用于燃料电池车辆的氢气填充方法与流程

文档序号:12903373阅读:471来源:国知局
用于燃料电池车辆的氢气填充方法与流程

相关申请的交叉引证

本申请要求于2016年4月28日向韩国知识产权局提交的韩国专利申请第10-2016-0052223号的权益和优先权,其全部内容通过引证结合于此。

本公开总体涉及一种用于燃料电池车辆的氢气填充方法,并且更具体地,涉及一种用于向燃料电池车辆安全填充最大量氢气燃料的技术。

为了本公开的目的,氢气罐指的是设置在燃料电池车辆中的罐,并且存储罐指的是连接至氢气站的氢气分配器的罐。



背景技术:

尽管内燃机车辆通过内燃机的由矿物燃料与来自空气的氧气的燃烧过程中出现的爆炸所引起的旋转动力来运行,但燃料电池车辆通过使用由燃料电池堆生成的电能驱动的电动机的旋转动力来运行。燃料电池堆(其是燃料电池车辆的电源)通过由车辆中的高压氢气罐供应的氢气与来自由空气供应装置供应的空气中的氧气的电化学反应生成电能。

在燃料电池车辆中,重要的是将氢气燃料安全存储在紧凑型罐中。为此,已开发了满足里程增加和安全性的需求的各种氢气存储技术。例如,通常通过向氢气罐的内部填充氢气来使用可经受高压的轻质量且高强度的氢气罐。为了确保用于所有乘客的空间以及足够里程,罐的内部可在高压力下填充氢气。

通常,用于燃料电池车辆的氢气罐的规格是350巴或700巴。诸如碳纤维的增强材料可缠绕在由金属(诸如铝合金)或塑料制成的罐主体的外部上,以便确保足够的内部耐压性。

同时,燃料电池车辆可填充有来自氢气分配器的氢气。为了安全且快速补给燃料,燃料电池车辆可测量氢气罐的压力和温度并向氢气分配器传输测量结果。因此,如果燃料电池车辆与氢气分配器之间存在通信误差,则变得难以利用氢气向车辆正常供给燃料。

在用于燃料电池车辆的传统氢气填充方法中,当燃料电池车辆与氢气分配器之间存在通信误差时,考虑到在供给燃料时可出现的爆炸的可能风险,向燃料电池车辆填充的氢气的量小于足够时间(例如,至少10分钟)内的最大填充量。因此,难以快速且安全地向车辆供给最大量的氢气燃料。

例如,即使当设置在燃料电池车辆中的氢气罐的容量是700巴时,燃料电池车辆由于爆炸的风险而将目标填充量设为600巴,并且氢气的填充也较缓慢。因此,难以向车辆供给最大量的氢气燃料并且难以维持最大里程。



技术实现要素:

本公开致力于解决在相关技术中出现的上述问题,同时完整地保持由现有技术实现的优点。

本公开的一方面提供了一种用于燃料电池车辆的氢气填充方法,其特征在于,在依次使用具有不同压力水平的多个存储罐(例如,设置在氢气站中的氢气存储罐)的同时向燃料电池车辆的氢气罐填充氢气,从而即使在氢气分配器与燃料电池车辆之间出现通信误差期间难以监控来自燃料电池车辆的氢气罐的压力和温度时,也能迅速且安全地向氢气罐填充最大量的氢气燃料。

本公开的目的不限于上述目的,并且从以下描述将清楚理解本文未提及的任意其他目的和优势。从本公开的示例性实施方式中将更清楚理解本发明构思。此外,显而易见的是,本公开的目的和优势可通过在下文中的元件来实现。

根据本公开的实施方式,用于燃料电池车辆的氢气填充方法包括:通过依次使用燃料电池车辆的低压力存储罐、燃料电池车辆的中等压力存储罐以及燃料电池车辆的高压力存储罐,使用氢气分配器向燃料电池车辆的氢气罐填充氢气。

氢气罐的填充可包括:当在氢气分配器与燃料电池车辆之间存在红外(ir)通信误差时,使用低压力存储罐填充氢气罐;除非存储在低压力存储罐中的氢气向氢气罐移动,否则使用中等压力存储罐来填充氢气罐;除非存储在中等压力存储罐中的氢气向氢气罐移动,否则使用高压力存储罐来填充氢气罐;以及除非存储在高压力存储罐中的氢气向氢气罐移动,否则完成氢气罐的填充。

该方法还可包括:使用流量计确定存储在低压力存储罐、中等压力存储罐以及高压力存储罐中任一个中的氢气是否移动至氢气罐。

当填充氢气时,燃料电池车辆可在氢气罐的温度超过一阈值时输出警报信号,由此防止氢气罐的爆炸风险。

该方法还可包括:通过压缩机维持低压力存储罐中的第一基准压力;通过压缩机维持中等压力存储罐中的第二基准压力;和/或通过压缩机维持高压力存储罐中的第三基准压力。

附图说明

由以下结合附图进行的详细描述,本公开的以上和其他目的、特征以及优点将更加显而易见:

图1示出了根据本公开的实施方式的用于燃料电池车辆的氢气填充系统;

图2示出了根据本公开的实施方式的用于燃料电池车辆的氢气填充方法的流程图;

图3示出了当红外(ir)通信可用时的氢气填充结果的性能分析;

图4示出了在传统氢气填充方法中当ir通信不可用时的氢气填充结果的性能分析;以及

图5示出了在根据本公开的实施方式的氢气填充方法中当ir通信不可用时的氢气填充结果的性能分析。

具体实施方式

从结合附图进行的以下详细说明中,将更清楚地理解本公开的以上和其他目的、特征和优势,从而使得本公开所属领域的技术人员可轻易实施本文描述的技术构思。此外,与本公开有关的众所周知的技术的详细说明将被省略,以便不会不必要地使得本公开的主旨模糊。在下文中,将参考附图详细描述本公开的实施方式。

本文使用的术语仅是为了描述具体实施方式的目的而并非旨在限制本公开。除非上下文另有明确说明,否则如本文所用的单数形式“一个(a)”、“一个(an)”和“该(the)”旨在也包括复数形式。应进一步理解的是,当在本说明书中使用时,术语“包括(comprises)”和/或“包含(comprising)”规定存在所阐述的特征、整数、步骤、操作、元件和/或组件,但并不排除存在或附加有一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组合。如本文使用的,术语“和/或”包括一个或多个相关所列项的任何和所有组合。

此外,应理解,可通过至少一个控制单元执行一个或多个以下方法或其方面。术语“控制单元”可指包括存储器和处理器的硬件装置。存储器被配置为存储程序指令,并且处理器被特定编程为执行程序指令,以执行以下进一步描述的一个或多个过程。另外,如将由本领域普通技术人员所理解的,应理解到,下文的方法可通过包括控制单元的设备结合一个或多个其他组件来执行。

现在参考当前公开的实施方式,图1示出了根据本公开的实施方式的用于燃料电池车辆的氢气填充系统。

如图1所示,氢气站可接收来自由拖车运送的氢气管100的氢气、通过压缩机200压缩氢气,并且将所压缩的氢气存储在存储罐300中。存储在存储罐300中的压缩氢气可通过氢气分配器400馈送至燃料电池车辆500。存储罐300包括低压力存储罐310(例如,0巴-200巴)、中等压力存储罐320(例如,200巴-500巴)以及高压力存储罐330(例如,500巴-700巴)。

此外,压缩机200可周期性执行压缩过程以将低压力存储罐310的压力维持为一基准值(例如,200巴)(或“第一基准压力”)、周期性执行压缩过程以将中等压力存储罐320的压力维持为一基准值(例如,500巴)(或“第二基准压力”),并且周期性执行压缩过程以将高压力存储罐330的压力维持为一基准值(例如,700巴)(或“第三基准压力”)。

同时,可在氢气分配器400与燃料电池车辆500之间执行红外(ir)通信,并且氢气分配器400可接收来自燃料电池车辆500的氢气罐的压力和温度,并且使用该压力和温度作为用于安全氢气燃料供给的参数。氢气分配器400可设置有ir接收器(未示出),并且燃料电池车辆500可设置有ir传输器(未示出)。

此外,氢气分配器400可设置有流量计以监控流动速率变化。换言之,可确定氢气是否从存储罐300移动至燃料电池车辆500的氢气罐。即,可确定燃料电池车辆500的氢气罐是否正在填充氢气。

图2示出了根据本公开的实施方式的用于燃料电池车辆的氢气填充方法的流程图。该方法由氢气分配器400执行。

首先,在操作201中,当氢气分配器400的喷嘴连接至燃料电池车辆500的接收部(receptacle,接纳部,插座)时,在操作202中,可确定是否正常执行ir通信。换言之,可确定是否通过ir通信从燃料电池车辆500接收氢气罐的压力和温度。

作为操作202中的确定结果,当正常执行ir通信时,在操作203中,燃料电池车辆可基于接收的氢气罐的压力和温度来填充氢气。这里,可使用众所周知的填充过程。

另一方面,当不正常执行ir通信时,在操作204中,氢气分配器400可将燃料电池车辆500连接至低压力存储罐310以尝试填充过程。

接下来,在操作205中,可确定存储在低压力存储罐310中的氢气是否移动至燃料电池车辆500的氢气罐。换言之,可确定存储在低压力存储罐310中的氢气是否正在馈送至燃料电池车辆500的氢气罐。

作为操作205中的确定结果,当燃料电池车辆500的氢气罐正在填充氢气时,可等待直至填充过程完成,或者当燃料电池车辆500的氢气罐未正在填充氢气时,氢气分配器400可断开燃料电池车辆500与低压力存储罐310的连接,并且在操作206中将燃料电池车辆500连接至中等压力存储罐320以尝试填充过程。

此后,在操作207中,可确定存储在中等压力存储罐320中的氢气是否移动至燃料电池车辆500的氢气罐。换言之,可确定存储在中等压力存储罐320中的氢气是否正在馈送至燃料电池车辆500的氢气罐。

作为操作207中的确定结果,当燃料电池车辆500的氢气罐正在填充氢气时,可等待直至填充过程完成,或者当燃料电池车辆500的氢气罐未正在填充氢气时,氢气分配器400可断开燃料电池车辆500与中等压力存储罐320的连接,并且在操作208中将燃料电池车辆500连接至高压力存储罐330以尝试填充过程。

然后,在操作209中,当完成填充过程时,填充过程可结束。换言之,当存储在高压力存储罐330中的氢气不再移动至燃料电池车辆500的氢气罐时,可确定填充过程完成,并且填充过程可结束。

在上述过程中,燃料电池车辆500的检测ir通信中的误差的氢气控制单元(hcu)可周期性确定氢气罐的温度,并且当氢气罐的温度超过阈值(例如,85摄氏度)时,可通过车辆中的仪表板或扬声器输出警报信号。

在下文中,将参考图3至图5详述根据本公开的实施方式的用于燃料电池车辆的氢气填充方法的性能。

图3示出了当ir通信可用时的氢气填充结果的性能分析。图4示出了在传统氢气填充方法中当ir通信不可用时的氢气填充结果的性能分析,并且图5示出了在根据本公开的实施方式的氢气填充方法中当ir通信不可用时的氢气填充结果的性能分析。

在图3中,δt1表示当ir通信可用时(即,当氢气分配器400正常操作时)氢气罐的压力达到目标压力(例如,700巴)所花费的时间。此外,δt1也表示氢气罐的填充量达到最大填充量所花费的时间。

在图4中,δt2表示在传统氢气填充方法中当ir通信不可用时氢气罐的压力达到目标压力(例如,600巴)所花费的时间。此外,δt2也表示氢气罐的填充量达到最大填充量所花费的时间。

在图5中,δt3表示在根据本公开的实施方式的氢气填充方法中当ir通信不可用时氢气罐的压力达到目标压力(例如,600巴)所花费的时间。此外,δt3也表示氢气罐的填充量达到最大填充量所花费的时间。

此外,时间(t)、压力(p)、温度(t)和填充量(m)的关系可满足以下方程:

[方程1]

δt1≈δt3<δt2

δp1=δp3>δp2

δt2<δt1≈δt3

δm1=δm3>δm2

通过举例的方式,方程1可由以下表1中所示的具体值表示:

[表1]

可替换地,根据本公开的实施方式,当压缩机200不周期性执行压缩过程以便将低压力存储罐310的压力维持为一基准值(例如,200巴)(“第一基准压力”)、不周期性执行压缩过程以便将中等压力存储罐320的压力维持为一基准值(例如,500巴)(或“第二基准压力”)并且不周期性执行压缩过程以便将高压力存储罐330的压力维持为一基准值(例如,700巴)(或“第三基准压力”)时,附加压缩机可设置在存储罐300与分配器400之间。在这种情况下,将详述向燃料电池车辆500的氢气罐填充氢气的过程。在这种情况下,操作201至207可以另外的方式相同。

然而,在操作208中,附加压缩机可被激活以帮助向燃料电池车辆500的氢气罐填充氢气。换言之,通过将压缩机的填充压力设为燃料电池车辆500的氢气罐的最大填充压力(例如,700巴),燃料电池车辆500的氢气罐可完全填充氢气。

同时,根据本公开的实施方式的上述方法可被写为计算机程序。构成程序的代码和代码段能够容易地被本领域计算机程序员推测出来。此外,编写的程序可存储在计算机可读记录介质(即,信息存储介质)中并且可通过计算机读取和执行,由此实现根据本公开的示例性实施方式的方法。记录介质包括所有类型的计算机可读记录介质。

如上所述,通过在依次使用具有不同压力水平的多个存储罐(例如,设置在氢气站中的氢气存储罐)的同时向燃料电池车辆的氢气罐填充氢气,即使当由于氢气分配器与燃料电池车辆之间的通信误差而难以监控来自燃料电池车辆的氢气罐的压力和温度时,燃料电池车辆的氢气罐也可快速且安全地填充最大量的氢气燃料。

以上,尽管已参考实施方式和附图描述了本公开,然而本公开并不限于此,而是在不背离在所附权利要求中要求保护的本公开的精神和范围的前提下,可由本公开所属领域技术人员对本公开作出各种改变和更改。

附图中各元件的符号

201将氢气分配器的喷嘴连接至车辆的接收部

202ir通信正常进行?

203基于氢气罐的压力和温度向氢气罐填充氢气

204连接至低压力存储罐并尝试填充过程

205氢气罐正在填充氢气?

206连接至中等压力存储罐并尝试填充过程

207氢气罐正在填充氢气?

208连接至高压力存储罐并尝试填充过程

209填充过程完成?

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1