底切多层衍射结构的散射仪测量方法

文档序号:6019329阅读:289来源:国知局
专利名称:底切多层衍射结构的散射仪测量方法
技术领域
本发明涉及半导体以及其它薄膜介质包括硬驱动介质制造中的度量技术和过程控制,尤其涉及底切多层(包括双层)衍射结构的模型图案。
背景技术
请注意下面的讨论参考大量的作者出版物和年度出版物,由于新近的出版日期,有些出版物将不被考虑为相对本发明的现有技术。在这中对这种出版物的讨论是为了给出更完整的背景,并非承认它们是用于确定专利性的现有技术。
光刻法被用于制备半导体器件,例如在晶片上制造的集成电路,以及平板显示器、盘读取头等。例如,光刻法被用于利用空间调制光将掩膜或中间掩模上的图案转换到基底上的抗蚀层上。抗蚀层然后被显影,曝光的图案或者被蚀刻掉(负抗蚀)或者被保留(正抗蚀),从而在抗蚀层上形成三维图形图案。然而,除了光致抗蚀剂光刻光刻法,还采用其它形式的光刻法。
在半导体工业中使用的一种光刻法中采用晶片分档器,它典型地包括还原透镜(reduction lens)和照射灯、受激激光源、晶片台、中间掩模台、晶片盒和操作者工作站。现代的分档器设备同时采用正抗蚀和负抗蚀方法,使用最初的分步重复格式或者分步扫描格式,或者它们的组合。在半导体晶片加工中,晶片基底材料经历一系列加工步骤,典型地包括搀杂、氧化、沉积、光刻、蚀刻和化学机械抛光(CMP)及其它步骤。这些步骤导致在基底表面上形成图案。形成的图案典型地是半导体器件组件,必须在紧公差范围内如实地复制,以保证半导体器件能够行使其功能。这样为了使最终产品器件满足所需要的规格,就需要确定在晶片表面上形成的期望图案的如实复制程度。形成在规格内的期望图案,反过来,很大程度上是加工参数的函数。采用度量工具测量形成的图案。然后将测量的图案与期望图案和加工设计相比较,或者直接比较或者利用以计算机为基础的过程控制系统比较,确定如何调整加工步骤以获得满足所需规格的图案。
图案表面测量包括临界尺寸(CD)、剖面特征和其它参数。一些半导体度量仪器直接测量图案表面,而其它仪器则推断出图案表面。直接测量工具使用直接测量图案结构的技术。推断工具产生与图案相关的测量信号然后推断出图案结构。
典型的直接测量工具有扫描电子显微镜(SEM)、原子力显微镜、其它电子显微镜、光学显微镜和类似设备。然而,尽管SEM度量技术能够分辨低于0.1μm(微米)的特征,但加工成本高,需要一个高度真空腔,而且操作速度相对低,难于实现自动化。可以采用光学显微镜,但是它不具有所需要的对微米以下结构的分辨能力。
一个推断测量的工具是光学散射仪。其它推断测量工具包括偏振光椭圆率测量仪、反射计和一般来说任何以光谱衍射为基础的采用任何形式的电磁辐射的技术。各种散射仪和相关设备以及测量可以被用于测定微电子和光电子半导体材料、计算机硬盘、光盘、精抛光光学部件和其它具有几十微米(μm)到小于0.1μm横向尺寸的材料的微观结构特征。例如,CDS200散射仪,由Accent Optical Technologies公司制造和销售,是一套全自动的、非破坏性的临界尺寸(CD)测量和横剖面分析系统,部分地公开在美国专利号为5,703,692的专利中。这个设备能够可重复地分辨小于100nm的临界尺寸,同时确定横剖面并实施层的厚度估算。这个设备监测单一衍射级的强度作为照射光束入射角度的函数。样本的零级或者镜面级以及更高衍射级的强度变化能够以这种方式被监测,这就提供了确定被照射的样本目标的性质的有用信息。因为制备样本目标的过程确定了样本目标的性质,这些信息作为对过程的间接监视也是有用的。这种方法原理在半导体加工文献中有所描述。以下文献教导了用于散射仪分析的大量方法和设备,包括美国专利4,710,642、5,164,790、5,241,369、5,703,692、5,867,276、5,889,593、5,912,741、6,100,985、6,137,570和6,433,878,其中每一个专利文件在此均通过引用被合并。
散射仪和相关设备可以采用各种不同操作方法。在一种方法中,使用单一的、已知波长的光源,入射角度θ在确定的连续角度范围内变化。在另一种方法中,采用大量激光束源,每一激光束源可以随意选择不同的入射角度θ。仍然在另外一种方法中,采用入射广谱光源,入射光以一定范围波长和随意选择的但保持为恒定值的入射角度照射。可变相位光学组件也是已知的,使用光学器件和滤光器以产生一定范围的入射相位,同时使用检测器检测由此产生的衍射相位。采用可变偏振状态光学组件也是可能的,其使用光学器件和滤光器将光的偏振态由S状态变化到P状态。在范围φ内调整入射角度也是可能的,这样使得光线或者其它辐射源绕着目标区域旋转,或者作为选择,可使目标相对于光线或者其它辐射源旋转。使用这些不同设备中的任何一种,并对其组合或者置换,能够得到并且已知得到了周期结构的衍射信号。
除了散射仪设备,也有其它设备和方法,使用能够被周期结构反射或者透射过周期结构的光源,利用被检测器捕获的光,确定在零级或者更高衍射级的衍射信号。这些其它设备包括偏振光椭圆率测量仪器和反射计。使用其它辐射源如X射线,可以得到非以光为基础的衍射信号,也进一步为人所知。
衍射光栅或者其它目标周期结构典型地以已知图案分散在晶片上的管芯中。使用散射测量,将来自衍射光栅的衍射信号与衍射光栅信号的理论模型库比较产生关于CD的信息,可以确定CD。实际衍射测量值被与模型比较,由此可以得出CD值。因为衍射光栅或者其它周期结构的光学响应能够由MAXWELL方程严格地模拟,最普遍的方法是以基于模型的分析。这些技术依赖于将测量到的散射信号与由理论模型产生的信号比较。差分模型和积分模型都被开发出来了。因为这些衍射模型在计算上是精深的,标准回归技术当前通常不能在不引入由于回归性能产生的误差的条件下使用,但是如果误差很小或者可以容忍,可以使用回归逼近。然而,通常,模型被先验地使用,以产生一系列对应于各种光栅参数如栅线的厚度和宽度的离散地迭代的信号。在一定范围内叠代所有参数值得到的一套信号被称为信号库。当散射信号被测量后,将它与信号库比较以找到最接近的匹配。使用标准的欧几里得距离测量方法,如最小化均方误差(MSE)或者均方根误差(RMSE),来确定最接近的匹配。和测量信号最接近的模型信号的参数被取为该测量信号的参数。
美国专利申请公开号为2002/0035455的授予Niu和Jakatdar的专利申请,是典型的以模型为基础的系统,用以产生周期结构的模拟衍射信号库。在普通方法中,库是在周期结构的假设的理论剖面基础上产生的,可以选择地考虑参数如周期结构的薄膜堆叠特征、形成周期结构的材料的光学性质、假设参数的估计范围、产生库构成部分使用的分辨率等。然而,美国专利申请公开号为2002/0035455的方法,作为现有技术的典型,通过假设周期结构的形状和其它参数开始所述过程。其它类似公开文献包括美国专利申请公开号为2002/0112966、2002/0131040、2002/0131055和2002/0165636的专利公开文献。
除了把未知图案的衍射信号与已知图案的测量的衍射信号或者与由假设的图案经过数学推导得到的衍射信号进行比较外,推断工具通常不能测量未知图案,也就是说确定相关CD或者其它参数。在仪器的精确度范围和任何期望图案的精确度范围中,设计一套模型图案和相应的衍射信号,其中或者包括期望图案,或者包括模型图案,这是已知的。通过与来自精密匹配衍射信号的图案进行比较,分析测量的信号,产生实际图案结构的推断结论。
分析中的主要问题是确定相关图案。可以采用图形化的用户界面(GUI)或者类似方法,用户用它来画图案。例如,GUI能够给用户提供一套预先确定的形状,它们可以被包括在想得到的图案中。用户也可以确定各个形状的制造材料。以这种方式,可以建立复杂的模型图案。在提交时,必须对模型图案进行物理合理性的检查。如果想得到一套模型图案,那么用户必须确定形状可以如何变化。例如,矩形可以由宽度和高度确定。为了产生一套模型图案,用户可以输入宽度和高度范围和在范围中的步长。
一旦确定了一个模型图案或者一套模型图案,就可以从它们当中得出模型衍射信号库。模型信号库是在使用Maxwell方程对模型图案进行模拟的基础上构建起来的。模拟可以是复杂的,包括参数诸如CD、相关节距、焦距、曝光、抗蚀剂类型、抗蚀剂厚度、温度、数值孔径、基底组分、材料组分等。
如果提交单一模型图案,那么采用的分析通常包括某些类型的误差最小化算法。误差是测量信号和模型信号之间的差值。模型信号是模型图案推导出来的,从而,如果模型图案和测量图案相同,那么模型信号和测量信号相同。最小化误差过程通常是一个迭代过程,在其中分析算法计算误差,然后使用误差和先前的误差计算来产生新的模型图案。为了产生新的模型图案,分析必须选择要改变的形状和如何改变形状。
制造具有多层的结构(多层结构)如双层结构是已知的。例如,在专利号为6,531,383的美国专利中,披露了由沉积了GaN缓冲层的基底、GaN缓冲层上形成的n型半导体层以及在n型半导体层上形成的电极结构组成的半导体器件。电极结构包括钛层、在钛层上形成的铝层、在钛层上形成的铂层和在铂层上形成的金层。这样电极结构包括四层独立的不同的层。在专利号为6,509,137的美国专利中,披露了一种“几乎相同”图案的薄光致抗蚀剂层被堆积以形成具有期望厚度的复合光致抗蚀剂层的方法。这种结构可以有两层或者多层。使用双层处理,在其中上层和下层由不同材料制成,依次涂敷在晶片上,也是已知的。上层光致抗蚀剂层被形成图案,随后底层被干蚀刻。上层的形成图案的光致抗蚀剂层与底层结合,以形成厚的复合光致抗蚀剂层。另外,在另一个例子中,双层结构在硬盘驱动媒体例如读取头上沉积。例如双层结构在制造用于硬盘驱动的抗磁(MR)头和庞大抗磁(GMR)头时产生。在这个过程的一个特别步骤中,一个剥离抗蚀剂(lift-off resist,LOR)典型地沉积在基底如NiFe上部的多层薄膜叠层上。在LOR预先焙制好后,利用随后焙制的抗蚀剂在该结构上涂敷成像抗蚀剂。成像(imaging)抗蚀剂和剥离抗蚀剂被曝光。在显影过程中,成像抗蚀剂被显影,依赖于剥离抗蚀剂的性质,它也可以在分开的处理步骤中被显影或者被蚀刻。结果产生的结构中成像抗蚀层的CD大于剥离抗蚀层的CD。
已知在蚀刻步骤中,通过化学反应和/或离子轰击从表面除去材料,对于不同的材料产生不同的结果。也就是说,晶片表面上的不同材料将经历不同的蚀刻速度和/或蚀刻剖面,产生底切。另外,诸如温度、材料、气体流动速率、气体组分、电源的输出功率、电源调制、处理腔中的真空度、蚀刻过程的反应产物、加工时间等参数,也将影响蚀刻过程。这样在多层或者双层结构中,材料的去除速度和随后的清除(strip)步骤,在不同层中对不同材料是变化的。这样,即使假设精确覆盖,结果产生的结构仍然可能具有不均匀宽度,例如,第一层材料宽度为a,第二层材料宽度为b,b大于a。典型地,最上面的一层或者几层的宽度大于下面层的宽度,但是任何想得到的几何结构是可能的。
用于产生衍射信号的现有技术的模型已经采用了简单结构,如图1~3所示。图1描述了最简单的模型,位于基底16上的矩形结构10、10′、10″。还采用了稍微复杂的模型,例如位于基底16上的梯形上切结构12、12′、12″或者位于基底16上的梯形底切结构14、14′、14″。尽管一些现有技术模型已经考虑了薄膜厚度和结构下面的薄膜的反射指数,如美国专利号为6,483,580的专利所披露的那样,但这些模型仍然仅仅采用传统的单层矩形或者梯形结构。
因此需要具有双层或者多层结构的周期结构模型,这种结构代表了实际能够得到的可能结构的范围,可以被用于更精确地模拟这种结构。

发明内容
在一个实施例中,本发明提供了一种用于半导体度量的在半导体基底上制造的底切多层衍射结构的模拟衍射信号库的产生方法。在该方法中,采用了下面的步骤确定至少一个第一层模型结构和至少一个位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构的第二层模型结构,以确定衍射结构的第一底切模型图案;通过改变至少一个与第一层模型结构或者第二层模型结构有关的参数,确定衍射结构的至少一个第二底切模型图案;产生来自多层衍射结构的各个底切模型图案的的模拟衍射信号;
获得半导体基底上的衍射结构的衍射信号;和将衍射结构的衍射信号与衍射结构的各个底切多层模型图案的的模拟衍射信号相比较。
在这种方法中,与产生紧密匹配模拟衍射信号的模型图案有关的参数能够被调整,以确定更好的或者最好的匹配模型图案。
在这种方法的实施过程中,半导体基底上的衍射结构的衍射信号包括以辐射源为基础的工具的使用,例如以光源为基础的工具。以光源为基础的工具包括入射激光束光源、聚焦光束和在一定范围入射角度内扫描的光学系统、用于在产生的测量角度范围中检测产生的衍射信号的检测器。这样在一个实施例中,以光源为基础的工具是一台角度分辨的散射仪。在另一个实施例中,以光源为基础的工具包括大量激光束源。以光源为基础的工具可以进一步包括入射广谱光源、聚焦光和通过一定范围的入射波长照射射的光学系统以及用于在产生的测量波长范围内检测产生的衍射信号的检测器。在这种方法中,以光源为基础的工具也可以包括入射光源、用于改变S和P偏振的幅度和相位的组件、聚焦光束和通过一定范围入射相位照射的光学系统、用于检测产生的衍射信号的相位的检测器。
获得半导体基底上的衍射结构的衍射信号的步骤可以包括借助以广谱辐射源为基础的工具源的相位测量,工作在固定角度、可变角度θ或可变角度φ。作为选择,它可以包括通过以单一波长辐射源为基础的工具源的相位测量,工作在固定角度、可变角度θ或可变角度φ;它还可以包括通过以若干不连续波长辐射源为基础的工具源的相位测量,或者在另外一种可能的选择中,可以获得反射衍射信号或者获得透射衍射信号;衍射结构的衍射信号是可以是镜面级衍射信号或者更高级的衍射信号。
产生衍射结构的各个多层模型图案的模拟衍射信号的步骤可以包括提交给计算机网络上的远端计算机,结果由远端计算机检索或返回。
在另一个实施例中,提供了确定与半导体基底上制备的底切多层衍射结构相关的至少一个参数的方法,该方法包括下面步骤确定至少一个第一层模型结构和至少一个位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构的第二层模型结构,以确定衍射结构的第一底切模型图案;
产生来自多层衍射结构的底切模型图案的模拟衍射信号;获得半导体基底上的衍射结构的衍射信号;将衍射结构的衍射信号与衍射结构的底切多层模型图案的模拟衍射信号比较;使用回归分析改变至少一个与底切多层模型图案的第一层模型结构或第二层模型结构联系的参数,以获得最佳匹配模型图案。
本发明的第一个目的是使用一个底切多层图案或者多个底切多层图案提供衍射信号库或者与底切多层衍射结构有关的其它推断电磁测量参数库,最理想地以多层衍射结构的制备参数为基础。
本发明的另一个目的是提供一种使用图形化用户界面来产生一个或多个底切多层结构图案,构建衍射信号库或者其它推断电磁测量参数库的方法。
本发明的另一个目的是提供一种使用多层衍射结构的模型库确定或者测量与底切衍射结构有关参数的方法。
本发明的另一个目的是提供一种使用模拟底切多层衍射结构的实时回归分析确定或者测量与底切衍射结构有关参数的方法。
本发明的另一个目的是提供一种通过获得衍射信号确定或者测量与光刻设备有关的参数的方法,所述方法使用任何方法产生衍射信号,包括但不限于零级或镜面衍射级或任意更高衍射级的反射或者透射角度分辨、可变波长、可变相位、可变偏振状态或者可变方位衍射,或者是它们的组合,然后将由此获得的结果与底切多层衍射结构的模拟库相比较。
本发明的另一个目的是提供一种通过获得衍射信号确定或者测量与光刻设备有关的参数的方法,所述方法使用任何方法产生衍射信号,包括但不限于零级或镜面衍射级或任意更高衍射级的反射或者透射角度分辨、可变波长、可变相位、可变偏振状态或者可变方位衍射,或者是它们的的组合,然后基于模拟底切多层衍射结构进行实时回归分析。
本发明的另一个目的是提供一种依靠模拟底切多层衍射结构的库,确定或者测量作为焦距、剂量(dose)或者其它过程参数的函数的与光刻设备有关的参数的方法和设备。
本发明的另一个目的是提供一种借助衍射结构的任意级衍射信号,包括零级或镜面级或更高级衍射,或者正衍射或者负衍射,来确定或者测量与包括底切多层结构的光刻设备有关的参数的方法。
本发明的一个主要优点是它允许测量与底切多层结构有关的参数,而不使用光学的、SEM或者类似的显微方法度量工具。
本发明的另一个优点是它提供了一种方法,该方法允许在模拟实际制造的结构的底切多层衍射结构的基础上,产生结构库和由此得到的相应的衍射信号库。
本发明的其它目的、优点和新颖特征,以及进一步可应用的范围,将在下面的详细描述中结合附图部分地阐明,部分地,对本领域的技术人员,通过分析下面的描述将会显而易见,或者通过实施本发明可以得知。本发明的目的和优点可以依靠在权利要求书中特别指出的手段和组合而实现和获得。


被合并到说明书中形成说明书一部分的附图和描述一起,阐明本发明的一个或多个实施例,起到解释本发明原理的作用。附图只用于阐明本发明的一个或多个优选实施例,而不应被解释为用于限制本发明。其中图1是位于基底16上的、现有技术的模型矩形结构10、10′、10″;图2是位于基底16上的、现有技术的模型梯形上切(overcut)结构12、12′、12″;图3是位于基底16上的、现有技术的模型梯形底切(undercut)结构14、14′、14″;图4是位于两层基底上的底切双层模型矩形结构的图解示意图;图5是位于基底上的底切双层模型梯形和矩形结构的图解示意图;图6是位于三层基底上的底切双层模型结构的图解示意图,该底切双层模型结构具有在矩形第二层上的梯形顶层,梯形顶层具有附加的剖面特征;图7是位于三层基底上的底切双层模型结构的图解示意图,该底切双层模型结构具有在矩形第二层上的梯形顶层,梯形顶层具有附加的剖面特征和附加的界面造型;
图8是位于三层基底上的底切双层模型结构的图解示意图,该底切双层模型结构具有在矩形第二层上的梯形顶层,梯形顶层具有附加的剖面特征,矩形第二层具有附加的界面造型;图9是位于两层基底上的底切双层模型结构的图解示意图,该底切双层模型结构具有在复杂形状的第二层上的梯形顶层,梯形顶层具有附加的剖面特征和附加的界面造型;图10是通过改变底切双层结构中底层的CD得到的一个样本衍射信号响应,在其中虚线图是S偏振态在0°~47°入射角度的角度响应。
具体实施例方式
(实施本发明的最佳模式)正如在本申请中所述,提供了方法和设备,由此,在此描述的散射仪以及推而广之的其它以辐射源微为基础的工具,能够被用于确定和量化底切双层设备中的最底层的临界尺寸。这对于测量与底切双层设备有关的参数具有特殊应用。本发明进一步提供了以假定制造的实际结构为基础的模型底切结构,例如底切多层设备的底切多层模型结构,或者底切双层设备的底切双层模型结构。
本发明特别用于双层设备中,也就是说,在具有两个不连续层的设备中,这样给定结构具有两个同样的组件。然而,本发明也适用于包括两层或多层的设备,例如多层设备,双层设备被理解成多层设备的一种类型。
通过实行本发明,得到测量的衍射信号。测量的衍射信号与模拟的或者理论上产生的衍射信号比较。模拟的或理论上产生的衍射信号是以在此提供的模型结构或者叠层组件(stack)的模拟为基础产生的。由此,可以确定所述结构或者叠层组件的剖面。
双层底切叠层组件或者结构,具有或者不具有底层薄膜,能够制造成周期阵列形成衍射光栅,适合用于获得衍射信号。各个结构能够被设计以便模拟最后工序的叠层组件。射线通过叠层组件和底层薄膜,或者被反射回去,或者透射过去,或者是两者情况的组合。因为射线穿透顶层进入第二层的能力,可以得到临界尺寸、宽度和总体剖面的特征。这对于磁盘存储器工业是特别关键的,其中在磁头制造过程中底切过程的控制非常关键。下面的图4~9介绍几种用于表示底切叠层的特征的可能的模型。图10介绍不同的样本衍射信号,其中改变底层栅层的下部临界尺寸(CD)。
在进一步介绍本发明之前,给出下面的定义。
光刻设备指任何使用图象如掩膜,将图案转换到基底或者可选择地转换到基底中的设备。因此它包括传统的光刻如光致抗蚀剂光刻光刻法,同时包括其它光刻方法。在光致抗蚀剂光刻法(也称做光刻法)中,使用光学方法将电路图案由主图象(其被称做掩膜或中间掩模)转移到晶片上。在这个过程中,一种或多种称做抗蚀剂的专门材料被涂敷到晶片上,在所述晶片上将要制作电路。根据需要涂敷抗蚀剂涂层,并根据需要进一步处理晶片,例如软焙烤(softbake)。可以采用正性或者负性光致抗蚀剂材料。正抗蚀剂通常在用做抗蚀剂显影剂的化学试剂中是不可溶解的,但是曝光后变得可以溶解。而负抗蚀剂通常在用做抗蚀剂显象剂的化学试剂中是可溶解的,但是曝光后变得不可以溶解。通过将抗蚀剂有选择地在一些区域曝光而另外区域不曝光,电路图案或者其它结构就在抗蚀剂薄膜上形成了。在光刻法中,有选择的曝光是通过掩膜成像完成的,典型地是通过照射光线到掩膜上和将透射的图象投影到抗蚀剂薄膜上完成的。
本发明中涉及的光刻设备包括分档器,也被称之为晶片分档器,它被用于将电路图象或者其它结构由光掩模投射到涂有抗蚀剂的晶片上。分档器典型地包括还原透镜(reduction lens)和照明灯、受激激光源、晶片台、中间掩模台、晶片盒和操作者工作站。分档器同时采用正和负抗蚀方法,使用或者分步重复格式或者分步扫描格式,或者它们的组合。
在本发明的一种方法中采用晶片或者其它的基底,利用光刻设备在其上制备有一系列多层周期性结构。一种形式的多层周期结构是衍射光栅,包括光刻装置制成的任何结构或图象,它相对于入射照明的变化产生周期性的折射指数变化。这种折射指数的变化或者是由于物理差异或者是由于化学差异引起的。物理差异包括光致抗蚀剂或者其它光刻技术上产生的变化,例如使用与空气结合的具有一种折射指数的材料,例如普通的有划痕的光学衍射光栅,或者与不同材料结合的材料。化学差异包括具有曝光的光致抗蚀剂衍射光栅的晶片,其中抗蚀剂还没有被显影。在这种情况下,所有的抗蚀剂仍旧存在,但是已经曝光的部分的折射指数和未曝光的抗蚀剂部分的折射指数不同,由此产生由抗蚀剂的折射指数的周期性变化构成的衍射光栅。周期性差异通过结构的或者化学元素的周期性得到。因此它包括常规的由一系列平行线构成的光栅,也包括由柱或孔的三维阵列构成的光栅,其中在X方向和Y方向都有周期性。因此衍射光栅包括光致抗蚀剂光栅、蚀刻薄膜叠层光栅、金属光栅和其它在相关技术中已知的光栅。周期性结构的宽度和间距可以是任意可行的尺寸,在很大程度上取决于光刻设备的分辨率。
在实施本发明的过程中,使用周期结构产生衍射信号。衍射信号可以通过大量仪器中的任何一种仪器产生,如散射仪、偏振光椭圆率测量仪或反射计。任何采用辐射产生衍射信号的设备在此被称之为基于辐射源的工具。典型地采用以可见辐射源为基础的工具,例如采用以光源为基础的工具,但是辐射源可以是可见辐射外的其它辐射源,因此可以是任何形式的电磁辐射,包括用X射线源得到的辐射。在一个实施例中,衍射信号是通过反射模式得到的,其中辐射线(例如光线)被反射。这样衍射信号可以通过角度分辨散射仪产生,其中使用单一的、波长已知的光源,入射角度θ在确定的连续范围中变化。产生的衍射信号可以具有相对于入射和反射角度θ的光强度。在另外一种方法中,采用大量的激光束源,可选择地每一束以不同入射角度θ入射。在另外一种方法中,使用入射广谱光源,其中入射光以某一范围波长进行照射,入射角度θ可选择地保持为常量。可变相位光源也是已知的,其使用一定范围入射相位,具有检测器用于检测产生的衍射相位。可变偏振光源也是已知的,其使用一定范围的从S到P组分或者从P到S组分的偏振状态。在范围Φ内调整入射角度也是可能的,以便使得光源绕着衍射光栅旋转,或者可以选择地,使衍射光栅相对于光源旋转。应用这些不同设备的任何一种,或者它们的组合或变换,得到样本目标的衍射信号是可能的和已知的。通常,用检测到的光强相对于至少一个可变参数绘图,如入射角度θ、入射光波长、入射光相位、扫描角(angleof sweep)Φ,等等。衍射信号可以呈现零级或镜面级或者任意的更高衍射级。也可能和可以设想采用一种透射模式来产生衍射信号,例如使用X射线辐射源作为基于辐射的工具的组件。
在本发明的一个实施例中,提供了一种晶片,在其上布置了一系列管芯(die)。每个管芯典型地代表晶片的代表光刻设备(如分档器)的曝光区域的那个部分。在分步重复系统中,当快门打开时,要曝光的掩模或者中间掩模的整个区域被照射,因此同时地曝光整个管芯曝光区域。在分步扫描系统中,当快门打开时,只有中间掩模或者掩模的一部分,因而只有管芯曝光区域的一部分被曝光。在任何一种情况下,中间掩模或者掩模可以被移动,从而制造出衍射光栅组件,衍射光栅组件由一系列不同的、可选地不同焦距的衍射光栅构成,其中光栅是多层的,如双层结构。衍射光栅组件也可以由一系列相同的衍射光栅构成、或者由改变一个或多个工艺参数如焦距、剂量等的一系列衍射光栅构成。从晶片上的管芯到管芯、一个或多个工艺参数如剂量范围或焦距设置范围或者它们两个都变化,也是可能的。常规地,剂量或者焦距是以恒定增量步长变化的,以便于随后的分析。这样,焦距,例如,可以在确定的范围中以50~100nm的步长变化,剂量,例如,可以在确定的范围中以1或2mJ的增量变化。
衍射光栅典型地是在抗蚀剂材料中通过制备具有与想得到的衍射光栅的期望形状、尺寸和结构对应的不透明和透明区域的掩模而制造的。然后使用辐射源照射掩膜的一侧,从而将掩膜的形状和间距投影到抗蚀剂层上,抗蚀剂层位于掩膜的相对侧。在晶片和抗蚀剂层之间可以插入一个或多个透镜或者其它光学系统,可选择地也可以设置在辐射源和掩膜之间。当曝露于辐射源或者供给足够水平的能量来产生抗蚀剂层中的变化时,在抗蚀剂中形成了潜象。潜象代表抗蚀剂材料的化学变化,导致抗蚀剂层的反射率的变化,这样可以用于产生上述的衍射信号。然后可以涂敷第二层抗蚀剂层,重复曝光步骤。在一个实施例中,抗蚀剂中具有潜象的晶片可以经历曝光后的焙烤,用于驱动抗蚀剂层中的附加化学反应或者扩散化学组分。在另外一个实施例中,抗蚀剂可以通过显影处理进行显影,可以选择化学显影处理,由此抗蚀剂的一部分被去掉,这种部分由采用的抗蚀剂是正抗蚀剂还是负抗蚀剂决定。显影处理也被称之为蚀刻处理,结果在抗蚀剂层或者可以选择的在基底材料如其它薄膜上产生蚀刻区域或者区间,抗蚀剂层设置在所述基底材料上。
在本发明的方法和设备中,实际衍射光栅可以被曝光但不显影,或者可以交替地被显影。类似地,尽管前面所述一般地介绍了产生衍射光栅或者其它周期性结构的常规方法,但是可以采用其它任何处理方法步骤,包括使用相位移动掩膜、各种辐射源的任何一种,包括电子束曝光,等。可以容易地发现对于任何处理方法步骤,只需要模拟这里所述的步骤。
在本发明的一个实施例中,将基于理论的底切多层衍射结构的理论上的衍射信号与测量衍射信号相比较,产生了底切多层衍射结构的理论库和相应的模拟的或者理论上的衍射信号,如衍射图象。这可以由不同方法实现。在一种方法中,产生了理论输出信号的实际库,以指定参数作变量为基础。该库可以在衍射信号实际测量之前产生,也可以在将测量的衍射信号与理论衍射信号匹配过程中产生。这样这里使用的理论库既包括独立于测量的衍射信号产生的库,又包括以测量的底切多层结构的几何结构的理论“最佳推测”和由此产生的理论衍射信号的计算为基础产生的库,其中采用与变化参数结构的迭代比较确定最佳匹配。通过去除通过参考集中其它信号的插值可以精确表示的信号,该库可以任意地被修整。同样地,通过将各个信号和一个或多个索引函数关联,然后基于相关程度对索引进行排序,可以产生库的索引。这种类型库的构建或产生以及它的优化方法,在本领域中是众所周知的。在一种逼近方法中,采用精确的基于Maxwell方程的理论模型,来计算衍射结构的预期的光学信号如衍射信号的特征,作为衍射结构参数的函数。在这个过程中,选择一组衍射结构参数试验值。然后,在这些值的基础上,构建衍射结构的可由计算机描述的模型,包括光学材料和几何形状。对衍射结构和照射辐射之间的电磁相互作用进行数值模拟,以计算预测的衍射结构。可以采用各种拟合优化算法来调整衍射结构参数值,这一过程反复迭代以最小化测量和预测衍射信号之间的偏差,从而得到最佳匹配。美国专利申请号为2002/0046008的专利揭示一种用于结构识别的数据库方法,而美国专利申请号为2002/0038196的专利揭示另外一种方法。类似地,美国专利申请号为2002/0135783的专利及美国专利申请号为2002/0038196的专利揭示了几种理论库逼近方法。
由模型图案产生库在业界是众所周知的,正如大量参考专利所揭示,如其中的美国专利申请公开号为2002/0035455、2002/0112966、2002/0131040、2002/0131055和2002/0165636的专利。早期引用这些方法的包括R.H.Krukar、S.S.H.Naqvi、J.R.McNeil、J.E.Franke、T.M.Niemczyk和D.R.Hush的“用于蚀刻硅光栅的度量的新型衍射技术”,OSA AnnualMeeting Technical Digest,1992(Optical Society of America,Washington,D.C,1992),Vol.23,P.204;和R.H.Krukar、S.M.Gspar和J.R.McNeil的,“waferexamination and critical dimension estimation using scattered light(使用散射光的晶片检查和临界尺寸估计)”,Machine Vision Applications in CharacterRecognition and Industrial Inspection,Donald P.D’Amato,Wolf-EkkehardBlanz,Byron E.Dom,Sargur N.Srihari,Editors,Proc SPIE,1661,pp.323-332(1992)。
类似地可以采用其它拟合方法,包括实时回归分析。这些方法在业界是众所周知的,可以采用这些方法,以模型变换为基础,例如底切多层衍射结构的变换,来确定一个“最佳拟合”的理论衍射信号,例如衍射特性图案。在通常称为迭代回归的技术中,将一个或多个模拟的衍射信号与测量的衍射信号比较,从而产生误差信号差,然后计算另外一个模拟衍射信号,并与测量的衍射信号比较。重复或者迭代这一过程直到误差被减小,也就是说回归到一个给定值。一种迭代回归的方法是非线性回归,它可以随意地以“实时模式(real-time)”或者“传输过程(on-the-fly)”模式执行。可以应用本领域的技术人员熟悉的差分迭代回归算法,通过把测量的衍射信号与基于模型结构剖面的模拟衍射信号比较,来分析测量的衍射信号。
除了与底切多层图案有关的参数,在理论库中可以使用的其它衍射结构参数包括任何可以被模拟的参数,包括诸如光栅周期因子;结构的材料参数,包括它的不同层的参数;其上放置结构的基底的材料参数,如薄膜厚度和结构下面的薄膜的反射指数;和不同加权或者平均值,如在指定位置的CD,根据结构和基底的相对贡献的加权值。
图4描述了一种用于本发明的简单案例模型结构。在图4中,基底16,例如,是晶片基底,在其上沉积有薄膜18,如Al2O3。图示双层结构由两层构成,第一层是22、22′、22″,如PMGI基剥离(lift-off)抗蚀剂,在其上有第二层24、24′、24″,如成像(imaging)抗蚀剂。在这个例子中,第一层22、22′、22″和第二层24、24′、24″都是矩形横截面的,第二层24、24′、24″的宽度(CD)明显大于第一层22、22′、22″的宽度。为了进行模拟,可以构成一个库,这样使得第一层22、22′、22″的宽度与第二层24、24′、24″的宽度之比在确定为可能的范围中以期望的增量变化,从而提供源于这样的模型结构的以模拟的或者理论衍射信号如衍射图案为基础的必要的拟合性,。类似地,第一层22、22′、22″的高度和第二层24、24′、24″的高度也能够在确定为可能的范围中变化,同样地,第一层22、22′、22″的高度和第二层24、24′、24″的高度之比也可以以适当的增量变化。
图5描述了在基底16上,位于矩形第一层26、26′、26″之上的梯形第二层28、28′、28″。这里,第一层26、26′、26″和第二层28、28′、28的宽度和高度的绝对值及其比值也可以被改变。然而,形成第二层28、28′、28的梯形形状的内角也可以被改变,这样使得梯形的形状在确定为可能的范围中变化。
图6描述了具有包括顶部圆倒角的另外的剖面特征的梯形第二层32、32′、32″,它位于矩形的第一层30、30′、30″上,矩形的第一层30、30′、30″又依次位于薄膜20上,薄膜20又依次位于薄膜18上,薄膜18又依次位于基底16上。与图5情况一样,第一层30、30′、30″和第二层32、32′、32″的宽度和高度的绝对值及其对应比值可以被改变,同样形成第二层32、32′、32″的梯形形状的内角也可以被改变。然而,第二层32、32′、32″的圆的顶部倒角可以进一步被改变,这样使得顶角可以圆化为圆弧,也可以是椭圆弧或其它几何形状,同样地,圆、椭圆或者其它几何形状的半径可以被改变,这样使得曲率在确定为可能的、与源于这种模型结构的模拟的或理论衍射信号(如衍射图案)的产生相关的范围中变化。
图7描述了一种如图6所述的模型结构,在第一层34、34′、34″和第二层36、36′、36″之间具有附加的界面造型。图8又描述了另一种如图6所述的模型结构,在第一层38、38′、38″和第二层40、40、40″之间具有附加的界面造型。在各个例子中,上面讨论的所有参数可以被改变,附加的界面造型可以通过类似的参数而被改变。图9描述了一种如图6所述的模型结构,但是省略了薄膜20,并且在第一层42、42′、42″和第二层44、44′、44″之间具有另外的界面造型,产生了第一层42、42′、42″的复杂形状。
图10描述了如图4~图9中任何一个双层模型结构的下面的CD变化产生的模拟衍射信号响应,示出明确相关的模型中的小变化如何产生模拟衍射信号响应的差别,这里是模拟的或理论的衍射信号响应,结果能够产生更为精确的拟合。在图10中,CD1,CD2和CD3的不同之处仅在于第一层的临界尺寸(例如图4的第一层22、22′、22″)变化,例如底切量变化。这样,不同的底切量,例如,能够很容易地被模拟,而不需要采用在此以前使用的破坏性的度量技术,例如横截面SEM或者聚焦的离子束。这样,底切第一层的CD的小变化导致衍射信号例如衍射图像的明显不同,这样,可以在多层结构的度量中应用。
在图10中,衍射信号是作为角度响应、S偏振态、在0°~47°的入射角度范围内绘制出来的。然而,相同的结果可以由其它用于确定模拟的或者理论的衍射信号或图像的有关方法得到,包括使用任何形式的以光谱辐射源为基础的工具源,操作在固定角度、可变角度θ或可变角度φ、反射衍射信号、透射衍射信号,镜面级衍射信号或者更高级衍射信号条件下。
本发明的方法可以采用任何底切多层衍射结构,包括任何底切双层衍射结构。在一个实施例中,本方法被用于硬盘读取头的度量。这种头典型地采用在基底上沉积的至少双层结构,基底典型地是金属,其中顶层的抗蚀剂和底层抗蚀剂被去掉程度不同,这样使得顶层的CD在至少一维方向上比底层的CD大,从而定义了底切。典型地,产生的结构被用做随后的金属沉积的掩膜,在金属沉积后把剩余的抗蚀剂去掉,只留下带有“阶梯”构造的金属结构。这里描述的方法能够用于显影的抗蚀剂结构的度量。这样这种方法可以用于任何适当类型的读取头几何形状,包括但不限于各种MR技术,如GMR或者隧道效应(tunneling)MR,以及可以选择的技术,如那些用于非磁的半导体金属合成读取头的技术。
在另一个实施例中,这里公开的方法可以被用于光掩膜度量。例如某些掩膜采用金属(如铬)沉积在如玻璃或石英的基底上,随后基底被部分地蚀刻掉,产生底切双层结构。在相关的实施例中,不同的相位移动掩膜和中间掩模采用底切结构,其中覆盖在底切上的部分随着相位移动频繁地展示衰减或者频率加倍。这样这里揭示的方法可以用于掩膜或中间掩模的质量控制检测,只要这种设备采用底切双层或多层结构。
尽管在此具体参考这些优选实施例详细描述了本发明,其它实施例可以得到相同结果。本发明的变形和变更对本领域的技术人员而言将是显而易见的,因此权利要求书中将包括所有这些变形及其等价物。上面引用的所有参考文件、申请、专利和出版物的全部内容在这里通过引用被合并。
权利要求
1.一种确定用于半导体度量中的衍射结构的底切多层模型图案的方法,所述衍射结构采用光刻法制造在半导体基底上,该方法包括确定第一层模型结构;和确定至少一个第二层模型结构,其位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构,从而产生衍射结构的底切模型图案。
2,一种产生在半导体基底上制备的底切多层衍射结构的模拟衍射信号的方法,该方法包括确定第一层模型结构;确定至少一个第二层模型结构,其位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构,从而确定底切模型图案;和产生来自衍射结构的底切模型图案的模拟衍射信号。
3.一种产生用于半导体度量中的在半导体基底上制备的底切多层衍射结构的模拟衍射信号库的方法,该方法包括确定至少一个第一层模型结构和至少一个位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构的第二层模型结构,从而确定衍射结构的第一底切模型图案;通过改变至少一个与第一层模型结构或第二层模型结构相关的参数来确定衍射结构的至少一个第二底切模型图案;和产生来自多层衍射结构的各个底切模型图案的模拟衍射信号。
4.一种产生用于半导体度量中的在半导体基底上制备的底切多层衍射结构的模拟衍射信号库的方法,该方法包括确定至少一个第一层模型结构和至少一个位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构的第二层模型结构,从而确定衍射结构的第一底切模型图案;通过改变至少一个与第一层模型结构或第二层模型结构相关的参数来确定衍射结构的至少一个第二底切模型图案;和产生来自多层衍射结构的各个底切模型图案的模拟衍射信号;获得半导体基底上的衍射结构的衍射信号;和将衍射结构的衍射信号与衍射结构的各个底切多层模型图案的模拟衍射信号相比较。
5.如权利要求4中所述的方法,进一步包括修改与模型图案相关的参数以产生精密匹配模拟衍射信号的步骤。
6.如权利要求4中所述的方法,其特征在于获得半导体基底上的衍射结构的衍射信号包括以辐射源为基础的工具的使用。
7.如权利要求6中所述的方法,其特征在于以辐射源为基础的工具包括以光源为基础的工具。
8.如权利要求7中所述的方法,其特征在于以光源为基础的工具包括入射激光束源、聚焦激光束和扫描一定范围入射角度的光学系统、用于在产生的测量角度范围内检测产生的衍射信号的检测器。
9.如权利要求8中所述的方法,其特征在于以光源为基础的工具包括角度分辨散射仪。
10.如权利要求7中所述的方法,其特征在于以光源为基础的工具包括多个激光束源。
11.如权利要求7中所述的方法,其特征在于以光源为基础的工具包括入射广谱光源、聚焦光线和通过一定范围的入射波长照射的光学系统、用于在产生的测量波长范围内检测产生的衍射信号的检测器。
12.如权利要求7中所述的方法,其特征在于以光源为基础的工具包括入射光源、用于改变S和P偏振状态的幅度和相位的组件、聚焦光线和经过一定范围的入射相位照射的光学系统、用于检测产生的衍射信号的相位的检测器。
13.如权利要求4中所述的方法,其特征在于获得半导体基底上的衍射结构的衍射信号包括通过以广谱辐射源为基础的工具源进行相位测量,工作在固定角度、可变角度θ或可变角度φ下。
14.如权利要求4中所述的方法,其特征在于获得半导体基底上的衍射结构的衍射信号包括通过以单一波长辐射源为基础的工具源进行相位测量,工作在固定角度、可变角度θ或可变角度φ下。
15.如权利要求4中所述的方法,其特征在于获得半导体基底上的衍射结构的衍射信号包括通过以若干不连续波长辐射源为基础的工具源进行的相位测量。
16.如权利要求4中所述的方法,其特征在于获得半导体基底上的衍射结构的衍射信号包括获得反射衍射信号。
17.如权利要求4中所述的方法,其特征在于获得半导体基底上的衍射结构的衍射信号包括获得透射衍射信号。
18.如权利要求4中所述的方法,其特征在于衍射结构的衍射信号是镜面级衍射信号。
19.如权利要求4中所述的方法,其特征在于衍射结构的衍射信号是更高级的衍射信号。
20.如权利要求4中所述的方法,其特征在于产生衍射结构的各个多层模型图案的模拟衍射信号包括提交给计算机网络上的远端计算机。
21.如权利要求20中所述的方法,其特征在于这一步骤的结果由远端计算机检索或者返回。
22.一种确定至少一个与半导体基底上制备的底切多层衍射结构相关的参数的方法,该方法包括确定至少一个第一层模型结构和至少一个位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构的第二层模型结构,从而确定衍射结构的第一底切模型图案;产生来自多层衍射结构的底切模型图案的模拟衍射信号;获得半导体基底上的衍射结构的衍射信号;将衍射结构的衍射信号与衍射结构的底切多层模型图案的模拟衍射信号比较;使用回归分析改变至少一个与底切多层模型图案的第一层模型结构或第二层模型结构相关的参数,从而获得最佳匹配模型图案。
23.一种通过基于辐射的工具推断测量至少一个与在半导体基底上制备的底切多层衍射结构相关的参数的方法,该方法包括确定至少一个第一层模型结构和至少一个位于第一层模型结构上并至少在一维方向上延伸超过第一层模型结构的第二层模型结构,从而确定衍射结构的第一底切模型图案;通过改变至少一个与第一层模型结构或第二层模型结构相关的参数,确定衍射结构的至少一个第二底切模型图案;产生来自多层衍射结构的各个底切模型图案的模拟衍射信号;通过基于辐射的工具,获得半导体基底上的多层衍射结构的衍射信号;将多层衍射结构的衍射信号与该衍射结构的底切多层模型图案的模拟衍射信号比较,并选择精密匹配的模拟衍射信号;和通过检验产生精密匹配的模拟衍射信号的模型图案,导出至少一个与多层衍射结构相关的参数。
24.如权利要求23中所述的方法,进一步包括修改一个或多个与产生精密匹配的模拟衍射信号的模型图案相关的参数,,并将它的模拟衍射信号与衍射结构的衍射信号比较。
全文摘要
一种底切多层衍射结构的度量方法,其中使用基于辐射的工具得到的衍射信号分析,其特征在于模拟衍射信号基于底切多层结构模型产生。在一种方法中,采用与库比较方法。在另一种方法中,采用回归分析方法。在模型中可以改变底切参数,包括临界尺寸和材料系数。
文档编号G01B11/06GK1662788SQ03813919
公开日2005年8月31日 申请日期2003年4月17日 优先权日2002年4月17日
发明者迈克尔·E·利陶, 克里斯托弗·J·雷蒙德 申请人:安格盛光电科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1