一种光电接触式流速测量方法及其传感器的制作方法

文档序号:6152720阅读:466来源:国知局
专利名称:一种光电接触式流速测量方法及其传感器的制作方法
技术领域
本发明涉及一种开放流场流速测量技术,尤其涉及一种光电接触式流速测量方法及其传感器。
背景技术
流速是开放式流场最基本的物理量之一,对流体速度场的获取是认识流体流动特性的关键,如何准确快速的获取流体流速一直是现代水工量测技术领域研究的热点。
对于开放式流场,现普遍采用的流速测量方法主要有机械式旋浆、毕托管、激光多普勒流速仪和粒子图像测速仪等。基于机械旋桨、毕托管技术的流速测量装置价格较为低廉,适合于一般工程应用,但存在对原有流场有破坏、对小流速不敏感、测量误差较大等缺点。激光多普勒测速仪与粒子图像测速仪又因为价格过于昂贵,不适于大范围推广应用,且两种测速装置都只能测量流体中颗粒的速度,而迄今为止流体中颗粒的"跟随"问题仍然是一个令业界较为头痛的难题。
迄今为止,互相关方法仅被用于封闭流场(如管道等)两相流流速的非接触式测量,且其一般基于超声波调制机理,而从未发现有基于光学互相关方法的开放流场流速测量的相关文献。

发明内容
本发明提出了一种光电接触式流速测量方法,该方法包括测定相同时刻、相同强度的光信号在水流上、下游的透射光强度,利用互相关算法计算两个接收到的光信号间的时延Af ,
根据Ar计算水流流速。
其中,上述的测定相同时刻、相同强度的光信号在水流上、下游的透射光强度,包括1)设置两对光传感器光发射器1#和光接收器1@,光发射器2#和光接收器2@; 2)获取经水流流动噪声信号调制后的两个光信号。
其中,光发射、接收器件为非一般可见光光电传感器,选用光电传感器件的标准在于其能避免可见光对实验结果的影响; 一般可选用红外光电器件。
步骤l)设置两对光传感器',包括沿水流流动方向,分别设置两个光发射器1#、 2#;沿水流流动方向,在两个光发射器的同侧对立位置,分别设置两个光接收器1@、 2@,两光发射器间距和两光接收器间距均为/且光发射器1#、 2#和光接收器1@、 2@在同一水平面内;
2个光发射器和2个光接收器的4个位置,沿流体流动方向成矩形对称,其中,/长度范围应根据光电器件大小,尽可能设置小。
步骤2)包括光发射器1#、 2#分别向光接收器1@、 2@发射光强相同的光信号,实时
4记录同一时刻光接收器1@、 2@接收到的透射光强度。
利用互相关算法计算两个接收到的光信号间的时延Ar,并根据Ar计算水流流速,包括:根据下式计算流体流速v。
式中/为两光发射/接收器间距,为了符合流动噪声统计继承性条件,间距应尽可能小,根据光发射/接收器大小,其间距可控制在10cm之内;
Ar为两光接收器在同一时刻收到的两个光信号间的时延;
本发明还提出了一种基于光电接触式流速测量方法的传感器,它包括两个光发射器、
两个光接收器、支撑架;两个光发射器安装在支撑架内的同侧,两个光接收器安装在支撑架内与两个光发射器相对的另一侧,两个光发射器和两个光接收器的四个固定位置成矩形对称;光发射器和光接收器一一对应。
本发明采用的支撑架结构如下支撑架上部成弧型,下部为两个平行的竖直壁;整个支撑架的迎水面6全都设置成弧形,以减小对水流的阻力,支撑架横截面成"H"型;其中竖
直壁为双层结构,竖直壁的内层上有与光发射器/光接收器固定位置及大小相匹配的通孔,竖直壁的外层的内表面上有与光发射器/光接收器固定位置及大小相匹配的凹槽,光发射器/光接收器穿过内层的通孔嵌在外层的凹槽内,光发射器/光接收器的供电线、光接收器与数据处理器间的数据输出线布置于竖直壁的内、外层间的缝隙中;竖直壁的内、外层、光发射器/光接收器之间的缝隙用密封胶密封固定。
为了符合统计继承性的条件,两个光发射器/光接收器间距离应尽可能小,根据光发射/接收器大小,其间距可控制在10cm之内;为了减小传感头本身结构对水流特性的影响,传感器厚度应尽可能小,根据光发射/接收器大小,支撑架的厚度可控制在4 6mm之内,支撑架纵向长度大于光发射器间间距,支撑架上部的弧型部分竖直高度范围1 3cm,支撑架下部的竖直壁高度范围2 4cm。
本发明的有益技术效果是对小流速敏感、结构简单、成本低廉、测量精度高。


图l、本发明的传感头装置结构示意图;图2、本发明的系统组成示意图; .图3、光发射器/光接收器固定位置处竖直壁截面示意图;图4、基于统计继承原理的流体流动物理模型示意图中光发射器l、光接收器2、支撑架3、固定悬梁4、信号处理器5。
具体实施方式
基于尚未发现利用互相关算法实现开放流场流速测量的事实,以及开放式流场(如明渠等)现有流速测量方法的缺陷,利用光学测量的优点,研究如何将光学互相关技术应用于开放式流场流速测量,不仅具有较高的理论价值,而且具有相当大的实际应用意义。
本发明所依据的原理
流体在流动过程中,内部似"微团"形式的流动噪声之间存在相互作用与能量交换。虽然流体内部流动噪声状况随时呈现出随机、无规律变化,但在流动方向上,存在较好的统计继承性。
参见附图4,基于统计规律的流体流动数学模型示意图,为了简化讨论,在流体中截取一圆柱水体进行考虑,其中任一断面的流动噪声用椭圆表示。假设水流速度为v。,断面a与断面b距离为/。
根据流动噪声统计继承性,被测流体在断面a处的流动噪声,经过一定的时间会重复出
现在下游的断面b处。假设上游流动噪声为x(O,则上下游流动噪声关系公式可表示为(D式
少(O = x0 - △ r) + , /) ①
其中,为流动噪声在传递过程中叠加的干扰,少(o为下游流动噪声。根据实际情况
可知,断面距离/越远,w(f,/)就越大,反之亦然。
断面距离/越小,统计继承性越接近理想状态,当/足够小时,可以近似忽略不计。
则O式简化为
j(/),-Ar) ②通过公式②可见,上下游流动噪声信号为有一时延Ar的互相关信号。时延Af 、断面间距离/、流速v。存在以下关系
在测量过程中,断面间距离/为定值,通过求得流动噪声时延Az",就可以计算得到与流动噪声速度相等的水流流速v。;所以,如何间接获得表面流体流动噪声信号,及精确求取流动噪声时延Ar是实现流体表面流速精确测量的关键。
由于光束在水中传播时具有良好的束射、调制及耦合特性,故利用光束在水中传播时流动噪声对光信号强度的调制机理,通过对光信号强度的实时获取来间接感知流体中流动噪声的变化情况。
沿水流流动方向,分别设置两个光发射器1#、 2#;沿水流流动方向,在两个光发射器的同侧对立位置,分别设置两个光接收器1@、 2@,两光发射器间距和两光接收器间距均为/且光发射器1#、 2#和光接收器1@、 2@在同一水平面内;2个光发射器和2个光接收器的4个位置,沿流体流动方向成矩形对称;
其中,/为两光发射/接收器间距,为了符合流动噪声统计继承性条件,间距应尽可能小,根据光发射/接收器大小,其间距可控制在10cm之内。光发射器1#、 2#的光强均为/,在受到式②的流体噪声调制后,由光接收器1@、 2@接收到的光强信号分别为/^)、 /2(0:<formula>formula see original document page 7</formula>
其中,A、 &分别是由1#、 2#光发射器发出的光束在水中传播时的衰减系数,由于光束在水中传播长度相同(即光发射器1#和光接收器1@的间距与光发射器2#和光接收器2@的间距相同),且水质相同,故&=^=^:,同时将②式代入④式,可得
由公式(D可知,由光接收器输出的光强信号为经过流动噪声调制过的,彼此有一时延Ar的互相关信号。
故,上位机5可根据光接收器1@、 2(^接收到的光强信号A(0、 /2(0,利用互相关算法(公式⑥)求取光发射器输出信号经水流流动噪声调制后的时延Ar,
式中,7V为一个采样周期内的采样个数;/JW)为1@光接收器在一个采样周期内接收到
的第"个光强信号;/2(" +附)为2(g光接收器在一个采样周期内接收到的与/,(")相匹配的第w个光强信号
在相关序列&(m)中,找到i^最大值对应的m。点,然后根据采样周期T可以得到两个信号之间的时延,
Ar = w0T ⑦
在求得Ar的基础上,根据下式可求得水流流速v。
_ / = /
为了实现对流动噪声信号的获取,本发明提出了一种传感器及其装置的具体结构如图l所示的传感装置它包括两个光发射器l、两个光接收器2、支撑架3、长度可伸縮的固定悬梁4、信号处理器5 (参见图2,所述结构构成传感头),其中,支撑架3上部成弧型,下部为两个平行且与水平面垂直的竖直壁;整个支撑架的迎水面6全都设置成弧形,以减小.对水流的阻力,支撑架3横截面成"D "型;固定悬梁4下端与支撑架3的弧顶固定连接;
两个光发射器1固定在支撑架3的其中一个竖直壁的内侧,两个光接收器2固定在支撑架3的另一个竖直壁的内侧,且光发射器1和光接收器2都在同一水平面内,两个光发射器l和两个光接收器2的四个固定位置成矩形对称; 一个光发射器l 一一对应一个光接收器2,两个光接收器2输出的电信号由信号处理器5进行采集、处理。
参见附图3,竖直壁为双层结构,内侧的竖直壁层上有与光发射器1/光接收器2固定位置及大小相匹配的通孔,外侧的竖直壁层的内表面上有与光发射器1/光接收器2固定位置及大小相匹配的凹槽,光发射器l/光接收器2穿过通孔嵌在凹槽内,光发射器l/光接收器2的供电线、光接收器2与数据处理器5间的数据输出线布置于竖直壁的内、外层间的缝隙中;竖直壁的内、外层、光发射器l/光接收器2之间的缝隙用密封胶密封固定。
支撑架3下部采用两个平行的竖直壁,是为了保证光发射器1发出的光能正向照射到光接收器2上。
支撑架3上部的弧型结构是根据水工学曼宁公式,保证在装置截面积一定的前提下,尽量使水流无阻碍通过,从而尽可能减少装置结构对原有流场的破坏。
实际使用中,为了屏蔽可见光对测量数据的影响,光发射器1可选用带防水功能的红外发光管,而光接收器2可选用带防水、信号放大功能的红外光电晶体管,二者直径都小于5mm。为了保证两发射器的光线不串扰,且为了保证精度,光发射器l间距离(也是光接收器2间距离)可以控制控制在10mm之内。而传感装置结构高度可以设定为3cm (竖直壁)+2cm(弧形),其厚度5mm (以上参数均为一种优选值)。
权利要求
1、一种光电接触式流速测量方法,其特征在于测定相同时刻、相同强度的光信号在水流上、下游的透射光强度,利用互相关算法计算两个接收到的光信号间的时延Δτ,根据Δτ计算水流流速。
2、 根据权利要求1所述的光电接触式流速测量方法,其特征在于测定相同时刻、相同 强度的光信号在水流上、下游的透射光强度,包括1)设置两对光传感器光发射器1#和 光接收器1@,光发射器2#和光接收器2@; 2)获取经水流流动噪声信号调制后的两个光信号。
3、 根据权利要求2所述的光电接触式流速测量方法,其特征在于光发射器、光接收器 采用红外光电器件。
4、 根据权利要求2所述的光电接触式流速测量方法,其特征在于步骤l)设置两对光 传感器,包括沿水流流动方向,分别设置两个光发射器1#、 2#;沿水流流动方向,在两个 光发射器的同侧对立位置,分别设置两个光接收器1@、 2@,两光发射器间距和两光接收器间距均为/,且光发射器1#、 2#和光接收器1@、 2@在同一水平面内;2个光发射器和2个光 接收器的4个位置,沿流体流动方向成矩形对称。
5、 根据权利要求2所述的光电接触式流速测量方法,其特征在于步骤2)包括光发射器1#、 2#分别向光接收器1@、 2@发射光强相同的光信号,记录同一时刻光接收器1@、 2@接收到的透射光强度。
6、 根据权利要求1所述的光电接触式流速测量方法,其特征在于根据Ar计算水流流速,包括根据下式计算流体流速V。,式中/为两光发射/接收器间距,间距在10cm之内;Ar为两光接收器在同一时刻收到的两个光信号间的时延。
7、 一种基于光电接触式流速测量方法的传感器,其特征在于它包括两个光发射器(l)、 两个光接收器(2)、支撑架(3);两个光发射器(1)固定在支撑架(3)内的同侧,两个光 接收器(2)固定在支撑架(3)内与两个光发射器(1)相对的另一侧,两个光发射器(1)和两个光接收器(2)的四个固定位置成矩形对称;光发射器(1)和光接收器(2) —一对应。
8、 根据权利要求7所述的基于光电接触式流速测量方法的传感器,其特征在于为了尽可能减小传感器本身对水流特性的影响,根据水工曼宁公式,其支撑架(3)上部成弧型,下 部为两个平行的竖直壁,整个支撑架的迎水面6全都设置成弧形,以减小对水流的阻力,支撑架(3)横截面成"n"型。
9、 根据权利要求8所述的基于光电接触式流速测量方法的传感器,其特征在于竖直壁 为双层结构,竖直壁的内层上有与光发射器(1) /光接收器(2)固定位置及大小相匹配的通 孔,竖直壁的外层的内表面上有与光发射器(1) /光接收器(2)固定位置及大小相匹配的凹 槽,光发射器(1) /光接收器(2)穿过内层的通孔嵌在外层的凹槽内,光发射器(1) /光接 收器(2)的供电线、光接收器(2)与数据处理器(5)间的数据输出线布置于竖直壁的内、 外层间的缝隙中;竖直壁的内、外层、光发射器(1) /光接收器(2)之间的缝隙用密封胶密 封固定。
10、 根据权利要求7所述的基于光电接触式流速测量方法的传感器,其特征在于两个 光发射器(1) /光接收器(2)间距离范围在10cm之内;支撑架(3)的厚度为4~6mm,支 撑架(3)上部的弧型部分竖直高度范围1 3cm,支撑架(3)下部的竖直壁高度范围2-4cm。
全文摘要
本发明公开了一种光电接触式流速测量方法,它利用“同一时刻,相同光强的光信号分别经上、下游水流流动噪声调制后的时延”来计算水流流速;本发明还公开了一种基于光电接触式流速测量方法的装置,它包括两个光发射器、两个光接收器、“∩”型支撑架、长度可伸缩的固定悬梁、信号处理器,信号处理器通过对光接收器接收的信号进行处理分析即可求得水流流速;本发明的有益技术效果是对小流速敏感、结构简单、成本低廉、测量精度高。
文档编号G01P5/26GK101498739SQ20091010337
公开日2009年8月5日 申请日期2009年3月13日 优先权日2009年3月13日
发明者丁甡奇, 俊 吴, 张绪进 申请人:重庆交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1