氢贮藏用容器的制作方法

文档序号:13079446阅读:292来源:国知局
氢贮藏用容器的制作方法与工艺

本发明涉及从容器的内侧依次具备内侧树脂层、阻挡层及外侧树脂层的氢贮藏用容器。



背景技术:

为了使燃料电池发电,众所周知需要向阳极供给氢气等燃料气体。因此,例如在搭载有燃料电池的燃料电池车中,搭载有填充了氢气的氢贮藏用容器。燃料电池车使供给到燃料电池的阴极的作为氧化剂气体的大气中的氧与从所述氢贮藏用容器供给的氢气反应来发电,并通过获得的电驱动驱动源来进行行驶。

所述氢贮藏用容器通常由作为容器主体的内衬和围绕该内衬的壳体构成。内衬由聚萘二甲酸乙二醇酯、高密度聚乙烯(hdpe)等树脂材料构成,壳体由纤维加强材料、例如frp构成。即,氢贮藏用容器构成为通过frp等碳纤维覆盖树脂制内衬。

例如,在日本特开2000-220794号公报提出了一种氢贮藏用的高压容器,其具备由聚萘二甲酸乙二醇酯构成的内侧树脂层及外侧树脂层、以及夹设在所述内侧树脂层与所述外侧树脂层之间的中间层。即,在该高压容器中,收纳于内部的高压氢气与内侧树脂层接触。

需要说明的是,所述中间层作为阻碍氢气透过的阻挡层而发挥功能,作为其材质,例示出使用乙烯-乙烯醇共聚物(evoh)。另外,根据需要,在内侧树脂层与中间层之间、中间层与外侧树脂层之间分别形成粘接剂树脂层。

在日本特开2000-220794号公报记载的技术中,在中间层(阻挡层)的内侧设置内侧树脂层的理由在于,为了确保氢贮藏用容器的耐压性。在此,形成内侧树脂层的聚萘二甲酸乙二醇酯与金属相比氢阻挡能力小。因此,通过设置作为中间层的阻挡层,能够防止氢气透过而向大气扩散的情况,换言之,能够防止氢贮藏用容器内的氢气压力降低。

但是,在该情况下,担心会在开始氢贮藏用容器的使用后比较早的阶段在内侧树脂层产生裂纹而使该内侧树脂层劣化这样的不良情况。



技术实现要素:

本发明的主要目的在于,提供一种能够避免因以高压贮藏在容器内的氢气的分子而在内侧树脂层产生裂纹的氢贮藏用容器。

根据本发明的一实施方式,提供一种氢贮藏用容器,其具备:

内侧树脂层,其至少具有与导入到容器的内部的氢气接触的内层;

阻挡层,其配置于所述内侧树脂层的外侧来阻碍氢气的透过;以及

外侧树脂层,其配设于所述阻挡层的外侧,且由树脂构成,其中,

所述内侧树脂层由聚乙烯系树脂构成,

在所述内侧树脂层及所述阻挡层的各自的厚度分别为x、y时,下述的式(1)成立,

【数式1】

在此,d为在50℃下通过差压法求出的聚乙烯系树脂的扩散系数。

氢分子能够侵入形成内侧树脂层的聚乙烯系树脂。如上所述,这是因为聚乙烯系树脂的氢阻挡能力比较小的缘故。本发明的诸发明人鉴于这一点获得以下见解:由聚乙烯系树脂构成的内侧树脂层的比较早地劣化的理由在于,在为了使燃料电池运转而从容器内导出氢时,换言之,在对容器内进行减压时,氢分子侵入到内侧树脂层的状态被原状态维持。

并且,获得如下见解:通过在阻挡层的厚度与内侧树脂层的厚度之间使规定的关系成立,阻挡层能够确保阻挡能力。

基于以上的见解,在本发明中,将内侧树脂层的厚度x设定为满足上述式(1)的关系的范围。侵入到这样设定的厚度的内侧树脂层的氢分子在对容器内进行减压时能够在该内侧树脂层中扩散而脱离。换言之,侵入到内侧树脂层的氢分子不会滞留于内侧树脂层,从该内侧树脂层脱离并向氢贮藏用容器的内部放出。即,氢分子侵入到内侧树脂层的状态被消除,因此,其结果是,能够避免氢分子引起的内侧树脂层(例如,聚乙烯系树脂制)的劣化。

而且,能够通过内侧树脂层及外侧树脂层获得充分的耐压性,并且,能够通过阻挡层防止氢气透过,换言之,能够防止氢气压力降低。需要说明的是,阻挡层的氢透过性当然比内侧树脂层和外侧树脂层的氢透过性小。

如以上那样,通过采用上述的结构,能够获得兼具良好的耐压性及氢阻挡能力、以及优异的耐久性的氢贮藏用容器。

作为构成内侧树脂层的聚乙烯系树脂的优选例,可举出高密度聚乙烯(hdpe)。在该情况下,能够低成本且容易地制作内侧树脂层。

在50℃下通过差压法求出的hdpe的扩散系数d为4.62×10-10m/秒。基于该值和式(1),优选将内侧树脂层的厚度设定为1.5mm以下。在现有技术的氢贮藏用容器中,内侧树脂层的厚度在大多数情况下为3mm以上。即,在本发明中,能够实现氢贮藏容器的薄壁化,能够相应地实现轻量化。

构成内侧树脂层的聚乙烯系树脂也可以为低密度聚乙烯(ldpe)。需要说明的是,在50℃下通过差压法求出ldpe的扩散系数d时,为4.45×10-10m/秒。因此,在该情况下,基于该扩散系数的值和式(1),优选将内侧树脂层的厚度设定为1.47mm以下。

只要式(1)的关系成立,也可以将内侧树脂层的厚度设定为1.4mm以下。由此,能够实现氢贮藏容器的进一步的薄壁化及轻量化。

也可以通过内层和粘接层构成内侧树脂层。在该情况下,内层经由粘接层与阻挡层粘接。因此,内层与阻挡层经由粘接层密接,从而能够防止氢分子乃至氢气残留于内层与阻挡层之间。

作为阻挡层的材质,适合为氢透过系数小的树脂。作为这样的树脂的具体例,可举出乙烯-乙烯醇共聚物树脂。

也可以在阻挡层与外侧树脂层之间设置用于将该阻挡层和该外侧树脂层粘接的粘接层。在该情况下,外侧树脂层经由粘接层与阻挡层粘接。即,阻挡层与外侧树脂层经由粘接层密接,因此即便氢气透过阻挡层,也能够阻止氢气残留于阻挡层与外侧树脂层之间。因此,能够防止在阻挡层与外侧树脂层之间产生剥离的情况。

根据本发明,使由聚乙烯系树脂构成的内侧树脂层的厚度为基于该聚乙烯系树脂的50℃下的通过差压法求出的扩散系数而计算出的扩散距离以下。因此,侵入到内侧树脂层的氢分子在对容器内进行减压时能够在该内侧树脂层中扩散,并朝向氢贮藏用容器的内部脱离。由此,氢分子侵入到内侧树脂层的状态被消除,因此能够避免因氢分子引起的在内侧树脂层产生裂纹的情况,换言之,能够避免内侧树脂层劣化。即,能够提高氢贮藏用容器的耐久性。

附图说明

图1是本发明的实施方式的氢贮藏用容器的沿着长度方向的简要整体剖视图。

图2是图1所示的氢贮藏用容器的沿着厚度方向的主要部分放大剖视图。

图3是示出氢分子从构成图1所示的氢贮藏用容器的内层脱离了的状态的主要部分放大剖视图。

图4是在加压氢氛围中配置之后的hdpe制试验片的沿着厚度方向的示意性剖视图。

具体实施方式

以下,举出优选的实施方式,并参照附图对本发明的氢贮藏用容器进行详细说明。

图1是本实施方式的氢贮藏用容器10的沿着长度方向的简要整体剖视图。该氢贮藏用容器10是用于填充高压氢气的高压容器,例如搭载于机动车车身而构成燃料电池车。

在氢贮藏用容器10的一端部形成有开口12,在该开口12设有管接头,该管接头连接有用于向燃料电池的阳极供给氢气或者用于从氢补给源补给氢气的配管。需要说明的是,燃料电池、氢补给源、配管及管接头均省略图示。

氢贮藏用容器10将内侧树脂层14、阻挡层16及外侧树脂层18作为主体而构成。如图2放大示出的那样,内侧树脂层14由内层20和第一粘接层22这两层构成。另外,在阻挡层16与外侧树脂层18之间夹设有第二粘接层24。在本实施方式中,内层20及外侧树脂层18由高密度聚乙烯(hdpe)树脂构成,阻挡层16由乙烯-乙烯醇共聚物(evoh)树脂构成。需要说明的是,作为第一粘接层22及第二粘接层24,优选采用聚乙烯系树脂,尤其优选采用低密度聚乙烯(ldpe)树脂。

在该情况下,由于hdpe树脂廉价且加工容易,因此能够低成本且容易地制作内层20及外侧树脂层18。并且,通过内层20及外侧树脂层18能够确保充分的耐压性。

另外,通过第一粘接层22及第二粘接层24能够使内层20与阻挡层16、以及阻挡层16与外侧树脂层18充分地密接。这是因为形成第一粘接层22及第二粘接层24的聚乙烯系树脂被改性而能够与hdpe树脂及evoh树脂这双方粘接的缘故。因此,内层20与阻挡层16、以及阻挡层16与外侧树脂层18之间被进行充分地密封,因此能够阻止氢分子26侵入。

而且,阻挡层16阻碍氢气透过。即,如图2所示,即便氢分子26侵入到内层20,通过阻挡层16也会遮挡氢分子26的进一步的扩散。第一粘接层22及第二粘接层24、进而内侧树脂层14、外侧树脂层18也同样阻挡氢气透过(扩散)。因此,能够防止氢气向大气扩散。

在以上的结构中,内层20的厚度x1与第一粘接层22的厚度x2的合计,换言之,由内层20和第一粘接层22构成的内侧树脂层14的厚度x被设定为大于0且规定的数值以下。以下,对该规定的数值的求法进行说明。

在从开始填充至氢贮藏用容器10内的氢气的减压起到在内层20产生裂纹为止的时间为tc,且该时间tc内的内层20中的氢分子26的移动距离为lc时,在lc与tc之间,以下的关系式(2)成立。

【数式2】

k为比例常数,d为材料扩散系数,其中的d通过50℃下的差压法求出。差压法为公知的,因而省略详细的说明。

在厚度x大于移动距离lc情况下,当为了使燃料电池运转而从氢贮藏用容器10向阳极电极供给氢时(对氢贮藏用容器10内进行减压时),也维持氢分子26侵入到内层20的状态。与此相对,在移动距离lc为厚度x以下的情况下,当对氢贮藏用容器10内进行减压时,如图3所示,氢分子26能够从内层20脱离。这是因为氢分子26能够移动与厚度x相同的距离或者比其长的距离的缘故。因而,将厚度x设定为大于0且lc以下。即,以下的关系式(3)成立。

【数式3】

0<x≤lc……(3)

在关系式(2)中,比例常数k为恒定值,此外,tc不变化,或者即便变化也为能够忽视的程度。即,能够将关系式(2)中的k及tc都视为恒定值。因此,如关系式(4)所示,使k与tc1/2之积为常数k。

【数式4】

根据关系式(2)、(4),导出以下的关系式(5)。

【数式5】

需要说明的是,构成内侧树脂层14的第一粘接层22的厚度x2为与内层20的厚度x1相比能够忽视的那么小。即,x1>>x2。因此,如以下说明的那样,也可以将内层20的厚度x1设定为内侧树脂层14的厚度x。

接着,例如从图4所示的试验片30求出lc。需要说明的是,该试验片30由hdpe树脂构成,其厚度x’为7mm。

将该试验片30配置在50℃的加压氢气氛围中并放置规定的时间。需要说明的是,试验片30由加压氢气从各露出表面(端面)按压。之后,减压至规定的压力。将经过以上的过程后的试验片30沿着厚度方向切断。图4为其切断面。

在图4中,用假想线m1、m2围绕而示出产生了裂纹32的区域。根据该图4可知,裂纹32在试验片30的内部产生,而在端面附近不产生。并且,从端面到假想线m1、m2的各距离m1、m2均为1.5mm。即,假想线m1、m2(产生了裂纹32的区域)从各端面分离1.5mm。

换句话说,根据该结果可知,从端面到假想线m1、m2的各距离m1、m2、即未产生裂纹32的区域的厚度为氢分子26的移动距离lc。其结果是,lc=1.5mm。

另一方面,在50℃下通过差压法求出的hdpe的扩散系数d为4.62×10-10m/秒。当将该值及lc=1.5mm代入到关系式(5)而计算k时,k=70。内侧树脂层14的厚度x如上述那样设定为lc以下,因此只要为70×d1/2以下即可。因而,根据式(3)及式(5),在内侧树脂层14的厚度x与扩散系数d之间,式(6)所示的关系成立。

【数式6】

接着,研究内侧树脂层14的厚度x与阻挡层16的厚度y的关系。在本实施方式中,如上所述,阻挡层16由evoh构成,但在该情况下,若吸水率成为2重量%以上,则难以确保阻挡能力。evoh的密度约为1.0g/cm3,因而,厚度为y[mm]的阻挡层16的吸水率成为2重量%的水蒸气透过量为0.002y[g/cm2]。

在此,在具有内层20与第一粘接层22且合计厚度为0.1cm的试验片中,在测定85°下的水蒸气透过度时,其实测值为1.5×10-5[g/cm2·24h]。因而,在24小时内透过厚度为xmm的内侧树脂层14的水蒸气量为1.5×10-5/x[g/cm2]。

为了确保阻挡层的阻挡能力,需要使透过内侧树脂层14的水蒸气量小于阻挡层16的吸水率成为2重量%的水蒸气透过量。即,使下述的式(7)成立。

1.5×10-5/x<0.002y……(7)

当针对x整理该式时,导出以下的式(8)。

x>(75/y)×10-4……(8)

根据式(6)及式(8),内侧树脂层14的厚度x被如式(1)所示那样设定。

【数式7】

通过将内侧树脂层14的厚度x(内层20的厚度x1)设定在该范围内,在对氢贮藏用容器10内进行减压时,侵入到内层20中的氢分子26能够在该内层20中扩散并向氢贮藏用容器10的内部脱离。即,氢分子26返回到氢贮藏用容器10的内部。因此,氢分子26侵入到内层20的状态被消除。其结果是,能够避免因氢分子26而使内层20劣化的情况。

也可以由ldpe树脂构成内层20。在50℃下通过差压法求出的ldpe的扩散系数d为4.45×10-10m/秒。当将该值和上述那样求出的k=70代入到关系式(5)时,作为氢分子26的移动距离lc,计算出1.47mm。即,在由ldpe树脂构成内层20时,只要将内侧树脂层14的厚度x(内层20的厚度x1)设定为1.47mm以下即可。由此,与上述同样,在对氢贮藏用容器10内进行减压时,氢分子26侵入到内层20的状态被消除。即,在该情况下,也能够避免因氢分子26而使内层20劣化的情况。

也可以使内侧树脂层14的厚度x为1.4mm以下。在该情况下,能够实现氢贮藏用容器10的进一步的薄壁化。

在任一情况下,都将厚度x、y设定为满足式(1)所示的关系,因此能够防止水蒸气(湿气)透过内层20而到达阻挡层16。因而,能够避免阻挡层16的阻挡能力降低,因此能够避免氢气从氢贮藏用容器10泄漏的情况。

本发明并没有特别限定于上述的实施方式,能够在不脱离其主旨的范围内进行各种变更。

例如,也可以通过碳纤维等覆盖外侧树脂层18来构成壳体。

此外,也可以省略第一粘接层22及第二粘接层24中的任一方或者双方。在不存在第一粘接层22的情况下,只要将内层20作为内侧树脂层,并使其厚度x1为大于0且70×d1/2以下即可。

实施例

将由hdpe树脂构成的第一层、由ldpe树脂构成的第一粘接层、由evoh树脂构成的阻挡层、由ldpe树脂构成的第二粘接层、由hdpe树脂构成的第二层依次层叠,制作出第一层与第一粘接层的合计厚度互不相同的多层试验片。需要说明的是,将第一层与第一粘接层的合计厚度设定为0.3mm、1mm、3mm、4mm或者5mm。

将多层试验片分别配置在50℃的加压氢氛围中并放置规定的时间。需要说明的是,此时,第一层及第二层的露出表面由加压氢气按压。之后,减压至规定的压力,并且沿着厚度方向切断。

对于以上那样露出的第一层的切断面,评价是否产生裂纹。并将结果通过与第一层和第一粘接层的合计厚度的关系一并在表1中示出。

【表1】

根据表1可知,在第一层与第一粘接层的合计厚度为1mm以下的情况下不产生裂纹,另一方面,在为3mm以上的情况下产生裂纹。同时根据该结果和hdpe树脂单体的试验结果,在构成氢贮藏用容器时,通过将与第一层和第一粘接层的合计厚度相当的内侧树脂层的厚度x设定为1.5mm以下,明显能够避免在内侧树脂层产生裂纹的情况。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1