a的控制板和阀行程放大器盘沿线vii-vii截取的剖视图。

图7c示出了图7a的控制板和阀行程放大器盘组合的控制板的俯视立体图。

图7d示出了图7a的控制板和阀行程放大器盘组合的控制板沿线vii-vii截取的俯视立体截面图;

图7e示出了图7a的控制板和阀行程放大器盘组合的俯视立体图。

图7f示出了图7a的控制板和阀行程放大器盘组合沿线vii-vii截取的俯视立体截面图。

图8a示出了图7a-7f所示具有流通通道的控制板和放大器盘与安装在图6a-6d所示具有偏移的同心孔脊的高传导性阀体顶部的阀执行机构的组合的平面图;

图8b示出了图8a的实施例沿线viii-viii截取的截面图;

图8c示出了图8a的实施例的俯视立体图;

图8d示出了图8a的实施例沿线viii-viii截取的俯视立体截面图;

图9a示出了另一例具有高传导性阀流通通道的控制板的平面图;

图9b是图9a的控制板沿ix-ix线的剖视图。

图9c示出了图9a的控制板的俯视立体图;

图9d示出了图9a的控制板沿线ix-ix截取的俯视立体截面图;

图10a示出另一代表性的具有两组嵌套式同心孔脊的高传导性阀主体的平面图;

图10b是图10a的高传导性阀主体的沿x-x线截取的剖视图。

图10c示出了图10a的高传导性阀主体的俯视立体图;

图10d示出了图10a的高传导性阀主体沿线x-x截取的俯视立体截面图;

图11a示出了图9a-9d所示具有流通通道的控制板与安装在图10a-10d所示具有嵌套的同心孔脊组的高传导性阀主体顶部的阀执行机构组合的平面图。

图11b示出了图11a的实施例沿线xi-xi截取的剖视图。

图11c示出了图11a的实施例的俯视立体图;和

图11d示出了图11a的实施例沿线xi-xi截取的俯视立体截面图。

具体实施方式

本发明的应用不限于在以下描述中阐述或在附图中示出的构造细节和部件的布置。本发明能够具有其他实施例并且能够以各种方式被实践或执行。同样,本文所使用的措词和术语是出于描述的目的,不应被视为限制。本文中“包括”,“包含”或“具有”,“含有”,“涉及”及其变体的使用意在涵盖其后列出的项目及其等同物以及其他项目。定向形容词“内部”,“外部”,“上部”,“下部”和类似术语的使用旨在帮助理解设计元素之间的相对关系,不应解释为表示空间的绝对方向,也不应被视为限制。

图1a-1d示出具有中心部同心孔脊120、121的高传导性阀体190的代表性示例。更完整的示例性阀组件100可具有包括阀罩160在内的执行机构(topworks),阀罩160与阀体190通过使金属垫圈165变形而可移除式结合,作为无泄漏组件,在图4a-4d中示出。执行机构可包括为特定应用选择的致动器(未示出)。例如,气动致动器可用于简单的开关高传导性阀,而压电致动器可用于适应高通量控制器电子系统的比例控制高传导性阀。开口腔154、158、159形成于阀体190的上表面,它们可视为阀室150的下部,而该阀室的上部157形成于阀罩160的下表面。大孔脊120自阀体190向上呈圆形突出,将外部阀室部分158与被大孔脊120围绕的中间阀室部分154分隔开。大体同心的小孔脊121也自阀体190向上呈圆形突起并被大孔脊120围绕,它将内部阀室部分159与中间阀室部分154分隔开。在本文全文中,位于一对相邻孔脊节段之间(例如,大孔脊120和小孔脊121之间)的连续空间可称为中间阀室部分,位于该对(或多对)相邻孔脊节段外侧的连续空间可称为外部阀室部分(例如158),位于该对(多对)相邻孔脊节段内侧的连续空间可称为内部阀室部分(例如159),这样表述只是为了便于识别,并不表示流体流动的方向。垫圈密封区164可形成于阀体190的上表面中,以接纳与外部阀室158的外周相邻的金属垫圈165。

示例阀100还可包括第一流体导管110(通常是入口)和第二流体导管114(通常是出口),这两个导管将流体连通到阀室150,示例阀100还可包括阀室密封隔板170,以及通过阀室密封隔板170的偏转而可移动的控制元件。可移动的控制元件可包括固定在控制轴182上的控制板200(下文将进一步描述),而控制轴182则固定在隔板170上。在示例阀100的设计中,第一流体导管孔112在内部阀室部分159和第一流体导管110之间提供流体连通。类似地,第二流体导管孔116在中间阀室部分154和第二流体导管114之间提供流体连通。图4a-4d中,阀100在关闭无流量状态下完全闭合,因此控制板200被示为接触大孔脊120和小孔脊121两者。设计人员将理解,第一流体导管110和第二流体导管114可提供通向表面安装部件接口而非图示管状根部(stub)的流体通道。k1s和w-seal是半导体固定设备(capitalequipment)设计中众所周知的表面安装部件接口示例,因此未在本文附图中示出。带所述阀的各个部件可以选用相对于待处理的流体具有所需化学惰性的材料来构造,包括例如不锈钢、金属、钛合金、合金、黄铜,或聚合物例如以及金属和聚合物的各种组合,可以分开或一起使用。例如,316l型不锈钢阀体190可与镍合金控制板200以及钴合金密封隔板170一起使用。

图2a-2d所示的流通控制板200的示例包括形成为基本圆形的盘的控制板主体240,该盘的反面具有一个或多个特征。这些特征可包括中央通孔242,沉孔244,以及一个或多个顶孔246。沉孔244通常居中,且通常在所述盘打算面对孔脊120,121的平坦侧中形成。一个或多个顶孔246可从所述盘的反面穿破控制板主体240,从而在中央通孔242和控制板主体240之间留下一个或多个腹板(web)248。或者,可将顶孔246设置为与沉孔244相交叉,同时还在中央通孔242和控制板主体240的其余部分之间留下一个或多个腹板248。腹板248跨接沉孔244。在任何一种情况下,这些顶孔246都构成流体通道,使流体可以从控制板主体240的一侧流经该通道到达相反侧,而无需绕道外径边缘的外侧。如图4a-4d所示,控制板200可以安装在控制轴182的根部(stub)上,从而悬在阀室150内。根据从业者的需要,可以使用任何合适的安装方法,例如压合(例如,参见图9a-9d),锻造根部头部,螺纹紧固件,焊接,或类似设计选项,只要不遮挡连通顶孔246的流体通道。应理解,相比于如图2a-2d所示将控制板利用通孔242安装到控制轴182的根部上,可替代地采用图9a-9d所示的盲孔安装。

流体流动的控制方式的进一步理解可以考虑,由小孔脊121围绕的内部阀室部分159被第一流体导管孔112连接至与第一流体导管110流体连通,如此一来,控制板200的至少一部分可按照朝向或远离小孔脊121的方向移动,以形成第一控制间隙(未示出),第一流体部分可穿过该第一控制间隙而可控制地流动。该可控的第一流体部分可从内部阀室部分159穿过第一控制间隙直接输送至中间阀室部分154,从那里穿过第二偏置流体导管孔116而出,与第二流体导管114进行流体连通。在本示例阀100中,致动器(未示出)可以向控制轴182施加力以使隔板170偏转,从而通过改变第一控制间隙来调节通过阀100的传导性。

在前述第一流体部分流动的同时,使控制板200的至少一部分朝向或远离大孔脊120移动也类似地产生第二控制间隙(未示出),第二流体部分可穿过该第二控制间隙而可控制地流动。该可控的第二流体部分可从内部阀室部分159输送穿过控制板200的顶孔246,冲扫过上部阀室部分157,进入外部阀室部分158,从那里穿过第二控制间隙而出,进入中间阀室部分154。一旦到达中间阀室部分154,所述第二部分可控流体也可穿第二偏置流体导管孔116而出,与第二流体导管114流体连通。因此,在本示例阀100中,致动器(未示出)向控制轴182施加力,使隔板170偏转,从而通过改变第二控制间隙来另外调节通过阀100的传导性。应理解,当阀100关闭时,流体可以穿过控制板200中的孔,但是不能进一步移动。当阀100关闭时,流体不能从第一流体导管110流到第二流体导管114。

设计人员能理解,大孔脊120和小孔脊121仅需嵌套,而不是完全同心。此外,成对嵌套的孔脊120、121可相对于内部阀腔150的形状和大小而言不对称地放置。流通控制板200当然需要在盘形主体240的下部平坦侧具有连续的不中断的表面区域,其足以跨越与大孔脊120的接触部和与小孔脊121的接触部之间的区域,还覆盖整个中间阀室部分154。可以另有单个非圆形孔脊(未示出)以多个相邻节段合围一个能被流通控制板整个覆盖的中间阀室部分。设计者还将理解,本文所述从第一流体导管110到第二流体导管114的流体流动方向是为了方便和清楚起见,而不是限制性的。流体可以沿相反的方向从第二流体导管114流向第一流体导管110,而整个阀室150仍将被所述可控流体流有利地冲扫。图4a-4d所示阀设计基本上消除了内部无效空间比对于冲扫体积的任何问题,还改善了该示例阀设计的动态响应。流通控制板使得能使用嵌套的孔脊120、121,它们共同形成几乎是单个大孔脊周长两倍的控制间隙总长,同时大大减少了为实现关闭而必须闭合的区域。这种组合提供了高传导性和低闭合力。应理解,在图4a-4d所示类型的隔板密封阀中,控制板200的轴向位移量(例如,在图4b的横截面图中向上和向下)相当局限(例如,压电致动阀为大约50μm,电磁致动阀为大约200μm)。嵌套孔脊的使用因此允许更高的传导性,几乎是单个孔脊所能达到的两倍。

另一示例流通控制板300见图3a-3d,包括形成为基本圆形的盘的控制板主体341,在该盘的反面具有一个或多个特征。这些特征可以包括,中央通孔343,球形凹穴(或凹口)345,以及一个或多个倾斜顶孔347。球形凹穴345通常居中,并且通常在所述盘打算面向孔脊120、121的平坦侧形成。一个或多个倾斜顶孔347可从球形凹穴345穿透控制板主体341,直达盘的反面,从而在中央通孔343和控制板主体341的其余部分之间留下一个或多个腹板349。腹板349跨接在球形凹穴345上。球形凹穴345在钻出倾斜顶孔347时是有用的,因为那些成角度的孔的入口可以局部垂直于所述凹穴表面,从而使钻头的摆动或弯曲最小化。应理解,与球形凹穴或凹口345相比,合适的成角度的锥形凹穴或凹口可以替代地用于辅助钻削倾斜顶孔347。倾斜顶孔347构成流体通道,流体可以从控制板主体341的一侧经过该流体通道到达相反一侧,而无需绕道外径边缘的外侧。如图5a-5d所示,控制板300可以安装在控制轴182的根部上,并因此悬在阀室150内。根据从业者的需要,可以使用任何合适的安装方法,例如压合(例如,参见图9a-9d),锻造根部头部,螺纹紧固件,焊接,或类似设计选项,只要不遮挡连通顶孔347的流体通道。应理解,相比于如图3a-3d所示将控制板利用通孔343安装到控制轴182的根部上,可替代地采用图9a-9d所示的盲孔安装。

图5a-5d所示阀组件利用示例性流通控制板300来控制流体流动的方式可以进一步理解为,与图4a-4d所示阀组件利用前文所述示例性流通控制板200的方式基本相同。可控的第一流体部分可从内部阀室部分159穿过第一控制间隙(未示出)直接送至中间阀室部分154,从那里穿过第二偏置流体导管孔116而出,与第二流体导管114进行流体连通。特别是对流通控制板设计300而言,可控的第二流体部分可以从内部阀室部分159穿过控制板300的倾斜顶孔347,冲扫过上部阀室部分157,进入外部阀室部分158,从那里,所述第二流体部分可以穿过第二控制间隙进入中间阀室部分154。流通控制板300还需要在盘形主体341的下部平坦侧具有连续的不中断的表面区域,其足以跨越与大孔脊120的接触部和与小孔脊121的接触部之间的区域,并覆盖整个中间阀室部分154。设计者还将理解,本文描述的流体流动方向是为了方便和清楚起见,而不限于5a-5d所示的示例性阀组件。流体可以沿相反方向流动,而整个阀室150仍将被所述可控流体流有利地冲扫。图5a-5d所示阀组件设计基本上消除了内部无效空间比对于冲扫体积的任何问题,还改善了该示例阀设计的动态响应。流通控制板使得能使用嵌套的孔脊120、121,它们共同形成几乎是单个大孔脊周长两倍的控制间隙总长,同时大大减少了为实现关闭而必须闭合的区域。这种组合提供了高传导性和低闭合力。

图6a-6d示出另一具有嵌套孔脊420、421的高传导性阀体490的代表性示例。更完整的示例性阀组件400可具有包括阀罩460在内的执行机构,阀罩460与阀体490通过使金属垫圈465变形而可移除式连接,作为无泄漏组件,在图8a-8d中示出。执行机构可包括为特定应用选择的致动器(未示出)。例如,气动致动器可用于简单的开关高传导性阀,而压电致动器可用于适应高通量控制器电子系统的比例控制高传导性阀。开口腔454、458、459形成于阀体490的上表面,它们可视为一个阀室的下部,该阀室的上部457形成于阀罩460的下表面。大孔脊420在阀体490内部形成基本圆形的向上突出,将外部阀室部分458与被大孔脊420围绕的中间阀室部分454分隔开。被嵌套的小孔脊421也自阀体490向上呈圆形突起,进一步将内部阀室部分459与围绕该小孔脊的中间阀室部分454分隔开。垫圈密封区464可形成于阀体490的上表面中,以接纳与外部阀室部分458的外周相邻的金属垫圈465。

示例阀400还可包括第一流体导管417(通常是入口)和第二流体导管414(通常是出口),这两个导管将流体连通到阀室,示例阀400还可包括阀室密封隔板470,以及通过阀室密封隔板470的偏转而可移动的控制元件。可移动的控制元件可包括固定在控制轴482上、带有阀行程放大器装置的控制板600(下文将进一步描述),而控制轴482则固定在隔板470上。在示例阀400的设计中,第一流体导管孔419在外部阀室部分458和第一流体导管417之间提供流体连通。类似地,第二流体导管孔416在中间阀室部分454和第二流体导管414之间提供流体连通。图8a-8d中,阀组件400在关闭无流量状态下完全闭合,因此控制板600被示为接触大孔脊420和小孔脊421两者。设计人员将理解,第一流体导管417和第二流体导管414可提供通向表面安装部件接口而非图示管状根部的流体通道。k1s和w-seal是半导体固定设备设计中众所周知的表面安装部件接口示例,因此未在本文附图中示出。带所述阀的各个部件可以选用相对于待处理的流体具有所需化学惰性的材料来构造,包括例如不锈钢、金属、钛合金、合金、黄铜,或聚合物例如以及金属和聚合物的各种组合,可以分开或一起使用。例如,316l型不锈钢阀体490可与镍合金控制板600以及钴合金密封隔膜470一起使用。

另一例流通控制板600如图7a-7f所示,并包括在图8a-8d中,其包含控制板主体640和阀行程放大机构放大器盘641,其描述于本发明人kimngocvu2015年11月4日提交的美国专利申请14/932,086中。如图7a-7f所示,控制板主体640形成为具有多个特征的基本圆形的盘,所述特征包括中央通孔642,环形凹槽644,以及顶部凸出部(toprelief)646。环形凹槽644和顶部凸出部646形成于所述盘上与打算面向一或多个孔脊的平坦侧相反的一侧。顶部凸出部646被设置为,与中央通孔642的一部分和环形凹槽644相交叉,由此提供开放的流体通道,使流体可以从控制板主体640的一侧经过该开放的流体通道流向相反侧,而无需绕道外径边缘的外侧。放大器盘641在引用的美国专利申请14/932,086号中详述。本申请感兴趣的放大器盘特征包括升降孔(liftinghole)643,被动节段,主动节段649,与主动节段相邻的空隙通道(voidpassageway)639,附接点645,以及扭杆648。控制板主体640和放大器盘641通过在两个附接点645处焊接而彼此附接,从而扭杆648和主动节段649构成桥接环形凹槽644和一部分顶部凸出部646的腹板。空隙通道639的一部分紧挨着顶部凸出部646,由此提供流体通道,流体可以从控制板600的一侧经过该流体通道传递到相反的一侧,而无需围绕组件的外径周边流动。如图8a-8d所示,控制板600可以利用行程放大器盘升降孔643安装到控制轴482的根部(stub)上,并因此悬在该阀室内。根据从业者的需要,可以使用任何合适的安装方法,例如压合、锻造根部头部、螺纹紧固件、焊接、或类似的设计选选项,只要连通顶部凸出部646和放大器盘空隙通道639的流体通道未被遮挡。

由执行机构致动器(未示出)施加到主动节段649中放大器盘升降孔643上的力被扭杆648传递到附接点645。当这种施加的力是提升力时,被动节段647将使流通控制板主体640偏离中心的第一部分保持向下,而径向相对的第二部分被施加到附接点645的径向力作用而向上提升。由此产生的运动将在控制板的平坦底面与图8a-8d的示例性阀400所示的大孔脊420和小孔脊421二者之间打开楔形间隙。当阀400处于闭合状态时(如图8a-8d所示),各种放大器盘元件标称地共面,流通控制板主体640与大孔脊420和小孔脊421接触。

流体流动的控制方式的进一步理解可考虑,由第一流体导管孔口419馈送的外部阀室部分458与第一流体导管417发生流体连通,由此,控制板600的至少一部分可以朝向或远离大孔脊420运动,以形成楔形的第一控制间隙(未示出),第一流体部分可通过该控制间隙进行可控流动。可控的第一流体部分可从外部阀室部分458穿过第一控制间隙直达中间阀室部分454,从那里,它可以穿第二流体导管孔416而出,与第二流体导管414发生流体连通。在本示例性阀400中,致动器(未示出)可以向控制轴482施加力以使隔板470偏转,从而通过改变第一控制间隙来调节通过阀400的传导性。应理解,当阀400关闭时,流体可从第一流体导管417,通过第一流体导管孔419,围绕控制板600的外周,进入外部阀室部分458和该阀室的上部457,再穿过控制板600中的多个孔到达内部阀室部分459,但不再能进一步移动。因此,当阀400关闭时,流体不能从第一流体导管417流到第二流体导管414。

在前述第一流体部分流动的同时,使控制板600的至少一部分朝向或远离小孔脊421移动也同样形成楔形的第二控制间隙(未示出),第二流体部分可通过该间隙进行可控流动。可控的第二流体部分可从外部阀室部分458冲扫过上部阀室457,然后经由放大器盘空隙通道639和控制板主体640的顶部凸出部646而穿过控制板600,进入到内部阀室部分459,然后,可控的第二流体部分可从内部阀室部分459穿过第二控制间隙,进入中间阀室部分454,从那里,该第二流体部分可穿第二导管口416而出,与第二流体导管414发生流体连通。因此,在本示例性阀400中,致动器(未示出)向控制轴482施加力并使隔板470偏转,从而通过改变第二控制间隙,额外地调节通过阀400的传导性。设计者们还将理解,所描述的流体流动方向是为了方便和清楚起见,但不限于图8a-8d所示的示例性阀组件。流体可以沿相反的方向流动,而整个阀室450仍将被所述可控流体流有利地冲扫。图8a-8d所示阀设计基本上消除了内部无效空间比对于冲扫体积的任何问题,还改善了该示例阀设计的动态响应。流通控制板使得能使用嵌套的孔脊420、421,它们共同形成几乎是单个大孔脊周长两倍的控制间隙总长,同时大大减少了为实现关闭而必须闭合的区域。这种组合提供了高传导性和低闭合力。

图10a-10d示出另一具有两组嵌套式中心同心圆孔脊820,821,822,823的高传导性阀体890的代表性示例。更完整的示例性阀组件1000可具有包括阀罩860在内的执行机构,阀罩860与阀体890通过使金属垫圈865变形而可移除式连接,作为无泄漏组件,在图11a-11d中示出。执行机构可包括为特定应用选择的致动器(未示出)。例如,手动致动器可用于简单的开关高传导性阀,而压电致动器可用于适应高传导性控制器电子系统的比例控制高传导性阀。开口腔852,854,856,858,859形成于阀体890的上表面,它们可视为一个阀室的下部,该阀室的上部857形成于阀罩860的下表面中。大孔脊820形成了自阀体890向上突出的圆形,将外部阀室部分858与被大孔脊820围绕的第一中间阀室部分856分隔开。基本同心的第一小孔脊821也形成了从阀体890向上突出、被大孔脊820围绕的圆形,并进一步将闭合的第二中间阀室部分854与第一中间阀室部分856分隔开。基本同心的第二小孔脊822也形成了从阀体890向上突出、被第一小孔脊821围绕的圆形,并进一步将闭合的第三中间阀室852与第二中间阀室854分隔开。基本同心的最小孔脊823也形成了从阀体890向上突出、被第二小孔脊822围绕的圆形,并进一步将闭合的内部阀室部分859与第三中间阀室部分852分隔开。垫圈密封区864可形成于阀体890的上表面中,以接纳与外部阀室858的外周相邻的金属垫圈865。

示例阀1000还可包括第一流体导管810(通常是入口)和第二流体导管814(通常是出口),阀室密封隔板870,以及通过阀室密封隔板870的偏转而可移动的控制元件,所述两个导管将流体连通到阀室。可移动的控制元件可另外包含固定在控制轴882上的控制板900(下文将进一步描述),而控制轴882则固定在隔板870上。在示例阀1000的设计中,第一流体导管孔812在内部阀室部分859和第一流体导管810之间提供流体连通。类似地,一个或多个第二流体导管孔816在第一中间阀室部分856和第二流体导管814之间提供流体连通。还提供了一个或多个第三流体导管孔818,所述孔在第三中间阀室部分852和第二流体导管814之间提供流体连通。图11a-11d中,阀1000在关闭无流量状态下完全闭合,因此控制板900被示为与全部四个孔脊发生接触:大孔脊820,第一较小孔脊821,第二较小孔脊822和最小孔脊823。设计人员将理解,第一流体导管810和第二流体导管814可提供通向表面安装部件接口而非图示管状根部(tubestub)的流体通道。k1s和w-seal是半导体固定设备设计中众所周知的表面安装部件接口示例,因此未在本文附图中示出。带所述阀的各个部件可以选用相对于待处理的流体具有所需化学惰性的材料来构造,包括例如不锈钢、金属、钛合金、合金、黄铜,或聚合物例如以及金属和聚合物的各种组合,可以分开或一起使用。例如,316l型不锈钢阀体890可与镍合金控制板900以及钴合金密封隔膜870一起使用。或者,阀体、密封隔板、以及控制板主体,可以全都由相同的不锈钢合金制成。

另一例流通控制板900见图9a-9d,包括形成为基本圆形的盘的控制板主体940,在该盘的反面具有一或多个特征。这些特征可以包括,中央安装孔942(盲孔或贯通孔),一个或多个第一中间通孔944,以及一个或多个第二中间通孔946。如图11a-11d所示,控制板900可以安装在控制轴882的根部上,并因此悬在阀室内。根据从业者的需要,可以使用任何合适的安装方法,例如压合、锻造根部头部、螺纹紧固件、焊接,或类似设计选项,只要不遮挡由第一中间通孔944和第二中间通孔946形成的流体通道。应理解,相比于将控制板900利用图9a-9d所示多个盲孔安装到控制轴882的根部上,可替代地采用图2a-2d、3a-3d、以及7a-7f所示的通孔安装。

一个或多个第一中间通孔944贯通控制板主体940,且通常在以恒定直径围绕中心安装孔942的第一圆上均匀地间隔开。对第一圆的直径和第一中间通孔944的直径的选择,使得那些通孔仅覆盖内部阀室部分859,不与相邻的最小孔脊823重叠。如图9a-9d和图11a-11d所示斜钻第一通孔944,使得既能利用较大直径的孔、又不与最小孔脊823重叠。应理解,尽管未示出,但可以使用球形凹穴或凹口,采用图3a-3d所示方式来帮助打钻第一中间通孔944。第一中间通孔944构成流体通道,流体可以经过该流体通道从控制板主体940的一侧流向相反侧,而无需绕外径周界流动。更特别地,第一中间通孔944使内部阀室部分859与上部阀室部分857发生流体连接。一个或多个相邻的第一中间通孔944之间的材料腹板945提供了从中央安装孔942至盘形主体940的下平坦侧上连续不间断的第一表面区域941的机械连接,该第一表面区域941的径向范围能满足在跨越与第二较小孔脊822的接触部和与最小孔脊823的接触部之间区域的同时覆盖整个第三中间阀室部分。

一个或多个第二中间通孔946贯通控制板主体940,且通常在以恒定直径围绕第一表面区域941和第一中间通孔944的第二圆上均匀隔开。对第二圆的直径和第二中间通孔946的直径的选择,使得那些通孔仅覆盖第二中间阀室部分854,不与相邻的第一较小孔脊821或第二较小孔脊822重叠。第二中间通孔946构成流体通道,流体可以经过该流体通道从控制板主体940的一侧流向相反侧,而无需绕外径周界流动。更特别地,第二中间通孔946使第二中间阀室部分854与上部阀室部分857发生流体连接。一个或多个相邻的中间通孔946之间的材腹板947提供了从第一表面区域941至盘形主体940的下平坦侧上连续不间断的第二表面区域943的机械连接,该第二表面区域943的径向范围能满足在跨越与最大孔脊820的接触部和与第一较小孔脊821的接触部之间区域的同时覆盖整个第一中间阀室部分856。

流体流动的控制方式的进一步理解可考虑,被最小孔脊823围绕、由第一流体导管孔口812馈送的内部阀室部分859与第一流体导管810发生流体连通,由此,控制板900的至少一部分可以朝向或远离最小孔脊823运动,以形成第一控制间隙(未示出),第一流体部分可通过该控制间隙进行可控流动。可控的第一流体部分可直达第三中间阀室部分852,从那里,它可以穿过一或多个第三流体导管孔818而出,与第二流体导管814发生流体连通。第二流体部分可从内部阀室部分859向上穿过一或多个第一中间通孔944而直达阀室的上部857,从那里再向下穿过一或多个第二中间通孔946,进入第二中间阀室部分854。使控制板900的至少一部分朝向或远离第二较小孔脊822运动,将产生第二控制间隙(未示出),第二流体部分也可通过该第二控制间隙,从第二中间阀室部分854直接可控地流入第三中间阀室部分852,然后穿过一或多个第三流体导管孔818而出,与第二流体导管814产生流体连通。在本示例性阀1000中,致动器(未示出)可以向控制轴882施加力以使隔板870偏转,从而通过改变第一控制间隙和第二控制间隙来调节通过阀1000的传导性。

与第一流体部分和第二流体部分的前述流动同时,使控制板900的至少一部分朝向或远离最大孔脊820移动也同样地产生第三控制间隙(未示出),第三流体部分可以通过该第三控制间隙进行可控地流动。可控的第三流体部分可以从内部阀室部分859向上转移,穿过控制板900的一或多个第一中间通孔944,冲扫过上部阀室部分857,进入外部阀室部分858,从这里,第三流体部分可通过第三控制间隙进入第一中间阀室部分856。一旦到达第一中间阀室部分856,可控的第三流体部分可经由一或多个第二流体导管孔816流出,与第二流体导管814发生流体联通。第四流体部分可从内部阀室部分859向上穿过一个或多个第一中间通孔944进入该阀室的上部857,并从那里向下穿过一个或多个第二中间通孔946进入第二中间阀室部分854。使控制板900的至少一部分朝向或远离第一较小孔脊821移动将形成第四控制间隙(未示出),第四流体部分也可通过该第四控制间隙可控地直接流入第一中间阀室部分856,从那里它可以经由一或多个第二内部流体导管孔816流出,与第二流体导管814发生流体连通。因此,在本示例阀1000中,致动器(未示出)向控制轴882施加力并使隔板870偏转,从而通过改变第三控制间隙和第四控制间隙而另外调节通过阀1000的传导性。应理解,当阀1000关闭时,流体可穿过控制板900中的多个孔并进入阀室的上部857、外部阀室858部分和第二中间阀室部分854,但是无法走得更远。因此,当阀1000关闭时,流体不能从第一流体导管810流到第二流体导管814。

设计者将理解,最大孔脊820和第一较小孔脊821仅需要嵌套而不是完全同心;而且,成对嵌套的孔脊820、821可以相对于内部阀室的形状和尺寸而言不对称地放置。当然,流通控制板900主要需要在盘形主体940的下部平坦侧上具有连续不间断的第二表面区域943,其足以跨越最大孔脊820接触部和第一较小孔脊821接触部之间的区域,并覆盖整个第一中间阀室部分856。类似地,第二较小孔脊822和最小孔脊823仅需要嵌套而不是完全同心;而且,成对嵌套的孔脊822、823可以相对于内部阀室850的形状和尺寸而言不对称地放置。当然,流通控制板900主要需要在盘形主体940的下部平坦面上具有连续不间断的第一表面区域941,其足以在与第二较小孔脊822和最小孔脊823接触之间跨越,并覆盖整个第三中间阀室部分852。设计者还将理解,所述从第一流体导管810到第二流体导管814的流体流动方向是为了方便和清楚起见,但不限于此。流体可以沿相反的方向流动,从第二流体导管814到第一流体导管810,而整个阀室仍将被所述可控流体流有利地冲扫。图11a-11d所示阀设计基本上消除了内部无效空间比对于冲扫体积的任何问题,还改善了该示例阀设计的动态响应。流通控制板使得能使用嵌套的孔脊820、821、822、823,它们共同形成几乎是单个大孔脊周长三倍的控制间隙总长,同时大大减少了为实现关闭而必须闭合的区域。这种组合提供了高传导性和低闭合力。

至此已描述了本发明至少一个实施方式的数个方面,本领域技术人员将容易想到各种改变,修改和改进。这样的改变,修改和改进都算是本公开的一部分,并落入本发明的范围内。因此,前面的描述和附图仅作为示例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1